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Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Julian Heeck∗ and He Zhang†

Max–Planck–Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Generating small sterile neutrino masses via the same seesaw mechanism that suppresses active
neutrino masses requires a specific structure in the neutral fermion mass matrix. We present a
model where this structure is enforced by a new U(1)′ gauge symmetry, spontaneously broken at
the TeV scale. In order not to spoil the neutrino structure, the additional fermions necessary for
anomaly cancellations need to carry exotic charges, and turn out to form multicomponent cold dark
matter. The active–sterile mixing then connects the new particles and the Standard Model—opening
a new portal in addition to the usual Higgs- and kinetic-mixing portals—which leads to dark matter
annihilation almost exclusively into neutrinos.

PACS numbers: 14.60.Pq, 14.60.St, 95.35.+d, 14.70.Pw

I. INTRODUCTION

Neutrino oscillation experiments have by now firmly established the existence of neutrino oscillations
and lepton flavor mixing, indicating that the Standard Model (SM) framework in particle physics has to
be extended to include neutrino masses. Apart from the traditional three neutrino oscillation picture, the
LSND [1] and MiniBooNE [2] short-baseline experiments suggest the presence of sterile neutrinos at the
eV scale, which do not participate in the weak interaction but mix with active neutrinos with a mixing
angle θs ∼ O(0.1) [3, 4]. Furthermore, recent re-evaluations of reactor anti-neutrino fluxes indicate that
the previous reactor neutrino experiments had observed a flux deficit, which can in fact be interpreted
by additional sterile neutrinos with masses at the eV scale (see Ref. [5] for an exhaustive overview of the
field). Moreover, the light-element abundances from precision cosmology and Big Bang nucleosynthesis
favor extra radiation in the Universe, which could be interpreted with the help of one additional sterile
neutrino, albeit with a mass below eV [6].
From the theoretical point of view, the question then arises how the small sterile neutrino mass scale

O(eV) can be motivated compared to the electroweak scale of O(100 GeV). Recall that the seesaw
mechanism [7] is one of the most popular theoretical attempts to understand the smallness of active
neutrino masses and also the baryon number asymmetry of the Universe. An obvious ansatz is then
to use the same seesaw mechanism to suppress sterile neutrino masses. To this end, the right-handed
neutrino content has to be extended compared to that in the simplest type-I seesaw mechanism, and a
specific flavor structure, i.e., the minimal extended seesaw (MES), has to be employed [8, 9]. Explicitly,
in the MES model, the SM fermion content is extended by adding three right-handed neutrinos νRi (for
i = 1, 2, 3) together with one singlet fermion S,‡ while the full Majorana mass matrix for the neutral
fermions in the basis (νe, νµ, ντ , ν

c
R,1, ν

c
R,2, ν

c
R,3, S

c) is given by

MMES =





0 mD 0
mT

D MR mS

0 mT
S 0



 . (1)

After integrating out the heavy right-handed neutrinos νR,i, one obtains three massive eigenstates with
masses around MR, three with masses around the eV scale and one massless neutrino. Taking a hier-
archical spectrum mD < mS ≪ MR, one of the three massive eigenstates will be a sterile neutrino and
its admixture with active neutrinos is suppressed by a factor O(mD/mS) (see Ref. [9] and Sec. III A for
detailed discussions).
Note that the MES structure defined in Eq. (1) can be obtained with discrete flavor symmetries [9],

under which the right-handed neutrinos and S carry different charges. In addition, the MES structure
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do therefore not partner-up with the active neutrinos.

http://arxiv.org/abs/1211.0538v1
mailto:julian.heeck@mpi-hd.mpg.de
mailto:he.zhang@mpi-hd.mpg.de


2

could also be obtained in models with abelian symmetries. For example, one may introduce an extra U(1)′

symmetry, and take the three right-handed neutrinos νR,i to be neutral under U(1)′ (all SM particles are
neutral too). One may then write down a bare Majorana mass matrix MR for νR, which is unprotected
by the electroweak or U(1)′ scale. The right-handed singlet S on the other hand carries a U(1)′ charge Y ′,
and we further introduce an SM singlet scalar φ with charge −Y ′. The gauge invariant coupling ScνRφ
then generates the mS matrix in Eq. (1) after φ acquires a vacuum expectation value (VEV), while the
Majorana mass for S (i.e., ScS) and a coupling to the active νL are still forbidden by the U(1)′ symmetry
at the renormalizable level. Such a simple realization of MES however suffers from the problem of triangle
anomalies, and can therefore only work as a global symmetry, whose spontaneous breaking would result
in a massless Goldstone boson. While this might not be disastrous, more interesting phenomenology
arises when the U(1)′ is promoted to a local symmetry. Consequently, one has to extend the model by
additional chiral fermions so as to cancel the arising gauge anomalies. Along these lines, possible model
constructions for sterile neutrinos in the U(1)′ framework have already been discussed in Refs. [10], using
an effective-field-theory approach.
In this note we will work in the seesaw framework and discuss minimal renormalizable and anomaly-

free U(1)′ models, which are spontaneously broken by just one additional scalar and reproduce the MES
structure accounting for the 3 + 1 or 3 + 2 scheme of light sterile neutrinos. In particular, we will show
that the additional singlet fermions employed for the anomaly cancellation turn out to be stable—due
to remaining ZN symmetries [11]—implying that they can be viewed as good candidates for the dark
matter (DM) in the Universe. The remaining parts of this work are organized as follows: In Sec. II we
explain the framework of exotic charges under a gauged U(1)′ and why they are needed to obtain the MES
structure. In Sec. III we discuss in some detail the phenomenology of a specific example with one light
sterile neutrino (3+1 scheme) and three stable DM candidates, with a focus on the novel effects inherent
in our model. We briefly discuss other interesting examples of this framework in Sec. IV, including an
extension to the 3 + 2 case. Finally, we summarize our work in Sec. V.

II. DARK SYMMETRY

As already mentioned in the introduction, adding just one extra right-handed singlet S to the three νR’s
results in triangle anomalies if only S is charged under the extra U(1)′ symmetry. Instead of treating
U(1)′ as a global symmetry, we gauge the U(1)′ in the rest of the work, and accordingly introduce
additional singlet chiral fermions to cancel the anomalies. As we will see below, these new states need
to decouple from the neutrino sector in order not to spoil the MES structure, and automatically lead to
DM candidates without the need for additional stabilizing discrete symmetries.
For a gauged U(1)′ symmetry under which all SM particles are singlets, there are no mixed triangle

anomalies, so anomaly freedom reduces to the equations

∑

f

Y ′(f) = 0 and
∑

f

(Y ′(f))3 = 0 , (2)

where f stands for our new right-handed fermions. In order to cancel the contribution from S ≡ S1, more
U(1)′ charged chiral fermions Si≥2 have to be introduced. The solutions of Eq. (2) for n = 2 are simply

given by Y ′(S1) = −Y ′(S2). In this case, a bare mass term mSc
1S2—unconstrained by any symmetry—

can be constructed, which spoils the desired MES structure for light sterile neutrinos unless we make
m small. There is no integer solution with Y ′ 6= 0 for n = 3 according to the famous Fermat theorem.
In the case of n = 4, it is easy to prove that there is no phenomenologically interesting solution since
two of the Si must have U(1)′ charges of opposite sign and equal magnitude, inducing an unconstrained
bare mass term as in the case of n = 2. For n ≥ 5 however, there exist interesting non-trivial anomaly-
free charge assignments—dubbed exotic charges hereafter—for example the set (10, 4, −9, 2, −7) for
n = 5 [10, 12]. In order to make all new fermions massive at tree level with just one scalar φ, even more
chiral singlets have to be introduced. For the 3 + 1 scheme discussed in the main text, we add seven
singlet fermions Si to the model (the 3 + 2 scheme discussed in Sec. IVA needs six). The charges of all
the ten right-handed fermions are listed in Tab. I; they are of course by no means unique, but serve as
a simple illustration of this framework. We further stress that at least three U(1)′ singlet right-handed
neutrinos νR,i are needed in order to explain the observed light neutrino mass-squared differences ∆m2

21,
∆m2

31 and ∆m2
41, resulting in one massless active neutrino. This is however not a hard prediction of the

MES scheme; adding a fourth νR (or even more) to the model makes all light neutrinos massive and does
not qualitatively change or complicate the discussion below. Other interesting charge assignments with
similar overall phenomenology are presented in Sec. IV.
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νR,1 νR,2 νR,3 S1 S2 S3 S4 S5 S6 S7 φ

Y ′ 0 0 0 11 −5 −6 1 −12 2 9 11

Table I: U(1)′ charge assignments of the right-handed fermions and the scalar φ.

In the scalar sector, we adopt only one SM singlet scalar φ with U(1)′ charge 11. We can then write
down the following renormalizable couplings relevant for the neutrino masses

−Lm = (mD)ijνL,iνR,j +
1

2
(MR)ijνcR,iνR,j + wiφ

† Sc
1νR,i + y1φSc

3S2 + y2φSc
4S5 + y3φ

† Sc
6S7 + h.c.,

(3)

where appropriate sums over i and j are understood. The mD terms stem from electroweak symmetry
breaking using the usual SM Higgs doublet H , while wi and yi are Yukawa couplings. Absorbing phases
into the Sj we can take yj and one of the wj to be real, while MR can taken to be real and diagonal
as well. Once φ acquires a VEV, the mS matrix will be generated as mS = wj〈φ〉, leading to the MES
structure in Eq. (1) (discussed in detail in Sec. III A). The other fermions S2,3,4,5,6,7 decouple from νL, νR
and S1, and actually can be paired together to form three (stable) Dirac fermions Ψ1,2,3, to be discussed
in Sec. III C.
Let us briefly comment on a theoretical constraint on the model. An inherent problem in any gauge

theory involving abelian factors is the occurrence of a Landau pole, i.e., a scale at which the gauge
coupling becomes so large that our perturbative calculations break down. In our model, the one-loop
beta function of the U(1)′ gauge coupling g′ takes the form

d

d lnµ
g′ = β =

g′
3

16π2
b =

g′
3

16π2





2

3

∑

j

(Y ′(Sj))
2 +

1

3
(Y ′(φ))2



 , (4)

so the Landau pole of g′ appears around the scale

ΛL ≃ Λ′ exp

(

8π2

b (g′(Λ′))2

)

, (5)

where Λ′ characterizes the U(1)′ breaking scale. Inserting the U(1)′ charges given in Tab. I we find
b = 315, whereas for the 3 + 2 scheme from Tab. II (which will be discussed later on in Sec. IVA) we
have b = 75. For Λ′ ≃ 1 TeV and ΛL & MPl ≃ 1019GeV, one obtains the constraints g′(Λ′) . 0.08
for the 3 + 1 case and g′(Λ′) . 0.17 for 3 + 2 case. Alternatively, if we take the cutoff scale of the
model to be the right-handed neutrino mass scale, i.e., ΛL & MR ∼ 1014 GeV, these bounds relax to
g′(Λ′) . 0.1 and g′(Λ′) . 0.2 for 3 + 1 and 3 + 2, respectively. These upper bounds are stricter than the

naive perturbativity bound g′
2
/4π . O(1)/max(Y ′)2.

III. PHENOMENOLOGICAL CONSEQUENCES

In this section we discuss the phenomenology of our new particles, with an emphasis on the novel
effects in our framework.

A. Neutrino Masses and Active–Sterile Mixing

Let us consider the neutrino masses and active–sterile mixing in the U(1)′ model. After the breaking
of the gauge group SU(3)C ×SU(2)L×U(1)Y ×U(1)′ to SU(3)C ×U(1)EM, the full 13× 13 mass matrix
for the neutral fermions in the basis ν = (νL,1, νL,2, νL,3, ν

c
R,1, ν

c
R,2, ν

c
R,3, S

c
1, S

c
2, S

c
3, S

c
4, S

c
5, S

c
6, S

c
7) reads

M =

(

(MMES)7×7 0

0 (MS)6×6

)

, (6)
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where the matrix MMES reproduces the MES structure derived in Ref. [8, 9] (although our definition for
mS differs by transposition), while MS denotes the mass matrix of S2−7, explicitly given as

MS =









0 y1〈φ〉 0 0 0 0

y1〈φ〉 0 0 0 0 0

0 0 0 y2〈φ〉 0 0

0 0 y2〈φ〉 0 0 0

0 0 0 0 0 y3〈φ〉
0 0 0 0 y3〈φ〉 0









. (7)

Obviously S2−7 decouple from the neutrino sector and can no longer be interpreted as right-handed
neutrinos, because they do not partner-up with the SM neutrinos. The bare mass term MR is unrestricted
and can be large, as in the canonical seesaw case. We will consider this possibility here by setting
MR ≫ mD,mS , which leads to the effective low-energy neutrino mass matrix

M4×4
ν ≃ −

(

mDM−1
R mT

D mDM−1
R mS

mT
SM

−1
R mT

D mT
SM

−1
R mS

)

, (8)

for (νL, S
c
1).

§ Such a mass matrix can be diagonalized by means of a unitary transformation as M4×4
ν =

V diag(m1,m2,m3,m4)V
T . Phenomenologically, the most interesting situation arises for mS ≫ mD,

since the hierarchical structure of M4×4
ν allows us to apply the seesaw expansion once more, and arrive

at the sterile neutrino mass

m4 ≃ −mT
SM

−1
R mS , (9)

together with the mass matrix for the three active neutrinos

M3×3
ν ≃ −mDM

−1
R mT

D +mDM−1
R mS (mT

SM
−1
R mS)

−1mT
SM

−1
R mT

D = U diag(m1,m2,m3)U
T , (10)

diagonalized by U . The 4× 4 unitary mixing matrix V is approximately given by

V ≃
(

(1− 1
2
RR†)U R

−R†U 1− 1
2
R†R

)

(11)

with the active–sterile mixing vector R = mDM−1
R mS (mT

SM
−1
R mS)

−1 = O(mD/mS). As a rough
numerical estimation, for mD ∼ 102 GeV, mS ∼ 5 × 102 GeV and MR ∼ 2 × 1014 GeV, one obtains
the active neutrino mass scale mν ∼ 0.05 eV, the sterile neutrino mass scale ms ∼ 1.3 eV together with
R ≃ 0.2. This is in good agreement with the current global-fit data, i.e., |R1| ≃ 0.15 and ∆m2

41 ≃ 1.8 eV2

for the 3 + 1 scheme [4].
For Yukawa couplings of order one, the observed large active–sterile mixing implies the scaling

〈φ〉/〈H〉 ∼ 5–10. The new physics scale around TeV is hence not tuned to make LHC phenomenol-
ogy most interesting, but comes directly from the neutrino sector. Actually—even though we obtain the
magic TeV scale—the LHC implications of our model are rather boring, as we only expect small mixing
effects in the Higgs and Z-boson interactions, to be discussed in the next section.
Let us briefly comment on thermal leptogenesis [13] in our framework. In principle, the additional

singlet fermions may spoil the ordinary picture of leptogenesis since the right-handed neutrinos might
predominately decay to sterile neutrinos instead of active neutrinos. This drawback can be easily cir-
cumvented here by choosing the coupling of the lightest right-handed neutrino νR,1 to the new states
to be small, i.e., w1 ≪ w2,3. This will not modify the desired MES structure in the neutrino sector,
but sufficiently increase the branching ratio of νR,1 into SM particles, so standard thermal leptogenesis
ensues.

B. Bosonic Sector

In this subsection we will briefly summarize the behavior of φ and Z ′. The scalar potential W in our
model takes a simple form

W = −µ2
H |H |2 + λH |H |4 − µ2

φ|φ|2 + λφ|φ|4 + δ |H |2|φ|2 , (12)

§ On a more fundamental level, one can integrate out the heavy right-handed neutrinos νR at energies E ≪ MR to
generate the effective dimension-five Weinberg operators (mD)ij(mD)kjLiH̃H†L̃k/(〈H〉2 (MR)jj ), w2

i φ2S1Sc
1
/(MR)ii

and (mD)ijwj LiH̃S1φ†/(〈H〉 (MR)jj ), which were the starting point in Refs. [10].
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where H denotes the SM Higgs doublet, and φ can be decomposed as φ = (Re φ+i Imφ)/
√
2 = (〈Re φ〉+

ϕ+ i Imφ)/
√
2. After symmetry breaking and in unitary gauge, Imφ is absorbed by the Z ′ boson, giving

it a mass MZ′ = |11g′〈φ〉|. Due to the δ term in the scalar potential, we have a generic mixing between
the remaining real field ϕ and the neutral scalar h contained in H , i.e.,

(

h1

h2

)

=

(

cos θ − sin θ

sin θ cos θ

)(

h

ϕ

)

, (13)

where h1 and h2 are the physical mass eigenstates, and the mixing angle θ is given by

sin 2θ =
δ〈φ〉〈H〉

√

(λφ〈φ〉2 − λH〈H〉2)2 + (δ〈H〉〈φ〉)2
. (14)

A non-zero δ—and hence θ—opens the well-known Higgs portal [14] for the DM production/annihilation,
which will be discussed in the next section.
The Higgs portal |φ|2|H |2 aside, there is one more renormalizable, gauge-invariant operator that will

induce a coupling between the SM and DM sectors, namely the kinetic-mixing operator sin ξ Fµν
Y F ′

µν [15].
This off-diagonal kinetic term involving the hypercharge and U(1)′ field strength tensors will induce a
coupling of the physical Z ′ boson to the hypercharge current. The relevant phenomenology of the resulting
interaction between the SM and DM particles can be found in e.g. Refs. [16, 17].

C. Dark Matter

As we mentioned before, the singlet fermions S2,3,4,5,6,7 are the DM candidates in our model. To see
this point, we write down the full Lagrangian for the right-handed singlets S2 and S3:

LS2,3
= iS2γ

µ(∂µ − i(−5g′)Z ′
µ)S2 + iS3γ

µ(∂µ − i(−6g′)Z ′
µ)S3 + y1(φS

c

3S2 + h.c.) . (15)

By defining the Dirac field Ψ1 ≡ S2 + Sc
3, the above Lagrangian can be rewritten in unitary gauge as

LS2,3
= iΨ1γ

µ∂µΨ1 + g′Z ′
µΨ1γ

µ

(

(−5)− (−6)

2
+

(−5) + (−6)

2
γ5

)

Ψ1 +
y1√
2
(〈Re (φ)〉 + ϕ) Ψ1Ψ1 .

(16)

After spontaneous symmetry breaking, Ψ1 acquires a Dirac mass M1 ≡ −y1〈Reφ〉/
√
2. Similarly, we can

define Ψ2 ≡ S4 + Sc
5 and Ψ3 ≡ S6 + Sc

7 for S4,5 and S6,7, and obtain altogether the DM Lagrangian

LDM =
∑

j=1,2,3

[

iΨjγ
µ∂µΨj −MjΨjΨj −

Mj

〈Re (φ)〉 ϕ ΨjΨj

+
g′

2
Z ′
µΨjγ

µ
[

(Y ′
2j − Y ′

2j+1) + (Y ′
2j + Y ′

2j+1)γ5
]

Ψj

]

,

(17)

where we defined Y ′
j ≡ Y ′(Sj). The stability of these fields will be discussed below, but let us first take

a look at the interactions involving the will-be sterile neutrino S1, given by the Lagrangian

LS1
= iS1γ

µ(∂µ − i(11g′)Z ′
µ)S1 +

(

wiφ
† Sc

1νR,i + h.c.
)

. (18)

The important part is the Z ′ interaction, as it allows for the annihilation ΨiΨi → Z ′ → S1S1. Since the
physical sterile neutrino νs ≡ ν4 consists mainly of S1, but contains a not-too-small part of the active
neutrinos νe,µ,τ , this process connects the DM to the SM sector. Specifically, this “neutrino portal” takes
the form

Lν−portal =
g′

2
Z ′
µ

[

Ψ1γ
µ(1− 11γ5)Ψ1 +Ψ2γ

µ(13− 11γ5)Ψ2 +Ψ3γ
µ(−7 + 11γ5)Ψ3

+ 11

4
∑

i,j=1

V ∗
4iV4j (νiγ

µγ5νj + νiγ
µνj)

]

,

(19)

where the four light mass eigenstates νj are written as Majorana spinors and the unitary matrix V is
defined in Eq. (11).
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MR νR,j

eV

〈H〉

〈φ〉 DM : Ψi Ψj

Z ′, φ

SM

Z − Z ′

H − φ

W, Z

να
V4j νs

Z ′

∼ TeV

1014 GeV

100 GeV

Figure 1: Visualization of the different scales in our framework, as well as the relevant interaction channels.
The red connection between the DM and SM sectors represents the well-known kinetic-mixing and Higgs portals
(based on vector and scalar mixing respectively), while the blue interactions are relevant for the neutrino portal
(based on fermion mixing). Interactions with the νR,j are highly suppressed and not shown.

We further note that the heavier DM particles can also convert to the lighter ones, i.e., ΨiΨi → ΨjΨj

via the s-channel exchange of Z ′ or φ. Moreover, Ψi may also annihilate to Z ′ and φ, which can enhance
the total annihilation cross section significantly.
The model content and relevant scales are illustrated in Fig. 1. The (self-interacting) DM sector couples

to the SM just like all models with a dark symmetry U(1)DM, namely through scalar mixing (Higgs portal,
parameterized through δ) and vector mixing (kinetic-mixing portal, parameterized through ξ). However,
due to the gauge interactions of the DM with the sterile neutrinos, a new portal through fermion mixing
(neutrino portal) opens up in our model. Since this portal is not often discussed in the literature (see
however Refs. [18, 19]), we will focus on it in the remainder of this paper.

1. Stability

It is obvious that the Ψi fields in Eq. (17) are stable, since there exists an accidental global U(1)3

symmetry shifting the phases of Ψi. The occurrence of several stable DM particles (multicomponent
DM) results in numerous interesting effects (see Refs. [20] for some early work). The underlying reason
for the stability in our case is the remaining exact Z11 symmetry after the spontaneous breakdown of the
U(1)′. The Ψj form representations under this discrete gauge group with charges 6, 1 and 2 (modulo 11),
which stabilizes at least the lightest of them, even when higher-dimensional operators are considered.
While our model is renormalizable, we expect it to be only valid up to a certain cutoff scale Λ, either

because quantum gravity takes over, or because sooner or later we will hit the U(1)′ Landau pole—
as discussed in Sec. II. At the cutoff scale, higher-dimensional operators might be generated, and in
our models these will always include φ2S1S

c
1/Λ and the Weinberg operator [21] for νL-Majorana masses.

Taking Λ ∼ MPl does not destroy the discussed MES structure if 〈φ〉 . 10TeV. For the charge assignment

here, there are also dimension-six operators like S
c

2S4S6S
c
3/Λ

2, which break the global U(1)3 to a U(1)
symmetry, so only one stable Dirac fermion survives. However, since these operators are highly suppressed
for Λ ∼ MPl, the resulting lifetimes are typically longer than the age of the universe, and thus we will
not include them in our discussions below, but take all three Ψj to be independently stable.

2. Relic Density and Thermal History

We will now discuss the interplay of the three portals (Higgs-, kinetic-mixing-, and neutrino portal) and
identify some valid regions in the parameter space where the correct relic density for Ψj can be obtained.
Note that the mixing parameters δ and ξ are the only new physics parameters we assume to be small in
this paper, all other couplings are somewhat “natural”. We restrict ourselves to small mixing parameters
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solely for simplicity, as larger values lead to very constrained effects, see Refs. [14, 16, 17, 22]. A more
detailed parameter scan (including thermal leptogenesis) will be performed in a separate publication [23].
We only consider freeze-out scenarios. Also note that we always end up with a thermalized sterile

neutrino at the epoch of neutrino decoupling, so the usual cosmological bounds onNeff and
∑

mν hold [5].
This is to be expected in models with light sterile neutrinos, and can be solved on the astrophysics side,
or by choosing a smaller-than-eV mass for the sterile neutrino.
Case A: δ, ξ = 0. To check the validity of the neutrino portal, we first turn off the Higgs- and kinetic-

mixing portals by setting δ = ξ = 0 (or at least small enough to be negligible). In this case, the only
connection between the new physics sector and the SM comes from active–sterile mixing, or, at a more
fundamental level, from the exchange of heavy right-handed neutrinos. Integrating out the νR gives for
example the operator LHS1φ/MR (using order one Yukawa couplings), which gives a rough scattering
rate for LH ↔ S1φ around ∼ T 3/M2

R—to be compared to the expansion rate in the early universe
∼ √

g∗T
2/MPl—which puts all particles in equilibrium above T & 1010GeV.¶ Below that temperature,

the two sectors SM and DM (consisting of Z ′, φ and Sj) evolve independently, while the temperature
decreases due to expansion of the Universe in both sectors. Nothing really happens until T ∼ TeV, when
the Ψj freeze-out occurs. To deplete the Ψj abundance fast enough, we can make use of the neutrino
portal, i.e., the annihilation of the lightest Ψj into νs around the Z ′ resonance (assuming that the heavier
Ψj annihilate sufficiently fast into the lightest Ψj , see Fig. 2 for illustrations).
After freeze-out, we have overall three decoupled sectors—SM, Ψj and νs—all with different tempera-

tures. Above (active) neutrino decoupling, the Universe was radiation dominated, so only the temperature
of νs and the relativistic degrees of freedom in the SM sector are of interest and will be calculated now.
Using conservation of entropy in the two sectors SM and DM, we have the equalities

gSM∗ T 3a3
∣

∣

∣

∣

tsep

= gSM∗ T 3
SMa3

∣

∣

∣

∣

tf

and gDM
∗ T 3a3

∣

∣

∣

∣

tsep

= gDM
∗ T 3

DMa3
∣

∣

∣

∣

tf

, (20)

where gX∗ denotes the effective number of relativistic degrees of freedom in sectorX , a the scale factor, tsep
the time when the two sectors just separated from equilibrium (i.e., at temperatures around 1010GeV)
and tf the final time we are interested in, namely close to active neutrino decoupling (e.g. when TSM ∼
10MeV). At tf , the SM sector consists of photons, electrons and neutrinos, while the DM sector only
has the relativistic S1 ∼ νs, so we find

Tνs/TSM

∣

∣

∣

∣

tf

=

(

gDM
∗ (tsep)

gDM
∗ (tf )

gSM∗ (tf )

gSM∗ (tsep)

)1/3

=

(

65/4

7/4

43/4

427/4

)1/3

≃ 0.98 . (21)

Ignoring active–sterile oscillations, this would make the sterile neutrinos slightly colder than the active
ones at decoupling, alleviating cosmological constraints to some degree (the one sterile neutrino effectively
contributes only ∆Neff = (Tνs/TSM)4 ≃ 0.92 additional neutrinos to the energy density). However, for the
sterile neutrino parameters relevant for the short-baseline anomalies, i.e. ms ∼ eV, θs ∼ 0.1, active–sterile
oscillations will become effective around T ∼ 100MeV–1MeV [24], once again connecting the SM bath
and νs and thus thermalizing the sterile neutrino at neutrino decoupling. Note that the usual discussions
of active–sterile oscillations at these temperatures are not readily applicable, as our model starts with
abundant νs and self-interactions mediated by Z ′ (freezing out around TDM ∼ 10MeV). In any case, the
cosmological bound on relativistic degrees of freedom is expected to be approximately valid in our model
and will be discussed in more detail in a separate paper [23].
Case B: δ 6= 0. Let us open the Higgs portal. The thermal evolution is similar to case A, but values

δ & 10−7 will put φ in equilibrium with the SM at temperatures below T ∼ 10TeV, because the scattering
rate hh ↔ φφ goes with δ2T/4π [17]. φ and the rest of the DM sector (Z ′, Ψj and νs) are in equilibrium
through U(1)′ gauge interactions (for not too small gauge coupling g′), so SM and DM are in equilibrium
around DM freeze-out. For the freeze-out we can again use the neutrino portal, i.e., resonant annihilation
ΨΨ → Z ′ → νsνs. As φ and Z ′ go out of equilibrium around the same time, the connection between
the SM sector and νs is severed and the two evolve independently for a while, until they are reconnected
around T ∼ 10MeV by active–sterile neutrino oscillations.
In a different region of parameterspace, we can make use of the resonant annihilation of DM into SM

particles via scalars, i.e., the Higgs portal in the way it is intended. The discussion is then completely
analogous to other U(1)DM models, so we refer the interested reader to Ref. [22] for a recent evaluation.

¶ We assume a sufficiently high reheating temperature after inflation.
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Figure 2: ΩΨh
2 versus the Z′ mass MZ′ for degenerate (top panels) and hierarchical (middle and bottom panels)

DM masses. The VEV was set to 〈φ〉 = 1.5TeV and the scalar mass is labeled on the plot. The red, green
and blue lines show the relic density of Ψ1, Ψ2 and Ψ3 respectively, while the black dashed line gives the full
ΩΨh

2 ≡
∑

j
ΩΨj

h2. The horizontal pink band represents the relic density measured by WMAP [25] (1σ range).

Case C: ξ 6= 0. A very similar discussion can be made for an open kinetic-mixing portal. Again small
values ξ & 10−7 suffice to reach thermal equilibrium of the SM and DM sectors, e.g. through scattering
Zh ↔ Z ′h. The thermal evolution then closely resembles that of case B, with some minor differences:
The Z ′–Z mixing couples νs to the SM, so Z ′ interactions keep νs thermalized a while longer before it
decouples and finally reconnects with the SM. Furthermore, the DM annihilation around the Z ′ resonance
contains a small branching ratio into SM particles.
In order to illustrate the feasibility of the DM candidates via the neutrino portal, we implement the

model in micrOMEGAs [26] and evaluate the relic density of DM particles Ψi. Here we assume δ and
ξ to be large enough to thermalize the SM and DM sectors at DM freeze-out, but small enough to be
negligible in the numerical calculation of the relic density, i.e., we only consider DM freeze-out using the
neutrino portal. The scalar VEV is taken to be 〈φ〉 = 1.5 TeV as an example. The gauge coupling g′

are therefore obtained from the relation of Z ′ mass and 〈φ〉. As shown in the upper panels of Fig. 2,
a resonance appears at MΨ ≃ MZ′/2, and the relic density ΩΨh

2 ≃ 0.1 measured by WMAP [25] can
be achieved. In the degenerate case (i.e., M1 ≃ M2 ≃ M3), the Ψ1 contribution to ΩΨh

2 is dominating
because it has the smallest Z ′ coupling. Moreover, in case of a small scalar mass, e.g., Mφ = 500 GeV, a
new channel ΨΨ → Z ′φ is open for light Z ′, which is observed from the upper-right panel of Fig. 2. For
the case of non-degenerate spectrum (i.e., M1 6= M2 6= M3), the most significant contribution to the relic
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Figure 3: Coupling of DM to leptons.

density may come from either Ψ1, Ψ2 or Ψ3, depending on the specific fermion spectrum as well as the
scalar and vector masses. As can be seen in the middle and lower panels of Fig. 2, the Ψ1 contribution
to the relic density typically dominates, but there exist model parameters that make Ψ2 or Ψ3 the main
DM particle.

3. Direct and Indirect Detection

The neutrino portal discussed so far does not lead to any direct detection signals, because the cross
sections are highly suppressed. Loop processes connecting Ψ to SM fermions, e.g. as in Fig. 3, van-
ish in case of degenerate active–sterile masses, so these amplitudes are suppressed by tiny factors like
∆m2

41/O(100GeV)2 ∼ 10−22.
Indirect detection might naively be more fruitfull, because the annihilation of the Ψj in the Galactic

Center or halo leads to two back-to-back neutrinos with energies ≃ Mj (whichever Ψj is sufficiently
abundant), which is an ideal signal for neutrino telescopes like IceCube.∗∗ However, since we considered
Ψj to be a thermal relic, the self-annihilation cross section is set by the relic density, which is too small
to be probed [27]—even though the branching ratio into neutrinos is ≃ 100%, so the signal is as clear as
it gets.
Direct and indirect detection measurements are of course sensitive to the Higgs- and kinetic-mixing

portal parameters δ and ξ, as discussed in the literature (e.g. Ref. [19] discusses the Higgs portal in a
framework similar to the neutrino portal).

IV. OTHER INTERESTING CHARGE ASSIGNMENTS

Having focussed on one specific example using the charges from Tab. I, we will now briefly present
other charge assignments with interesting phenomenology. In all cases, we only introduce one additional
scalar φ, so the results concerning scalar and vector interactions remain unchanged—different numerical
values for the charges aside. Only the sterile neutrino and dark matter sector will be slightly modified.

A. More Light Sterile Neutrinos

The introduction of n ≥ 2 light sterile neutrinos (3+n scheme) increases the number of new parameters
and most importantly allows for CP-violation in the effective oscillation analysis [28]. This feature can
significantly improve the fit to neutrino oscillation data and has been studied extensively [3, 4, 29]. Note
that the tension with standard ΛCDM cosmology typically worsens, depending on the used data sets [30].
We can easily modify the above U(1)′ framework to accommodate the 3+ 2 MES scheme, by choosing

different charges for the ten right-handed neutrinos: we need at least one more neutral νR,4 to generate
the necessary light mass squared differences. Now we have to find charges that treat two of Si the same
(without loss of generality S1 and S2), i.e., Y

′(S1) = Y ′(S2), so these will become our two light neutrinos
after coupling them to a scalar φ. We can once again find exotic charges in such a way that the decoupled
Sj become massive by coupling to the same scalar, the magic number for this to happen seems to be six.
See Tab. II for a valid anomaly-free charge assignment with the desired properties (also used in Ref. [10]).
After breaking the U(1)′ and the electroweak symmetry, the 13×13 mass matrix for the neutral fermions

∗∗ The DM-nucleon cross section in our model is too small to efficiently capture DM inside the Sun or Earth, so we have to
rely on astrophysical objects with high DM density.
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νR,1 νR,2 νR,3 νR,4 S1 S2 S3 S4 S5 S6 φ

Y ′ 0 0 0 0 −5 −5 −1 6 2 3 5

Table II: Exotic U(1)′ charge assignments of the right-handed fermions and the scalar φ to obtain the 3 + 2 MES
scheme.

takes the form

M =

(

(MMES)9×9 0

0 (MS)4×4

)

, (22)

where the 9×9 matrix MMES in the basis (νe, νµ, ντ , ν
c
R,1, ν

c
R,2, ν

c
R,3, ν

c
R,4, S

c
1, S

c
2) is the obvious extension

of the MES structure from Eq. (1) for the 3+ 2 scheme, while MS denotes the mass matrix of S3−6, i.e.,

MS =











0 y1〈φ〉 0 0

y1〈φ〉 0 0 0

0 0 0 y2〈φ〉
0 0 y2〈φ〉 0











, (23)

resulting in two Dirac fermions, decoupled from the neutrino sector.
Compared to the 3 + 1 scheme discussed so far, the scalar sector is identical, whereas the dark matter

sector is slightly modified because we have only two stable Dirac fermions (protected by the remaining
discrete gauge group Z5) instead of three, but two light sterile neutrinos instead of one. This does not
influence the qualitative behavior significantly.
The expressions from Sec. III A for the neutrino masses go through in the same manner, i.e., we still

have

M3×3
ν ≃ −mDM−1

R mT
D +mDM−1

R mS (mT
SM

−1
R mS)

−1mT
SM

−1
R mT

D , M2×2
νs ≃ −mT

SM
−1
R mS , (24)

for the masses, where we assumed mD ≪ mS ≪ MR, and mD, mS and MR are 3× n, n× 2, and n× n
matrices, respectively. The number n of gauge group singlets νR should be at least 4 to make enough
light neutrinos massive, n ≥ 5 makes all five light neutrinos massive. The active–sterile mixing is again
O(mD/mS), so the required values O(0.1) put the U(1)′ breaking scale naturally in the TeV range.
Let us briefly comment on the thermal evolution of the universe in this model. Seeing as the number

of degrees of freedom is smaller (larger) at tsep (tf ) compared to the 3 + 1 scheme of Sec. III C 2, the
sterile neutrino bath is colder than the SM bath (prior to neutrino decoupling) by a factor of ≃ 0.75.
Without active–sterile neutrino oscillations, this would mean that the two sterile neutrinos effectively
only contribute ∆Neff ≃ 0.6 additional neutrino species to the energy density, alleviating cosmological
bounds. It is of course to be expected that active–sterile oscillations before neutrino decoupling generate
thermal equilibrium among the neutrinos, giving rise to the usual constraints.
For completeness, we give an assignment for the 3 + 3 case, which has been fitted to the neutrino

anomalies in Ref. [31]. To make at least five light neutrinos massive, we need five νR. A possible charge
assignment for nine Sj is then (7, 7, 7, 2,−9,−1,−6,−4,−3), with one scalar φ ∼ 7. This leads to three
light sterile neutrinos and three stable Dirac DM particles (protected by the remaining Z7).

B. Majorana Dark Matter

Having focused on Dirac DM in the main text for no particular reason, we will now give an example
with Majorana DM. For the 3 + 1 MES scheme, we take the exotic charges (6,−3,−3, 2,−8,−1, 7) for
the Si and one scalar with charge Y ′(φ) = 6. The VEV of φ breaks U(1)′ → Z6, S1 will again become
the sterile neutrino, while S2 and S3 share the most general Majorana mass matrix—which we can take
to be diagonal without loss of generality—resulting in two Majorana fermions Ψ1,2. (S4, S5, S6, S7) share
the mass matrix

MS =











0 y1〈φ〉 0 0

y1〈φ〉 0 0 0

0 0 0 y2〈φ〉
0 0 y2〈φ〉 0











, (25)

resulting in two Dirac fermions Ψ3,4; all Ψj are decoupled from the neutrino sector. These particles form
representations Ψ1,2 ∼ 3 ∼ (1, 0), Ψ3 ∼ 2 ∼ (0, 2), Ψ4 ∼ 1 ∼ (1, 1) under Z6

∼= Z2 × Z3, so depending on
the mass spectrum, we can obtain a stable Majorana fermion.
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C. Unstable Dark Matter

The charges for the Si and φ discussed so far have been chosen in such a way that the spontaneous
breaking of U(1)′ leaves a nontrivial ZN that stabilizes the DM candidates. This is of course not a
generic feature of exotic charges, but just a convenient choice to obtain exactly stable particles. Let us
briefly comment on unstable DM candidates: Taking (1,−10, 9,−7, 6,−11, 12) for the 3+ 1 scheme with
a scalar φ ∼ 1 gives three Dirac DM candidates Ψ1 = S2 + Sc

3, Ψ2 = S4 + Sc
5, Ψ3 = S6 + Sc

7, which are
independently stable due to an accidental global U(1)3 symmetry. However, with this charge assignment,
there is no leftover ZN symmetry protecting this stability. Similar to the discussion in Sec. III C 1, we can
discuss higher-dimensional operators. For the charge assignment here, there are already dimension-five
operators

φ2S3S
c
4/Λ , φ2S

c

3S6/Λ , φ2S2S
c
7/Λ , (26)

which break the global U(1)3 to a U(1) symmetry, so only one stable Dirac fermion survives. Even this

stability is not exact, as there are operators like φ6S
c

5νR/Λ
5 which break the global U(1) and lead to

DM decay. In this particular example—and for Λ ∼ MPl—the decay would be suppressed enough to
still allow valid DM, but in principle there are charge assignments with decaying DM, or even no DM
candidate at all.

V. CONCLUSION

Generating small sterile neutrino masses via the same seesaw mechanism that suppresses active neutrino
masses requires a specific structure in the neutral fermion mass matrix. We showed how this so-called
MES structure can be obtained from a new spontaneously broken U(1)′ symmetry, under which the
“sterile” neutrino is charged. Heavily mixed eV-scale steriles hint at a U(1)′ breaking scale around TeV.
Additional anomaly-cancelling fermions need to carry exotic U(1)′ charges in order to not spoil the MES
structure, which coincidentally stabilizes one or more of them (without the need for additional discrete
symmetries). The main connection between this multicomponent dark matter sector and the Standard
Model is the active–sterile mixing (neutrino portal). We discussed how the dark matter annihilation
almost exclusively into sterile neutrinos can be used to obtain the measured relic density, and also the
interplay with the other two portals (Higgs- and kinetic-mixing portals).
We focussed on a few specific examples, but the presented framework of exotic charges obviously

provides a rich playground for model building, depending on the used charges and number of new particles.
Worthwhile extensions with U(1)′ charged SM fermions, e.g. B − L type symmetries, can be obtained
with slightly more complicated scalar sectors and will be discussed elsewhere.††
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