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Abstract

Since the smallest leptonic mixing angle θ13 has been measured to be relatively large, it is quite

promising to constrain or determine the leptonic Dirac CP-violating phase δ in future neutrino

oscillation experiments. Given some typical values of δ = π/2, π, and 3π/2 at the low-energy scale,

as well as current experimental results of the other neutrino parameters, we perform a systematic

study of the radiative corrections to δ by using the one-loop renormalization group equations in

the minimal supersymmetric standard model and the universal extra-dimensional model. It turns

out that δ is rather stable against radiative corrections in both models, except for the minimal

supersymmetric standard model with a very large value of tan β. Both cases of Majorana and

Dirac neutrinos are discussed. In addition, we use the preliminary indication of δ = (1.08+0.28
−0.31) π

or δ = (1.67+0.37
−0.77) π from the latest global-fit analyses of data from neutrino oscillation experiments

to illustrate how it will be modified by radiative corrections.
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I. INTRODUCTION

In the last two decades, our knowledge on neutrinos has been greatly improved by a

number of elegant neutrino oscillation experiments [1]. Now, we are convinced that neutrinos

are massive, and they can transform from one flavor to another when propagating in vacuum

or in matter. The lepton flavor mixing phenomenon can be described by a 3 × 3 unitary

matrix V , namely the leptonic mixing matrix, which is conventionally parametrized through

three mixing angles θ12, θ13 and θ23, as well as three CP-violating phases δ, ρ and σ, viz.,

V = U · P ≡











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











· P , (1)

where sij ≡ sin θij and cij ≡ cos θij for ij = 12, 13, 23. Note that P = diag(eiρ, eiσ, 1) is

a diagonal matrix with ρ and σ being two Majorana-type CP-violating phases if neutrinos

are Majorana particles, while P = 1 if neutrinos are Dirac particles. Current experimental

data indicate that the three leptonic mixing angles are θ12 ≈ 34◦, θ13 ≈ 9◦ and θ23 ≈ 40◦.

Two independent neutrino mass-squared differences are found to be ∆m2
21 ≡ m2

2 − m2
1 ≈

7.5 × 10−5 eV2 and |∆m2
31| ≡ |m2

3 − m2
1| ≈ 2.5 × 10−3 eV2. The latest global-fit results of

neutrino parameters are shown in Table I. However, we are still unclear whether the neutrino

mass ordering is normal (i.e., ∆m2
31 > 0) or inverted (i.e., ∆m2

31 < 0), and the leptonic Dirac

CP-violating phase δ remains experimentally unconstrained.

The recent results from Daya Bay [2] and RENO [3] reactor neutrino experiments have

established that θ13 ≈ 9◦, which is rather large. Hence, it is quite promising to determine the

leptonic Dirac CP-violating phase δ by comparing the oscillation probabilities of neutrinos

and antineutrinos in future long-baseline neutrino oscillation experiments [4]. In addition,

the km3-scale neutrino telescopes (e.g., IceCube and KM3NeT) could provide us with useful

and complementary information about leptonic CP violation by precisely measuring the

flavor composition of ultrahigh-energy astrophysical neutrinos [5]. If the Deep Core of the

IceCube detector is made denser to lower the energy threshold down to a few GeV, such as

the proposal PINGU [6], a large amount of atmospheric neutrino events can be collected and

used to determine the neutrino mass hierarchy and perhaps the leptonic CP-violating phase

[7]. On the other hand, a lot of neutrino mass models based on discrete flavor symmetries or
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TABLE I: The best-fit values and 1σ ranges of the neutrino parameters from the latest global-fit

analyses of neutrino oscillation experiments, where the normal neutrino mass hierarchy is assumed.

parameter Ref. [11] Ref. [12] Ref. [13]

sin2 θ12
0.307 0.300 0.320

0.291− 0.325 0.287− 0.313 0.303− 0.336

sin2 θ13
0.0241 0.0230 0.0246

0.0216− 0.0266 0.0207− 0.0253 0.0218− 0.0275

sin2 θ23
0.386 0.410 0.427

0.365− 0.410 0.385− 0.447 0.400− 0.461

∆m2

21
/10−5 eV2

7.54 7.50 7.62

7.32− 7.80 7.32− 7.69 7.43− 7.81

∆m2

31
/10−3 eV2

2.51 2.47 2.55

2.41− 2.57 2.40− 2.54 2.46− 2.61

δ/π
1.08 1.67 0.8

0.77− 1.36 0.90− 2.03 0− 2.0

phenomenological assumptions have recently been proposed to describe the observed leptonic

mixing pattern, in particular a relatively large θ13. Interestingly, the leptonic CP-violating

phase δ has been predicted in some models to be rather large (e.g., δ > π/3) or even maximal

(i.e., δ = π/2) [8, 9]. In other models, leptonic CP violation is shown to be absent, namely

δ = 0 or π [10]. It is worthwhile to mention that the latest global-fit analyses of neutrino

oscillation experiments yield δ = (1.08+0.28
−0.31) π [11] and δ = (1.67+0.37

−0.77) π [12], although

the 1σ errors are still quite large.1 Therefore, we have already obtained some preliminary

information on the leptonic CP-violating phase δ from the global-fit analyses.

In this work, we are concerned with how the theoretical predictions or the observed value

of δ will be modified by the radiative corrections when running from a low-energy scale to

a superhigh-energy scale. This question does make sense if we believe that there exists at

some superhigh-energy scale a unified theory for flavor mixing and CP violation in both

quark and lepton sectors. Once the leptonic CP-violating phase δ is measured in future

neutrino oscillation experiments, the renormalization group (RG) evolution of δ will tell

us how large or small it will be at a given superhigh-energy scale. As a matter of fact,

1 The best-fit value is found to be δ = 0.8 π for the normal mass hierarchy and δ = −0.03 π for the inverted

mass hierarchy by another global-fit group [13]. However, there is no constraint on δ within the 1σ range.
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the running of leptonic mixing parameters has been extensively discussed in the literature

[14, 15], and more recently in Ref. [16], where the authors concentrate on the newly measured

θ13. Different from the previous works, we focus on δ and perform a systematic study of

its running behavior in the minimal supersymmetric standard model (MSSM) and in the

universal extra-dimensional model (UEDM). The motivation for such a study is two-fold:

(1) The leptonic CP-violating phase δ is the last fundamental parameter (except for the

neutrino mass hierarchy) to be measured in the future neutrino oscillation experiments, and

now both the theoretical models and the global-fit analysis can provide us with preferred

values of δ at the low-energy scale. (2) The models with supersymmetry or extra spatial

dimensions are the most natural extensions of the SM, which can solve the gauge hierarchy

problem and offer good candidates for the dark matter.

In lack of a complete theory for neutrino mass generation, we implement the dimension-

five Weinberg operator to account for tiny Majorana neutrino masses [17]. The RG running

of δ in the case of Dirac neutrinos will be considered as well for comparison and completeness.

The remaining part of the present paper is organized as follows. In Sec. II, we set up the

basic framework for the RG running of leptonic mixing parameters in the case of Majorana

neutrinos. The renormalization group equation (RGE) of δ is derived analytically, and solved

numerically. Section III is devoted to the RG running of δ in the case of Dirac neutrinos

in the MSSM. We summarize our conclusions in Sec. IV. The complete set of RGE’s in the

SM, MSSM, and UEDM for Majorana neutrinos are collected in Appendix A, while those

in the SM and MSSM for Dirac neutrinos in Appendix B.

II. RUNNING OF CP-VIOLATING PHASE: MAJORANA NEUTRINOS

First of all, we derive the RGE for the leptonic CP-violating phase δ, assuming that

neutrinos are Majorana particles. Without loss of generality, we introduce the dimension-

five Weinberg operator responsible for neutrino masses [17]:

− Lν =
1

2

(

ℓH
)

· κ ·
(

HT ℓC
)

+ h.c., (2)

where ℓ and H stand for the lepton and Higgs doublet fields, respectively, and κ is a symmet-

ric and complex matrix of the inverse mass dimension. After electroweak symmetry breaking,
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TABLE II: Explicit expressions of Re
[

(U †U̇)ij

]

and Im
[

(U †U̇)ij

]

for i ≤ j in the standard

parametrization of leptonic mixing matrix.

ij Re
[

(U †U̇)ij

]

Im
[

(U †U̇)ij

]

11 0 +2s12c12s13sδθ̇23 + c212s
2
13δ̇

22 0 −2s12c12s13sδθ̇23 + s212s
2
13δ̇

33 0 −s213δ̇

12 θ̇12 + s13sδθ̇23 −(c212 − s212)s13sδθ̇23 + s12c12s
2
13δ̇

13 −s12c13θ̇23 + c12cδθ̇13 − c12s13c13sδδ̇ −c12sδθ̇13 − c12s13c13cδ δ̇

23 +c12c13θ̇23 + s12cδθ̇13 − s12s13c13sδ δ̇ −s12sδθ̇13 − s12s13c13cδ δ̇

the mass matrix of three light Majorana neutrinos is given by Mν = κv2 with v ≈ 174 GeV

being the vacuum expectation value (vev) of the SM Higgs field, or by Mν = κ(v sin β)2

with tanβ being the ratio of the vev’s of two Higgs doublets in the MSSM. Note that we are

working within an effective theory, and consider the running of neutrino mixing parameters

below the cutoff scale Λ where new physics takes effects.

At one-loop level, the evolution of κ is governed by [14, 15]

16π2dκ

dt
= ακ + Cκ

[

(

YlY
†
l

)

κ+ κ
(

YlY
†
l

)T
]

, (3)

where t ≡ ln(µ/ΛEW) with µ being an arbitrary renormalization scale between the elec-

troweak scale ΛEW ≈ 100 GeV and a cutoff scale where new physics comes into play, and Yl

is the Yukawa coupling matrix of the charged leptons. The coefficients ακ and Cκ are flavor

universal, and have been explicitly given in Appendix A for the SM, the MSSM, and the

UEDM. It is worth stressing that Eq. (3) takes on the same form in all the models under

consideration. However, the coefficients in the RGE’s may differ. We will distinguish them

by adding the corresponding superscripts to these coefficients, as shown in Appendix A.

A. Analytical Results

Since the RGE’s of neutrino mass matrix Mν = κv2 in the SM and UEDM, or Mν =

κ(v sin β)2 in the MSSM, are given by the same formula in Eq. (3), the evolution of neutrino
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TABLE III: The coefficients Rα
ij and Iα

ij for α = e, µ, τ and ij = 12, 13, 23 in the standard

parametrization of leptonic mixing matrix.

Rα
ij 12 13 23

e s12c12c
2
13 c12s13c13 s12s13c13

µ
s12c12(s

2
23s

2
13 − c223) −(s12c23 + c12s23s13cδ)s23c13 +(c12c23 − s12s23s13cδ)s23c13

−(c212 − s212)s23c23s13cδ

τ
s12c12(c

2
23s

2
13 − s223) +(s12s23 − c12c23s13cδ)c23c13 −(c12s23 + s12c23s13cδ)c23c13

+(c212 − s212)s23c23s13cδ

Iα
ij 12 13 23

e 0 0 0

µ +s23c23s13sδ c12s
2
23s13c13sδ s12s

2
23s13c13sδ

τ −s23c23s13sδ c12c
2
23s13c13sδ s12c

2
23s13c13sδ

mass eigenvalues and leptonic mixing parameters can be figured out in the same way. In

flavor basis, where the Yukawa coupling matrix of the charged leptons is diagonal, namely

Yl = Dl ≡ diag(ye, yµ, yτ), κ can be diagonalized by the leptonic mixing matrix V , namely

V †κV ∗ = κ̂ ≡ diag(κ1, κ2, κ3). Generally speaking, an arbitrary 3× 3 unitary matrix V ′ can

be factorized as V ′ = QUP , where Q = diag(eiφe,, eiφµ, eiφτ ) and P = diag(eiρ, eiσ, 1) are pure

phase matrices, while the unitary matrix U consists of three mixing angles θ12, θ13, θ23 and

the Dirac CP-violating phase δ [cf. Eq. (1)]. Although the phases φα (for α = e, µ, τ) are

unphysical and can be removed by rephasing the charged-lepton fields, we will keep them in

the derivation of the RGE’s for neutrino masses and leptonic mixing parameters.

Since y2e ≪ y2µ ≪ y2τ , we take into account the dominant contribution from the tau-lepton

Yukawa coupling to the RGE of κ. Following Ref. [18], one obtains

16π2dκi

dt
= κi

(

ακ + 2Cκy
2
τ |Uτi|

2
)

, (4)

where ακ and Cκ should bear the corresponding superscripts when Eq. (4) is applied to a

specific model. Given mi = κiv
2 (for i = 1, 2, 3), we observe that Eq. (4) determines the

evolution of absolute neutrino masses. Moreover, it is straightforward to find that Uαi, ρ, σ,
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and φα (for α = e, µ, τ and i = 1, 2, 3) have to fulfill the following equations:

Im
[

(U †U̇)11

]

+
∑

α

|Uα1|
2φ̇α + ρ̇ = 0 ,

Im
[

(U †U̇)22

]

+
∑

α

|Uα2|
2φ̇α + σ̇ = 0 ,

Im
[

(U †U̇)33

]

+
∑

α

|Uα3|
2φ̇α = 0 , (5)

and

Re
[

(U †U̇)12

]

−
∑

α

Iα
12φ̇α = −

Cκy
2
τ

32π2

{

ζ̂12
[

s2(ρ−σ)I
τ
12 + c2(ρ−σ)R

τ
12

]

+ ζ̃12R
τ
12

}

,

Im
[

(U †U̇)12

]

+
∑

α

Rα
12φ̇α = −

Cκy
2
τ

32π2

{

ζ̂12
[

s2(ρ−σ)R
τ
12 − c2(ρ−σ)I

τ
12

]

+ ζ̃12I
τ
12

}

,

Re
[

(U †U̇)13

]

−
∑

α

Iα
13φ̇α = −

Cκy
2
τ

32π2

{

ζ̂13
[

s2ρI
τ
13 + c2ρR

τ
13

]

+ ζ̃13R
τ
13

}

,

Im
[

(U †U̇)13

]

+
∑

α

Rα
13φ̇α = −

Cκy
2
τ

32π2

{

ζ̂12
[

s2ρR
τ
13 − c2ρI

τ
13

]

+ ζ̃13I
τ
13

}

,

Re
[

(U †U̇)23

]

−
∑

α

Iα
23φ̇α = −

Cκy
2
τ

32π2

{

ζ̂23 [s2σI
τ
23 + c2σR

τ
23] + ζ̃23R

τ
23

}

,

Im
[

(U †U̇)23

]

+
∑

α

Rα
23φ̇α = −

Cκy
2
τ

32π2

{

ζ̂23 [s2σR
τ
23 − c2σI

τ
23] + ζ̃23I

τ
23

}

, (6)

where ζ̂ij ≡ 4κiκj/(κ
2
i − κ2

j) and ζ̃ij ≡ 2(κ2
i + κ2

j )/(κ
2
i − κ2

j ) have been defined, and the

overdot refers to the derivative with respect to the running parameter t. In addition, Rα
ij ≡

Re
(

U∗
αiUαj

)

and Iα
ij ≡ Im

(

U∗
αiUαj

)

. Given the standard parametrization of U in Eq. (1),

the matrix elements of U †U̇ are shown in Table II, while the coefficients Rα
ij and Iα

ij are

given in Table III. Note that Eqs. (5) and (6) form an array of differential equations linear

in {θ̇12, θ̇13, θ̇23, δ̇, ρ̇, σ̇, φ̇e, φ̇µ, φ̇τ}, which can be explicitly solved. As a result, the RGE of δ

can be approximately written as

δ̇ ≈
Cκy

2
τ

32π2

{

s12c12s23c23
s13

[

sδ(ζ̃32 − ζ̃31) + (s(δ+2σ) ζ̂32 − s(δ+2ρ)ζ̂31)
]

−ζ̂21s
2
23s2(ρ−σ) − (c223 − s223)(s2ρs

2
12ζ̂31 + s2σc

2
12ζ̂32) + c223(s2(δ+ρ)c

2
12ζ̂31 + s2(δ+σ)s

2
12ζ̂32)

−
s23c23s13
s12c12

[

ζ̃21sδ − ζ̂21(s(δ+2ρ−2σ)c
2
12 + s(δ−2ρ+2σ)s

2
12)

]

+s213c
2
23s2(ρ−σ)ζ̂21

}

. (7)

7



Since the last two terms in the third line of Eq. (7) are proportional to s13 and s213, we have

neglected the terms further suppressed by O(∆m2
21/|∆m2

31|). If neutrino masses are nearly

degenerate m2
i ≫ |∆m2

31| ≫ ∆m2
21, which will always be assumed in the following, we have

ζ̂ij ≈ ζ̃ij ≈ 4m2
i /(m

2
i −m2

j ) and ζ̂21 ≫ |ζ̂32|, |ζ̂31| ≫ 1, and thus, the RG evolution of δ could

be significant. To next-to-leading order, Eq. (7) approximates to

δ̇ ≈ −
Cκy

2
τ

8π2

m2
1

∆m2
21

{

s223s2(ρ−σ) +
2s23c23
s12c12s13

[

s213c(δ+ρ−σ) +
∆m2

21

∆m2
31

s212c
2
12c(δ+ρ+σ)s(ρ−σ)

]}

, (8)

where we have taken m1 as the absolute neutrino mass and ignored the difference between

∆m2
31 and ∆m2

32. Some comments are in order:

• In general, the evolution of δ is dominated by the leading-order term −ζ̂21s
2
23s2(ρ−σ) on

the right-hand side of Eq. (7). At higher order, if the terms suppressed by |ζ̂31|/ζ̂21 =

∆m2
21/|∆m2

31| ≈ 1/30 are taken into account, then those by s213 ≈ 1/40 should also be

kept for consistency, since they are of the same order of magnitude, as we have done

in Eq. (8). The relative error in Eq. (7) is at the level of s13|ζ̂31|/ζ̂21 ≈ 0.5 %, given

the best-fit values of θ13 and neutrino mass-squared differences.

• It is evident from Eq. (7) that the evolution of δ is entangled with that of three mixing

angles and two Majorana CP-violating phases. In particular, it depends crucially on

the Majorana phases ρ and σ. It has been found that the Dirac CP-violating phase δ

can be radiatively generated from ρ and σ, even if the initial value of δ is vanishing

[19]. On the other hand, the RG evolution of δ becomes negligible when ρ ≈ σ, while

the mixing angle θ12 is quite sensitive to the RG effect in this case.

• The RGE’s of δ in the SM, the MSSM, and the UEDM are given by the same formula

in Eq. (7), but with different values of the coefficient Cκ. We have CSM
κ = −3/2 in

the SM, while CMSSM
κ = 1 in the MSSM and CUEDM

κ = −3(1 + s)/2 in the UEDM,

respectively. Therefore, given the same Majorana CP-violating phases and leptonic

mixing angles, the evolution of δ in the MSSM will be in the direction opposite to that

in the SM and the UEDM.

Finally, we observe from Eq. (5) that the identity φ̇e + φ̇µ + φ̇τ + ρ̇ + σ̇ = 0 holds in

the standard parametrization of U . The proof is as follows. Given a general non-singular

matrix X , whose elements are functions of the running parameter t, one can prove that

8



d[det(X)]/dt = det(X) · tr[X−1(dX/dt)]. If we take X to be a unitary matrix U with

det(U) = 1 and U−1 = U †, then tr(U †U̇) = 0 can be obtained. This observation together

with Eq. (5) leads to the identity φ̇e + φ̇µ + φ̇τ + ρ̇+ σ̇ = 0. However, this identity depends

on the specific parametrization of U . For instance, if det(U) = e−iφ with φ being the Dirac

CP-violating phase, then we have φ̇ = φ̇e + φ̇µ + φ̇τ + ρ̇+ σ̇, as shown in Ref. [18].

B. Numerical Results

We proceed in this subsection with the numerical solution to the RGE of the leptonic

Dirac CP-violating phase δ. Since the evolution of δ in the SM is negligible even in the case

of a nearly-degenerate neutrino mass spectrum, we consider only the MSSM and the UEDM.

Note that no approximations to the RGE of δ will be made in our numerical calculations.

Our numerical results are shown in Fig. 1, and the main points are summarized as follows.

In the MSSM, we have taken two typical values of tan β = 10 and tan β = 30 for

illustration. In both cases, the absolute neutrino mass m1 = 0.1 eV is assumed, which

is consistent with the cosmological bound m1 + m2 + m3 < 1.3 eV (95 % C.L.) from the

WMAP Collaboration [20]. For the initial values of δ at the electroweak scale, we have chosen

δ = π/2, π, and 3π/2 as typical examples. Since the tau-lepton Yukawa coupling is given by

y2τ = m2
τ (1+tan2 β)/v2 in the MSSM, the evolution of δ should be significantly enhanced for

a large value of tan β, as shown in the upper plots of Fig. 1. For tan β = 30, the RG running

of δ is quite significant. In particular, even if δ = π is found at the low-energy scale, namely,

there is no CP-violating effect in neutrino oscillation experiments, the maximal CP-violating

phase δ = π/2 or 3π/2 can be achieved at the cutoff scale Λ = 1014 GeV. In other words,

one can change from the scenario with a zero CP-violating phase to that with a maximal

CP-violating phase, or vice versa. For tanβ = 10, the radiative correction to δ is at most

10 % even at Λ = 1014 GeV.

In the UEDM, we have input two different values of the absolute neutrino mass m1 =

0.1 eV and m1 = 0.5 eV. As shown in the lower plots of Fig. 1, δ is rather stable against

radiative corrections for m1 = 0.1 eV. Even for m1 = 0.5 eV, which is marginally in tension

with the cosmological bound, the relative change of δ at the cutoff scale Λ = 3 × 104 GeV

is not larger than 10 %. The cutoff scale Λ = 3 × 104 GeV in the UEDM has been chosen

to avoid the Landau pole, where the Higgs mass is MH = 125 GeV and R−1 = 10 TeV with

9
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FIG. 1: Evolution of δ for Majorana neutrinos in the MSSM (upper plots) and in the UEDM

(lower plots). The initial values δ = π/2, δ = π, and δ = 3π/2 are assumed, while the Majorana

CP-violating phases ρ and σ are marginalized. The values of θ12, θ13, θ23 and ∆m2
21, ∆m2

31 in the

1σ ranges from the global-fit analysis (for ∆m2
31 > 0) have been used as input [12].

R being the radius of the compactified extra dimension. Since the valid energy range in the

UEDM is much smaller than that in the MSSM, the RG running does not develop as much.

However, it should be noted that the RG running in UEDM is actually in the form of a

power law, and thus can be more significant than in the SM and in the MSSM.

It should also be noted that the Majorana CP-violating phases ρ and σ have been

marginalized over the range [0, π) in our numerical results. If the specific values of ρ and σ

are chosen, the variation of δ will be even smaller. Therefore, we conclude that the leptonic

Dirac CP-violating phase δ is stable against radiative corrections in all the models under

consideration, except for the MSSM with a large value of tanβ. In comparison, the Dirac

CP-violating phase in the quark sector is stable even in the MSSM with a large value of

tan β, since the quark mass spectrum is strongly hierarchical.

Now, we turn to the RG running behavior of δ by taking the global-fit results δ =

(1.08+0.28
−0.31) π [11] and δ = (1.67+0.37

−0.77) π [12] as input. Since the present uncertainty is large,

10
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FIG. 2: Allowed values of the leptonic CP-violating phase δ (upper plots) and the Jarlskog invariant

J (lower plots) for Majorana neutrinos at 1σ C.L. with tan β = 10 (dark red or dark gray) and

tan β = 30 (light red or gray) in the MSSM. The result of J in the MSSM with tan β = 50 is also

given in the lower plots (yellow or light gray). The global-fit data from Ref. [11] are adopted for

the left column, while that from Ref. [12] for the right column.

we will choose the 1σ range for illustration. In the upper plots of Fig. 2, the allowed regions

of δ at the superhigh-energy scale have been given in the MSSM. In the case of tan β = 30,

one can observe that δ is almost arbitrary within [0, 2π) due to the large uncertainty of the

input, so any predictions for δ from a high-energy flavor model could be made consistent

with the low-energy observations by the RG running. This is true for the global-fit results

from both groups [11, 12]. In reality, any observable effects of CP violation should be related

to the Jarlskog invariant J ≡ s12c12s23c23s13c
2
13sδ. Therefore, we also show the RG running

of J in the MSSM for tan β = 10, 30, 50, in the lower plots of Fig. 2. It can be observed that

J at a superhigh-energy scale could be quite different from that at the low-energy scale, in

particular for tanβ = 30 and tanβ = 50.
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III. RUNNING OF CP-VIOLATING PHASE: DIRAC NEUTRINOS

The possibility for neutrinos to be Dirac particles has never been experimentally excluded.

Moreover, it has been shown that the leptogenesis mechanism responsible for the matter-

antimatter asymmetry in our Universe also works well in a different way for Dirac neutrinos

[21]. Hence, we assume neutrinos to be Dirac particles, and give them masses through the

coupling to the Higgs doublet −ℓLYννRH+h.c. with Yν being the neutrino Yukawa coupling

matrix. It is convenient to write the RGE’s of Dirac neutrino parameters as [22]

16π2dω

dt
= 2ανω + Cν,l

[(

YlY
†
l

)

ω + ω(YlY
†
l )
]

, (9)

where ω ≡ YνY
†
ν has been defined. The RGE’s of κ in the SM and the MSSM take the same

form in Eq. (8), but with different coefficients αν and Cν,l, as given in Appendix B. Since the

beta function for Dirac neutrino Yukawa couplings is currently not available in the UEDM,

we consider only the SM and the MSSM. Similarly, as in the Majorana neutrino case, we

find the RGE for the leptonic Dirac CP-violating phase δ in the case of Dirac neutrinos

δ̇ ≈ −
Cν,ly

2
τ

16π2

s23c23s13sδ
s12c12

[

ξ21 + (c212ξ32 − s212ξ31) +
s212c

2
12

s213
(ξ32 − ξ31)

]

, (10)

where ξij ≡ (m2
i +m2

j)/(m
2
i −m2

j ) has been defined. The relative error in the above equation

is at the level of s13(∆m2
21/|∆m2

31|)
2 ∼ 10−4. It is worth mentioning that the last term in

Eq. (10) is comparable in magnitude to the second term, since the suppression by a factor

of ∆m2
21/|∆m2

31| is compensated by the enhancement from 1/s213. Some general comments

are in order:

• The evolution of δ is proportional to sδ at all orders, so δ will be kept unchanged by

the RG running if sδ = 0, namely, δ = 0 or δ = π. In other words, if leptonic CP

violation is absent at low energies, it will never be generated by RG running. This is

quite different from the Majorana case, where δ can be radiatively generated via the

non-vanishing Majorana CP-violating phases even if δ = 0 or δ = π has been used as

an initial condition.

• Two qualitative differences between the SM and the MSSM should be noted. First, the

tau-Yukawa coupling y2τ = m2
τ (1 + tan2 β)/v2 in the MSSM is significantly enhanced

12
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FIG. 3: Evolution of δ for Dirac neutrinos in the MSSM for tan β = 10 (left plot) and tan β = 30

(right plot). The initial values δ = π/2 and δ = 3π/2 are assumed, and the values of θ12, θ13, θ23
and ∆m2

21, ∆m2
31 in the 1σ ranges from the global-fit analysis (for ∆m2

31 > 0) have been used as

input [12].

for a large value of tan β. Hence, the RG effect is more remarkable than that in the

SM. Second, the coefficient Cν,l takes opposite signs in the SM and in the MSSM,

indicating the evolution of δ in opposite directions in these two models.

To illustrate the RG running behavior of δ in the Dirac neutrino case, we have shown

in Fig. 3 two typical examples in the MSSM. In both examples, the initial values of δ have

been taken to be π/2 and 3π/2, and the absolute neutrino mass is m1 = 0.1 eV. The

left plot is for tanβ = 10, while the right for tan β = 30. Note that the beta function of

δ is proportional to −sδ in Eq. (9), where Cν,l = 1 in the MSSM. Therefore, δ increases

for δ = 3π/2, while it decreases for δ = π/2, as the energy scale evolves towards higher

energies. This feature can be clearly observed in Fig. 3. Furthermore, the variation of δ at

any energy scale is quite small, compared to that in the case of Majorana neutrinos, where

the arbitrary Majorana CP-violating phases play an important role in the evolution of δ.

As we have already mentioned, δ will be kept unchanged if the initial values lead to sδ = 0,

so the trivial cases of δ = 0 and δ = π have not been considered.

Now, we continue with the global-fit results of δ in Refs. [11, 12] as initial values. The

RG running of δ in the MSSM for tan β = 10, 30 and tanβ = 50 have been shown in

the upper and middle plots of Fig. 4, respectively. As before, the absolute neutrino mass

m1 = 0.1 eV is assumed. In the former case, the RG running effects are insignificant, which

is in accordance with the results in Fig. 3. In the latter case, however, it is interesting to

note that a wide range of values δ ∈ [0.2π, 1.8π] cannot be reached at the superhigh-energy

13
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FIG. 4: Allowed values of the leptonic Dirac CP-violating phase δ (upper and middle plots) and

the Jarlskog invariant J (lower plots) for Dirac neutrinos at 1σ C.L. with tan β = 10 (dark red

or dark gray), tan β = 30 (light red or gray) and tan β = 50 (yellow or light gray) in the MSSM.

The absolute neutrino mass m1 = 0.1 eV has been assumed. The global-fit data from Ref. [11] are

adopted for the left column, while that from Ref. [12] for the right column.

scale Λ = 1014 GeV, no matter what initial value of δ is chosen. The reason for this behavior

is that the mixing angle θ13 is approaching zero around Λ′ = 108 GeV. In the limit of an

extremely small value of θ13, Eq. (8) can be written as

δ̇ ≈ −
y2τ

16π2
s12c12s23c23sδs

−1
13 (ξ32 − ξ31) , (11)
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where Cν,l = 1 has been chosen for the MSSM. Therefore, the RG running of δ will be

rapidly accelerated around Λ′ = 108 GeV to the large-value region for sδ < 0 (i.e., δ > π),

while to the small-value region for sδ > 0 (i.e., δ < π). This observation applies also to

any initial value of δ. In fact, we have numerically checked the whole parameter region of

δ ∈ [0, 2π) at low energies, and found that only [0, 0.2π] and [1.8π, 2π) can be reached at

high energies. However, the exact allowed range of δ at high-energy scales really depends

on the initial values of δ and three mixing angles. For δ = π, the RG running of δ will be

absent, but θ13 becomes negative above Λ′ = 108 GeV, so we have to redefine δ → δ ± π

to make θ13 positive, leading to δ = 0 or 2π at high-energy scales. In the lower plots of

Fig. 4, the evolution of the Jarlskog invariant J is shown. Unlike the Dirac CP-violating

phase δ itself, the physical observable J evolves smoothly over the whole range of energy

scales, as it should. For tan β = 50, the value of |J | can initially be as large as 2 %, it

becomes vanishingly small at Λ = 1014 GeV. One reason for this is that δ shrinks into a

small region around 0 or 2π at the high-energy scale, as indicated in the middle plots of

Fig. 4. Obviously, the evolution of the three mixing angles is also relevant here.

IV. FURTHER DISCUSSIONS

In Secs. II and III, we have examined the RG running behaviors of the leptonic Dirac

CP-violating phase δ in the cases of Majorana neutrinos and Dirac neutrinos, respectively.

Now, we compare these two cases and summarize the main differences:

• In the Majorana case, the two Majorana CP-violating phases are playing a crucial

role in the RG running of δ. One can start from a CP-conserving scenario with δ = 0

or π at the low-energy scale, and end up with a CP-violating scenario even with

δ = π/2 or 3π/2. In the Dirac case, the evolution of δ is proportional to sδ, so the CP

conservation at the low-energy scale definitely implies that CP violation is absent at

a superhigh-energy scale.

• The mixing angle θ13 could approach zero at some high-energy scale Λ′ in both cases

if a large value of tanβ is assumed in the MSSM. On the other hand, there exist in

the RGE’s of δ some terms inversely proportional to s13. Therefore, the RG running

behavior of δ will be dramatically changed around Λ′. Given the global-fit values of
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δ within the 1σ range, it turns out that δ could be arbitrary at the high-energy scale

in the Majorana case due to the marginalization over ρ and σ. In the Dirac case, δ is

found to be in two narrow ranges [0, 0.2π] or [1.8π, 2π) in the MSSM with tan β = 50.

However, if a concrete mass model for Majorana neutrinos or Dirac neutrinos is assumed,

the RG running of δ may depend on the model details. In particular, when new particles

or interactions come into play at some intermediate energy scale, the RGE’s of the neutrino

parameters are completely changed [23]. Hence, we have assumed that this is not the case

in the previous discussions, at least below the cutoff scale.

As we have mentioned before, many flavor symmetry models, which are intended for

describing the observed leptonic mixing angles, predict the leptonic Dirac CP-violating phase

δ. For instance, it has been shown in Ref. [9] that δ ≈ 2π/3 (or 4π/3) and δ ≈ π/3 (or

5π/3) for different breaking patterns of the A4 flavor symmetry in the type-I seesaw model,

where three heavy right-handed neutrino singlets are introduced to realize the dimension-five

Weinberg operator. If the vacuum alignment problem is further solved in the framework of

supersymmetry, significant radiative corrections to these theoretical predictions of δ could be

possible. Thus, the leptonic Dirac CP-violating phase to be measured in neutrino oscillation

experiments is related by the RG running to the theoretical prediction at the seesaw scale.

On the other hand, the CP-violating and out-of-equilibrium decays of the heavy right-handed

neutrinos can generate the lepton number asymmetry in the early Universe, which will be

converted into the baryon number asymmetry via the SM sphaleron processes. In this

case, the leptonic CP violation in neutrino oscillations can be associated with the matter-

antimatter asymmetry in our Universe.

V. SUMMARY

Thanks to the recent measurements of θ13 in the Daya Bay and RENO experiments, the

discovery of CP violation in neutrino oscillation experiments seems to be promising if the

leptonic CP violation really exists and the leptonic Dirac CP-violating phase δ happens to

be far away from 0 or π. On the other hand, we have already had a preliminary result for the

leptonic CP-violating phase δ from the global-fit analysis of all kinds of neutrino oscillation

experiments, namely δ = (1.08+0.28
−0.31) π [11] and δ = (1.67+0.37

−0.77) π [12]. Therefore, we are well

motivated to study the RG running of δ from the low-energy scale to a superhigh-energy
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scale, where a unified model for fermion masses, flavor mixing, and CP violation is expected.

In the case of Majorana neutrinos, we have introduced the dimension-five Weinberg op-

erator to account for neutrino masses. The RGE of δ has been derived analytically in great

detail for the SM, the MSSM, and the UEDM, and a self-consistent approximation to it has

been given as well. By a self-consistent approximation, we mean that the RGE of δ has

been expanded in terms of s213 and ∆m2
21/|∆m2

31|, and all the terms of the same order of

magnitude should be preserved. It turns out that δ is rather stable against radiative correc-

tions in all these models, except for the case of a large tanβ in the MSSM (e.g., tanβ = 30

together with a nearly degenerate neutrino mass spectrum). In this case, the Majorana

CP-violating phases play an important role in the evolution of δ such that a maximal phase

δ = π/2 or 3π/2 can be radiatively generated at a superhigh-energy scale even if δ = π (i.e.,

no CP-violating effects in neutrino oscillation experiments) at the low-energy scale. The

evolution of δ and the Jarlskog invariant J have been illustrated by taking the 1σ global-fit

results of δ as input.

In the case of Dirac neutrinos, we have derived the RGE of δ in the SM and MSSM,

and the self-consistent approximation to it has been made. Note that a nearly degenerate

neutrino mass spectrum and the absolute neutrino mass m1 = 0.1 eV are assumed in our

analysis. The RG running effect of δ can be neglected in the SM and in the MSSM with a

small tanβ (e.g., tanβ ≤ 10). However, δ can be modified by more than 30 % for tan β = 30.

The evolution of δ and the Jarlskog invariant J have been examined by inputting the 1σ

global-fit results of δ. In the case of tanβ = 50, δ in the range of [0.2π, 1.8π] is found

to be unreachable at Λ = 1014 GeV, since the mixing angle θ13 approaches zero at some

intermediate scale (e.g., Λ′ = 108 GeV), which forces δ to be in a large-value region for

δ > π or a small-value region for δ < π. At the same time, the Jarlskog invariant J becomes

vanishingly small at a superhigh-energy scale.

As we already know some information and will soon learn more about the leptonic Dirac

CP-violating phase δ, it is thus meaningful to see how large it will be at a superhigh-energy

scale. At such an energy scale, the leptonic Dirac CP-violating phase might be related to the

quark Dirac CP-violating phase in a unified flavor model, or to the generation of matter-

antimatter asymmetry in our Universe via the leptogenesis mechanism. In any case, the

precise determination of δ in the ongoing and upcoming neutrino oscillation experiments or

at a future neutrino factory will shed light on the flavor dynamics at a high-energy scale.
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Appendix A: RGE’s for Majorana neutrinos

1. The SM

In the SM extended with the dimension-five Weinberg operator, the RGE for κ has already

been given in Eq. (3), while those for the Yukawa coupling matrices Yf of charged fermions

(i.e., f = l for charged leptons, f = u for up-type quarks and f = d for down-type quarks)

can be written as

16π2dYl

dt
=

[

αSM
l + CSM

l,l

(

YlY
†
l

)]

Yl ,

16π2dYu

dt
=

[

αSM
u + CSM

u,u

(

YuY
†
u

)

+ CSM
u,d

(

YdY
†
d

)]

Yu ,

16π2dYd

dt
=

[

αSM
d + CSM

d,u

(

YuY
†
u

)

+ CSM
d,d

(

YdY
†
d

)]

Yd . (A1)

The relevant coefficients in Eqs. (3) and (A1) are CSM
κ = CSM

u,d = CSM
d,u = −3/2, CSM

l,l =

CSM
u,u = CSM

d,d = +3/2, and

αSM
κ = −3g22 + λ+ 2T SM

M ,

αSM
l = −

9

4
g21 −

9

4
g22 + T SM

M ,

αSM
u = −

17

20
g21 −

9

4
g22 − 8g23 + T SM

M ,

αSM
d = −

1

4
g21 −

9

4
g22 − 8g23 + T SM

M (A2)
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with T SM
M ≡ tr

[

3
(

YuY
†
u

)

+ 3
(

YdY
†
d

)

+
(

YlY
†
l

)]

. The RGE’s for the SU(3)C × SU(2)L ×

U(1)Y gauge couplings g3, g2, and g1 are given by

16π2dgi
dt

= bSMi g3i (A3)

with (bSM1 , bSM2 , bSM3 ) = (41/10,−19/6,−7). The quartic coupling λ of the Higgs field appears

in the RGE of κ, which affects the evolution of absolute neutrino masses. It should satisfy

the following RGE

16π2dλ

dt
= 6λ2 − 3λ

(

3

5
g21 + 3g22

)

+
3

2

(

9

25
g21 +

6

5
g21g

2
2 + 3g22

)

+4λT SM
M − 8 tr

[

3
(

YuY
†
u

)2
+ 3

(

YdY
†
d

)2

+
(

YlY
†
l

)2
]

. (A4)

It is worth mentioning that if the experimental uncertainties of the top quark mass Mt and

the strong coupling αs are taken into account, the SM vacuum could be stable up to the

Planck scale ΛPl = 1.2× 1019 GeV [24], even for a Higgs mass MH = 125 GeV indicated by

the recent results of the ATLAS and CMS experiments.

2. The MSSM

In the MSSM, the RGE’s in Eqs. (3) and (A1) are still applicable, but the relevant flavor-

universal coefficients are as follows: CMSSM
κ = CMSSM

u,d = CMSSM
d,u = 1, CMSSM

l,l = CMSSM
u,u =

CMSSM
d,d = 3, and

αMSSM
κ = −

6

5
g21 − 6g22 + 6 tr

(

YuY
†
u

)

,

αMSSM
l = −

9

5
g21 − 3g22 + tr

[

3
(

YdY
†
d

)

+
(

YlY
†
l

)]

,

αMSSM
u = −

13

15
g21 − 3g22 −

16

3
g23 + 36 tr

(

YuY
†
u

)

,

αMSSM
d = −

7

15
g21 − 3g22 −

16

3
g23 + tr

[

3
(

YdY
†
d

)

+
(

YlY
†
l

)]

. (A5)

The RGE’s for the gauge couplings are given in Eq. (A3), but with (bMSSM
1 , bMSSM

2 , bMSSM
3 ) =

(33/5, 1,−3) in the beta functions. As we can see from the RGE of κ, the running neutrino

parameters are determined by the charged-lepton Yukawa coupling matrix Yl, especially the
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tau-lepton Yukawa coupling y2τ = m2
τ (1 + tan2 β)/v2, which could significantly be enhanced

for a large value of tan β. Such a unique feature can make the RG running of leptonic mixing

parameters remarkable in the MSSM.

3. The UEDM

In the UEDM, all the SM fields are promoted to a higher-dimensional spacetime, so every

SM particle is accompanied by a tower of Kaluza–Klein (KK) modes [25]. In the simplest

UEDM with only one extra spatial dimension, which is compactified on an S1/Z2 orbifold

with radius R, the KK parity defined as (−1)n for the n-th KK mode is conserved after

compactification. The mass scale of the first excited KK mode, i.e., µ0 ≡ R−1, has been

constrained to be larger than about 300 GeV.

If we extend the UEDM by an effective operator (ℓH) · κ̂ · (HT ℓC)/2 to accommodate

Majorana neutrino masses, just as in Eq. (1), then the effective Majorana neutrino mass

matrix after electroweak symmetry breaking is Mν = κv2 with κ = κ̂/(πR). The RGE of

κ now receives contributions from the KK modes, which are excited at the energy scale of

interest. More explicitly, the RGE’s for κ and the Yukawa coupling matrices of the charged

fermions are also given by Eqs. (3) and (A1), but with the following coefficients [25]

αUEDM
κ = αSM

κ + s

(

−
1

4
g21 −

11

4
g22 + λ+ 4T SM

M

)

,

αUEDM
l = αSM

l + s

(

−
33

8
g21 −

15

8
g22 + 2T SM

M

)

,

αUEDM
u = αSM

u + s

(

−
101

72
g21 −

15

8
g22 −

28

3
g23 + 2T SM

M

)

,

αUEDM
d = αSM

d + s

(

−
17

72
g21 −

15

8
g22 −

28

3
g23 + 2T SM

M

)

, (A6)

and CUEDM
x = CSM

x (1+s) with “x” being any relevant subscript. Note that s ≡ ⌊µ/µ0⌋ counts

the number of excited KK modes for a given energy scale µ. In addition, the coefficients in

the beta functions of gauge couplings turn out to be

bUEDM
1 = bSM1 +

27

2
s , bUEDM

2 = bSM2 +
7

6
s , bUEDM

3 = bSM3 −
5

2
s . (A7)

Finally, the RGE for the quartic Higgs coupling λ is quite relevant in the UEDM, as in the

20



SM case. It has been found to be [25]

16π2dλ

dt
= 6(1 + s)λ2 − 3(1 + s)λ

(

3

5
g21 + 3g22

)

+
3

2
(1 +

4

3
s)

(

9

25
g41 +

6

5
g21g

2
2 + 3g24

)

+4(1 + 2s)λT SM
M − 8(1 + 2s) tr

[

3
(

YuY
†
u

)2
+ 3

(

YdY
†
d

)2

+
(

YlY
†
l

)2
]

. (A8)

Appendix B: RGE’s for Dirac neutrinos

If the SM is extended with three right-handed neutrino singlets, then neutrinos acquire

Dirac masses in the same way as the charged leptons and quarks do. At one-loop level, the

RGE’s of the fermion Yukawa coupling matrices read [22]

16π2dYν

dt
=

[

αSM
ν + CSM

ν,ν

(

YνY
†
ν

)

+ CSM
ν,l

(

YlY
†
l

)]

Yν ,

16π2dYl

dt
=

[

αSM
l + CSM

l,ν

(

YνY
†
ν

)

+ CSM
l,l

(

YlY
†
l

)]

Yl ,

16π2dYu

dt
=

[

αSM
u + CSM

u,u

(

YuY
†
u

)

+ CSM
u,d

(

YdY
†
d

)]

Yu ,

16π2dYd

dt
=

[

αSM
d + CSM

d,u

(

YuY
†
u

)

+ CSM
d,d

(

YdY
†
d

)]

Yd , (B1)

where CSM
f,g = +3/2 (for f = g) and −3/2 (for f 6= g), and

αSM
ν = −

9

20
g21 −

9

4
g22 + T SM

D ,

αSM
l = −

9

4
g21 −

9

4
g22 + T SM

D ,

αSM
u = −

17

20
g21 −

9

4
g22 − 8g23 + T SM

D ,

αSM
d = −

1

4
g21 −

9

4
g22 − 8g23 + T SM

D (B2)

with T SM
D ≡ tr

[

3
(

YuY
†
u

)

+ 3
(

YdY
†
d

)

+
(

YνY
†
ν

)

+
(

YlY
†
l

)]

. The RGE’s of fermion Yukawa

coupling matrices are the same as in Eq. (B1) for the MSSM, but with different coefficients,

21



namely CMSSM
f,g = +3 (for f = g) and +1 (for f 6= g), and

αMSSM
ν = −

3

5
g21 − 3g22 + tr

[

3
(

YuY
†
u

)

+
(

YνY
†
ν

)]

,

αMSSM
l = −

9

5
g21 − 3g22 + tr

[

3
(

YlY
†
l

)

+
(

YνY
†
ν

)

]

,

αMSSM
u = −

13

15
g21 − 3g22 −

16

3
g23 + tr

[

3
(

YuY
†
u

)

+
(

YνY
†
ν

)]

,

αMSSM
d = −

7

15
g21 − 3g22 −

16

3
g23 + tr

[

3
(

YdY
†
d

)

+
(

YlY
†
l

)]

. (B3)

The RGE’s of three gauge couplings g1, g2, and g3 are the same as those in the case of

Majorana neutrinos [see Eq. (A3)].
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