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We develop an adiabatic formalism to study the Hawking phenomenon from the perspective of
Unruh-DeWitt detectors moving along non-stationary, non-asymptotic trajectories. When applied
to geodesic trajectories, this formalism yields surprising results: (i) though they have zero accel-
eration, the temperature measured by detectors on circular orbits is higher than that measured
by static detectors at the same distance from the hole, and diverges on the photon sphere, (ii)
in the near-horizon region, both outgoing and incoming modes excite infalling detectors, and, for
highly bound trajectories (E ≪ 1), the latter actually dominate the former, (iii) in this region, the
relationship between the temperature of Hawking radiation and the relative velocity between the de-
tector and the hole is not of Doppler type. We confirm the apparent perception of high-temperature
ingoing Hawking radiation by infalling observers with E ≪ 1 by a flux computation. We close by a
discussion of the role played by spacetime curvature on the near-horizon Hawking radiation.

I. INTRODUCTION

Hawking has famously predicted [1, 2] that the grav-
itational collapse of a (say spherically symmetric) mat-
ter distribution of mass M will be perceived by ob-
servers at future infinity in the form of a stationary, out-
going, thermal flux of massless particles with tempera-
ture TH = (8πM)−1. Like most general-relativistic ef-
fects, this “Hawking phenomenon” is a priori observer-
dependent, and it is not immediately clear what other,
non-asymptotic observers would measure. To investigate
this question, Unruh introduced in [3] a most useful and
practical approach, based on a simple particle detector
model (referred to as an “Unruh-Dewitt (UDW) detec-
tor”). In the case of static UDW detectors at “radius”
r in a Schwarzschild spacetime, for instance, one finds
[4] that the temperature measured by UDW detectors
isTH(1 − 2M/r)−1/2; this shows that Hawking radiation
satisfies the Tolman equilibrium condition [5], just like a
normal thermal bath.
Another interesting class of trajectories worth investi-

gating are infalling geodesics. Since these are not tangent
to a timelike Killing field, however, one cannot use any
Tolman-like a priori argument to infer the temperature
measured by UDW detectors along these trajectories, and
in particular when they cross the Schwarzschild horizon.
Would they record Hawking radiation there? Or would
they not, because Hawking radiation is created at some
distance away from the black hole [6]?

∗ smerlak@aei.mpg.de
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Unruh gave an answer to this question in [3]. Tak-
ing his cues from the geometric similarity between the
Schwarzschild and Rindler horizons, and the observation
that the Unruh temperature TU = a/2π of geodesic ob-
servers in Rindler spacetime is zero (because their ac-
celeration a is zero), he argued that “a geodesic detec-
tor near the horizon will not see the Hawking flux of
particles”. This conclusion—although not supported by
an explicit calculation in [3]—fits with the general view
put forward in that paper that, near the horizon, the
in-vacuum of gravitational collapse is not different from
the Minkowski vacuum. The reduction of the (curved
spacetime) Hawking effect to the (flat spacetime) Un-
ruh effect in the near-horizon region [7] is further sup-
ported by the following fact: the Hawking temperature
TH(1− 2M/r)−1/2 perceived by a static observer at a ra-
dius r > 2M in Schwarzschild spacetime approaches the
Unruh temperature (M/r2)(1 − 2M/r)−1/2/2π for a ob-
server with the same acceleration in Minkowski spacetime
when R → 2M . Singleton and Wilburn have described
this fact by saying that “the equivalence principle is re-
stored at the horizon” [4].

For all that, heuristic arguments as well as actual com-
putations have recently challenged this conclusion. In the
former category, Helfer has argued [8] that “the vicinity
of a black hole is a region in which essentially quantum-
gravitational, Planck-scale, physics must dominate”; for
Almheiri et al. [9], the principle of information con-
servation and other quantum-information-theoretic con-
straints suggest the presence of a “firewall” at the hori-
zon. While interesting in themselves, these arguments
are unfortunately too vague to lead to a definite pre-
diction concerning the fate of horizon-crossing geodesic
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detectors. Following a more conventional semi-classical
approach, Barbado et al. [10] have recently devised a
framework, based on the notion of “effective tempera-
ture”, to study the nature of Hawking radiation near the
horizon more explicitly. (The “effective temperature” in-
troduced there is meant to give an estimation of the re-
sponse of UDW detectors at any given point along their
trajectory.) Somewhat surprisingly, they find that the ef-
fective temperature of detector dropped with zero initial
velocity from infinity will rise, until it reaches the value
4TH when crossing the horizon. This result appears to
contradict Unruh’s conclusion [3], and does not accredit
the notion that the Hawking effect reduces to the Unruh
effect in the near-horizon region.
Very appealing for its conceptual simplicity, the “effec-

tive temperature” approach of [10] has several technical
limitations which could legitimate some skepticism about
that conclusions. First, the actual response function of a
trans-horizon geodesic detector is not explicitly evaluated
in [10], nor is any solid argument given to the effect that
the “effective temperature” defined by these authors is
indeed the one measured by an Unruh-DeWitt detector.
Second, the framework used in [10], being entirely based
on the retarded Eddington-Finkelstein time coordinate
u, does not apply to the interior region of the black hole;
hence one could speculate that the effect found in [10] is
perhaps an artifact of the horizon being singular with re-
spect to the u-coordinate. Third, the vacuum state used
in the definition of the “effective temperature” function in
[10] is not the standard Unruh vacuum, but a new, uncon-
ventional state in the extended Schwarzschild geometry.
One may fear that this new state is perhaps unsuitable to
describe the physics of Hawking radiation. Fourth—and
more crucially— the fact that a radially infalling geodesic
detector clicks at the horizon, and even records a finite
temperature there, does not mean by itself that it per-
ceives “Hawking radiation”. The local spacetime geom-
etry is not stationary along a radial geodesic, and actu-
ally changes more and more rapidly as the horizon (and
then the singularity) is approached; it could be that the
temperature measured at the horizon is due to this (triv-
ial) curvature effect, and not to the peculiar structure of
the vacuum which is the true origin of Hawking radia-
tion. Rather than “does a near-horizon detector record
a non-zero temperature”, the question which should be
addressed is therefore “does a near-horizon geodesic de-
tector record a non-zero temperature that cannot be ex-
plained away by a time-varying gravitational potential”?
The purpose of this paper is to shed more light on

these questions by reconsidering the response of geodesic
UDW detectors during and after gravitational collapse.
We address the four aforementioned concerns as follows:

1. We define and study a suitably defined time-
dependent “temperature” function, as in [10], but

also related it explicitly to UDW response functions
by an adiabatic expansion.

2. We only use globally defined coordinates, regular
on the horizon as well as everywhere else (except at
the singularity).

3. We avoid working with the extended Schwarzschild
spacetime, where the effect of gravitational col-
lapse must be mimicked by a suitable choice of
vacuum state (the “Unruh vacuum” [3]). In-
stead, we consider gravitational collapse geome-
tries and the corresponding—uniquely defined—in-
vacuum state.

4. In a final section, we also consider generalized (non-
Schwarzschild) black hole geometries, where the de-
generacy between the surface gravity and the cur-
vature scale at the horizon is lifted. This allows us
to disentangle curvature effects and Hawking radi-
ation at the horizon.

Another assumption made in [10] which we relax in
this paper is that only outgoing modes couple to UDW

detectors. In fact, we will see that there exists a class
of infalling trajectories for which the response of UDW
detectors is actually dominated by incoming modes. This
is a somewhat surprising of our analysis, which, to our
knowledge, was not anticipated in the literature.
The plan of the paper is as follows. In sec. II, we in-

troduce the model of gravitational collapse used int he
paper (a Vaidya ingoing shell), and discuss our “quasi-
temperature formalism” to study the response of UDW
detectors on arbitrary trajectories in that spacetime. We
then apply this formalism in sec. III to various geodesic
trajectories: circular orbits, radially infalling trajectories,
and inspiral orbits. Our findings are compared with a flux
computation in sec. IV. In sec. V, we address in more
detail the role played by the local spacetime curvature on
the response of near-horizon geodesic detectors, by means
of an artificial black hole model where the curvature van-
ishes near the horizon. Sec. VI contains a discussion of
our results and our conclusion. Details on adiabatic ex-
pansions of UDW-like response functions are given in the
Appendix.

II. THE HAWKING EFFECT ALONG
GENERAL TRAJECTORIES

The Hawking effect is the perception of an outgoing
thermal flux at temperature TH ≡ (8πM)−1 by asymp-
totic inertial observers at rest relative to a Schwarzschild
black hole. In this section we introduce a formalism
to study response of particles detectors moving along
more general trajectories. This allows us to consider two



3

bb
x

v+(x)

v−(x)

i−

i+

i0

J
−

J
+

v

H
+

FIG. 1. Definition of the (globally defined) “eikonal coor-
dinates” (v+, v−) for spherically-symmetric gravitational col-
lapse.

aspects of the Hawking phenomenon which are not of-
ten described in the literature: the onset of black hole
evaporation after the horizon has formed, and the time-

dependence of the spectra recorded by non-stationary de-
tectors.
Throughout this paper, we shall make the following

assumptions and approximations:

• We only consider minimally coupled massless scalar
fields.

• We neglect the contribution of non-spherically sym-
metric (l 6= 0) field modes as well as all backscat-
tering effects, so that the dynamics of the field is
effectively two-dimensional.

• We neglect any backreaction of Hawking radiation
on the background spacetime.

A. Collapse geometry and null coordinates

Our model gravitational collapse in this paper is the
Vaidya ingoing shell. (Another collapse geometry will be
discussed in sec. V.) As is well known, this spacetime
consists of two patches separated by a null thin-shell: a
flat region inside the shell, and a Schwarzschild region
outside the shell. Its metric is conveniently written in
Eddington-Finkelstein advanced coordinates (v, r) as

ds2 = −
(
1− rs

r
Θ(v)

)
dv2 + 2dvdr + r2dΩ2, (1)

where rs ≡ 2M is twice the mass of the shell (which is
located at v = 0), Θ(v) is the Heaviside function and
dΩ2 = dθ2 + sin2 θdϕ2 is the standard angular metric.
The surface gravity of the black hole is κ ≡ (2rs)

−1.
To analyze the Hawking phenomenon in such a col-

lapse model, it useful to introduce globally defined null

coordinates (v+, v−) for the (v, r) sector of spacetime.
These are constructed as follows. For each event x, con-
sider the two null rays (incoming and outgoing) meet-
ing at x, and let v+(x) and v−(x) be their respective
Eddington-Finkelstein advanced time at past null infin-
ity, with v−(x) ≤ v+(x) = v(x) (see Penrose diagram in
Fig. 1).
The physical interpretation of the (v+, v−) coordinates

is tied to the eikonal approximation for the propagation
of massless fields φ(x), according to which

φ(x)

r
∼ lim

r→∞

φ(v+(x), r) − φ(v−(x), r)

r
. (2)

In this approximation, the field at a given point x is ex-
pressed as the superposition of two spherical waves em-
anating from past null infinity J −: a convergent one,
arriving directly from v+(v, r) (first term above), and a
divergent one, arriving from v−(v, r) after a reflection off
the origin (second term above), as in Fig. 1. (For a har-
monic mode e−iωv on J −, the phases of these two waves
at a given point x are ωv±(x)). For this reason, we call
(v+, v−) the eikonal coordinates of x.
In the case of the Vaidya metric (1), it is possible to

give the (v, r) 7→ (v+, v−) mapping in closed form. By
construction, we have v+ = v, and, when (v, r) is inside
the shell, v−(v, r) = v − 2r; for a point (v, r) outside the
shell (v > 0), we must integrate the equation ds2 = 0
from (v, r) back to the point (ṽ = 0, r̃) where it meets
the shell, and then write v−(v, r) = −2r̃. This gives

v−(v, r) =

{
v − 2r for v < 0

−2rs

[
1 +W

(
δ eδ−κv

) ]
for v ≥ 0,

(3)

where δ ≡ r/rs − 1 and W (z) denotes the Lam-
bert W -function, defined as the principal solution of
W (z)eW (z) = z. (For the reader’s convenience, the graph
of W (z) plotted in Fig. 2.)
Since W (z) ∼ z as z → 0, the identity (3) immediately

gives the equation of the event horizon as v− = −2rs.
But, more importantly, it also reveals the peculiar dis-
ruption of phase fronts induced by gravitational collapse:
from (3) we see that v− is constant where δeδ−κv is con-
stant, and in particular v− ≃ −2rs where δeδ−κv ≪ 1.
Due to the peculiar analytic form of the function δ 7→
δeδ−κv for each v ≥ 0, the region where δeδ−κv ≪ 1 is
very sharply defined. Inside this region, which expands
away from the horizon as v grows (until it eventually cov-
ers the whole spacetime), the phase of a vacuum fluctua-
tion emerging from the shell after bouncing off its center
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FIG. 2. The Lambert W -function, defined on [e−1,∞) by

W (z)eW (z) = z and such that W (z) ∼ z for z → 0.

is almost exactly equal to −2rs; this is where the Hawk-
ing phenomenon takes place. We shall call it the Hawk-

ing region. The level curves of v−(v, r) are represented
in Fig. 3; in pictorial terms, Fig. 3 shows how gravi-
tational collapse “opens up”, or perhaps “breaks open”,
the in-vacuum.

Notice that, in the Hawking region, the eikonal coor-
dinate v− takes the same functional form as the Kruskal-
Szekeres U coordinate for eternal black holes. Defining
indeed, à la Kruskal-Szekeres, U(v, r) ≡ −2rse

−κu(v,r)

with u(v, r) ≡ v − 2r − 2rs log δ, from see from (3) and
the asymptotic formula W (z) ∼ z as z → 0 that

v−(v, r) ∼ U(v, r)− 2rs (4)

when δeδ−κv ≪ 1. Since eternal black holes are not real
objects, the relation (4) can be thought of as providing
the physical interpretation of Kruskal’s and Szekeres’ U
coordinate: it captures the structure of outgoing phase
fronts in the Hawking region of a (non-eternal) black hole.

B. Unruh-DeWitt detectors

Unruh-DeWitt (UDW) detectors [3, 11] are point-like
monopole detectors, which measure the Wightman func-
tion G(x, y) of the field along a given trajectory. Specif-
ically, the response function of a UDW detector moving
along the trajectory γ(τ) is, to first order in perturbation
theory,

R(Ω) = 2Re

∫ ∞

−∞

duχ(u)

∫ ∞

0

ds χ(u− s) e−iΩs G
(
γ(u), γ(u− s)

)
. (5)

In this expression, Ω is the energy gap between the two
stationary states of the detector, G

(
γ(u), γ(u − s)

)
is

the pull-back of the Wightman function to the detec-
tor’s worldline, and χ(u) is a non-negative “switching”
or “window” test function. The introduction of a switch-
ing function in the definition of the UDW response func-
tion ensures thatR(Ω) is well-defined and consistent with
causality: choosing a switching function such that χ(u) ≃
0 for u ≥ τ and u ≤ τ −∆τ ensures that R(Ω) only de-
pends on the time interval ∆τ in the past of τ . Motivated
by this causality issue, Svaiter and Svaiter introduced in
[12] the simple ansatz χ(u) = Θ(u − τ − ∆τ)Θ(τ − u),
which in the ∆τ → ∞ limit leads to a transition rate
(τ -derivative of the response function R)

Ṙ(Ω) = 2Re

∫ ∞

0

ds e−iΩsG
(
γ(τ), γ(τ − s)

)
. (6)

However appealing at first sight, this ansatz has two un-
pleasant features, which are due to the fact that χ(u) =
Θ(u− τ −∆τ)Θ(τ −u) is not a proper test function (it is
not smooth): first, the standard −i0 prescription for the

Wightman function yields non-Lorentz-invariant transi-
tion rates [13] and must be replaced by a more compli-
cated prescription [13–16]; second, the ultraviolet behav-
ior (large Ω limit) is qualitatively different on stationary
and non-stationary trajectory [17, 18]. Both these short-
comings disappear if a smooth switching function is used
instead.

C. Wightman function in the (s-wave) in-vacuum

As mentioned earlier, in this paper we shall restrict
our attention on the s-wave sector (spherically symmet-
ric field configurations) of the in-vacuum. In this approx-
imation, standard arguments [19, 20] show that G(x, y)
takes the logarithmic form

G(x, y) ∝ ln
((

v+(x)− v+(y)− i0
)(
v−(x)− v−(y)− i0

))
.

(7)
Using the relation (4), this expression can be identified in
the Hawking region with the one given in [3] to describe
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FIG. 3. “Portrait of the vacuum”: level curves of the eikonal
coordinate v−(v, r) in the Vaidya spacetime. The dashed hor-
izontal line is the collapsing shell, the dotted vertical line is
the event horizon, and the region in the top-left corner is the
“Hawking region”. Its boundary, defined by v−(v, r) = −2r−ǫ
for some ǫ, is very sharp, and may be thought of as a “wall”.

a radiating eternal black hole and known as the “Unruh
vacuum”,

GU (x, y) ∝ ln
((

v(x)−v(y)−i0
)(
U(x)−U(y)−i0

))
. (8)

These states—the collapse vacuum (7) and the Unruh
vacuum (8), in the s-wave sector—have a peculiar prop-
erty, which is not shared by more general vacua: the in-
coming and outgoing modes couple to UDW detectors
independently. This means that the UDW response func-
tion R splits as R = R++R−, where R± is given by (5)
with G(x, y) replaced by

ln
(
v±
(
γ(u)

)
− v±

(
γ(u)

)
− i0

)
. (9)

The thermal properties of R+ and R− can thus be stud-
ied independently, and are completely determined by the
behavior of each of eikonal coordinates v± along the de-
tector’s trajectory. In particular, in the case of stationary
trajectories leading leading to a thermal spectrum, the
thermality (aka detailed balance) condition for R+ and
R− defines two temperatures T+ and T−, by

R±(−Ω) = eΩ/T±R±(Ω). (10)

These temperatures need not coincide in general. This
is clear in the asymptotic Hawking effect, where T+ = 0
and T− = TH = κ/2π.

D. Hawking temperature from the peeling of
outgoing modes

The mechanism responsible for the perception of Hawk-
ing radiation has been described by many authors as an
“exponential redshift” or “peeling” effect. After [2], this
statement is usually expressed in terms of the canoni-
cal mapping from J + to J − which relates the retarded
and advanced Eddington-Finkelstein times of a given null
ray. From the perspective of UDW detectors, however,
it is more natural to state the “peeling” condition in a
trajectory-dependent way, as follows: if γ(τ) is the tra-
jectory of an asymptotic observer at rest relative to the
hole, the quantity v−(γ(τ)) satisfies

− v̈(γ(τ)

v̇(γ(τ))
= κ. (11)

(From now on, we shall drop the explicit reference to
γ, the trajectory being understood from the context.).
Integrating this condition gives

v−(τ) − v−(τ − s) ∝ e−κ(τ−s)/2 sinh(κs/2). (12)

If we plug this relation into (9) and perform the stan-
dard residue integration [19], we arrive at the celebrated
thermal spectrum at temperature TH = κ/2π

Ṙ−(Ω) ∝
1

Ω(e2πΩ/κ − 1)
. (13)

(The Ω → 0 divergence is of course an artifact of the
two-dimensional approximation.)
The main advantage of this trajectory-based formula-

tion of the exponential redshift argument is that it ap-
pliesmutatis mutandis to any trajectory where v̈−/v̇− is a
constant: for the same reasons that asymptotic observers
such that |v̈/v̇| = κ perceive a thermal spectrum at tem-
perature κ/2π, non-asymptotic observers such that |v̈/v̇|
is constant perceive a thermal spectrum at temperature

T− =
1

2π

∣∣∣
v̈−
v̇−

∣∣∣. (14)

This is the case e.g. for (late-time) static observers at
any radius r > rs: from the estimate (4), we compute

∣∣∣
v̈−
v̇−

∣∣∣ = κv̇(r). (15)

The time-derivative v̇(r) along a static trajectory can be
read off from the metric (1), as v̇(r) = (1−rs/r)

−1/2, and
therefore the temperature of outgoing modes measured by
static UDW detector is readily found to be

T stat
− (R) = TH(1 − rs/r)

−1/2. (16)

Again, this is consistent with the Tolman equilibrium
condition [5].
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E. Non-static trajectories: quasi-temperature and
adiabatic approximation

It has been argued in [10] that the approximate con-
stancy of T−(τ) ≡ |v̈−(τ)/v̇−(τ)|/(2π), expressed as

η− ≡
∣∣∣
Ṫ−

T 2
−

∣∣∣≪ 1, (17)

is a sufficiently condition for the perception of thermal
Hawking radiation. This “adiabaticity condition”, con-
sidered previously [21] in the context of evolving black
holes, allows to study the response of UDW detectors
along non-stationary trajectories [10] in a very straight-
forward way, simply by computing T−(τ). Heuristically,
when η− ≪ 1, the response function R(τ,Ω) of a UDW
detector switched off (smoothly) at time τ will be indis-
tinguishable from a thermal spectrum with τ -dependent
temperature T−(τ). In fact, even when η is not small,
this relationship still holds in the ultraviolet limit, where
Ω ≫ T−(τ).
Following this rationale, we will call quasi-temperature

of a time-dependent spectrum R(τ,Ω) a function T (τ)
such that, at any given time τ , the detailed balance con-
dition holds in the ultraviolet limit,

R(τ,−Ω) ∼ eΩ/T (τ)R(τ,Ω) for |Ω| ≫ T−(τ). (18)

See the Appendix for more details on the adiabatic ap-
proximation.

F. Two quasi-temperatures for Hawking radiation

Our approach to the study of Hawking radiation along
general trajectories is based on this adiabatic approxima-
tion. For a given trajectory, we shall compute the quasi-
temperatures of both outgoing and incoming modes as

T±(τ) =
1

2π

∣∣∣
v̈±(τ)

v̇±(τ)

∣∣∣. (19)

As we will see, these quasi-temperatures together with
the corresponding adiabaticity parameters

η− ≡
∣∣∣
Ṫ−

T 2
−

∣∣∣≪ 1, (20)

provide a valuable handle on the response of UDW de-
tectors to Hawking radiation, especially in the large Ω
limit.

III. RESPONSE OF GEODESIC DETECTORS

In this section, we apply the quasi-temperature for-
malism to the case of geodesic trajectories in the

200 400 600 800 1000 1200 1400
Τ

1

2

3

4

THΤL

TH

5 10 15 20

5
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T-

FIG. 4. The quasi-temperature of outgoing (continuous) and
incoming (dashed) as a function of proper time along the inspi-
ral geodesic (E,L) = (1, 3) until it reaches the horizon. The
inset shows the geodesic in the equatorial plane. The step
at τ ≃ 300 corresponds to the moment when the trajectory
enters the Hawking region.

Schwarzschild region (v > 0) of the Vaidya collapse ge-
ometry described above.

A. Schwarzschild geodesics

Timelike Schwarzschild geodesics are characterized by
two orbital parameters: their energy per unit rest mass
E and their angular momentum per unit rest mass L =
r2ϕ̇. In Eddington-Finkelstein coordinates, the geodesic
equations read

{
ṙ2 + (1 − rs/r)(1 + L2/r2) = E2

−(1− rs/r)v̇
2 + 2v̇ṙ + L2/r2 = −1.

(21)

From these equations and (3), we can in principle ob-
tain v+ = v, v− and their derivatives—hence the quasi-
temperatures T± and the adiabaticity parameters η±—
along any geodesic (E,L). This approach is illustrated
in fig. 4 for one inspiral trajectory with (E,L) = (1, 3),
by means of a numerical integration of (21). This plot
shows interesting phenomena: the setting off of Hawk-
ing radiation after gravitational collapse, the increase of
the quasi-temperature of outgoing modes, and of that of
incoming modes as the horizon is approached.
However, in order to get an analytical understanding

of this plot, and in particular of the dependence of T±

and η± on E and L, the best approach is to consider spe-
cial regimes of interest (circular orbits, radial trajectories
in the asymptotic and near-horizon regimes) separately.
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This is the approach we shall take in the following. Our
presentation will be rather pedestrian: we have found,
indeed, that the details of the computation of T± and
η± provide a good deal of insight into the inner work-
ings of the Hawking phenomenon; they display in a very
transparent way the interplay between the geometry of
spacetime (and its geodesics) and the structure of the in-
vacuum which is responsible for the evaporation of black
holes.

B. Circular orbits

Circular orbits are characterized by their Schwarzschild
radius r > 3rs/2, or equivalently by δ = r/rs − 1 > 1/2.1

By virtue of their stationarity, these orbits have constant
v̇, given by

v̇(δ) =

(
1 + δ

δ − 1/2

)1/2

. (22)

In particular, v̈ = 0, hence T+ = 0: incoming modes do
not couple to UDW detectors on circular orbits. On the
other, from (3) we get for the outgoing modes

v̈−(δ)

v̇−(δ)
= −κv̇(δ)

(
1 + δeδ−κvW

′′(δeδ−κv)

W ′(δeδ−κv)

)
. (23)

Using (22) and the standard formula for the derivative of
the Lambert W -function,

W ′(z) =
W (z)

z
(
1 +W (z)

) , (24)

we arrive at

T−(v, δ) = TH

(
1 + δ

δ − 1/2

)1/2

×
∣∣∣∣∣1−

W (δeδ−κv)
(
2 +W (δeδ−κv)

)
(
1 +W (δeδ−κv)

)2

∣∣∣∣∣ . (25)

In this expression, the second term represents the tran-
sient regime before the orbit has been “swallowed” in the
Hawking region. After this transient, T−(v, δ) reaches the
stationary value

T circ
− (δ) ≡ lim

v→∞
T−(v, δ) = TH

(
1 + δ

δ − 1/2

)1/2

. (26)

1 The corresponding energies and angular momenta are given by

Ecirc(r) = rs

[

δ2

(δ + 1)(δ − 1/2)

]1/2

, Lcirc(r) = rs

[

(1 + δ)2

2(δ − 1/2)

]1/2

.

0.5 1.0 1.5 2.0 2.5 3.0
∆

2

3

4

5

6

T-H∆L

TH

static

circular

FIG. 5. Stationary trajectories: the temperature measured by
static detectors (dashed line) and by geodesic detectors on a
circular orbit (continuous line) around a Schwarzschild black
hole as a function of δ = r/rs − 1.

Observe that, in spite of the fact that circular orbits have
zero acceleration, this temperature is always larger than
the temperature measured by static detectors at the same
distance from the hole (compare with (16)), and actually
diverges on the photon sphere (r = 3rs/2). These results
are illustrated in fig. 5.

C. Radial trajectories: surprises on the horizon

Radially infalling trajectories (L = 0, ṙ < 0, v̇ > 0) are
parametrized by their energy E, with E ≥ 1 correspond-
ing to unbound states and E < 1 to bound states. (The
limiting case E = 1 describes a detector dropped from
infinity with zero velocity into the black hole.) In addi-
tion to the time-dependence of the Hawking phenomenon
itself (the transient represented by v-dependent terms in
(25)), these trajectories are intrinsically non-stationary:
as the black hole is approached (δ → 0), the local Rie-
mann curvature becomes larger and larger. To avoid mix-
ing these two effects, from now on we shall assume that
the trajectory is well inside the Hawking region, and focus
on the time-dependent effects arising from the trajectory
itself.
Outgoing modes. Consider first the outgoing modes.

Using (3), we have

v̈−
v̇−

≃ (δeδ−κv)··

(δeδ−κv)·
(27)

=
δ̈(1 + δ) + (δ̇ − κv̇)

(
2δ̇ + δ(δ̇ − κv̇)

)
− κδv̈

δ̇ + δ(δ̇ − κv̇)
.
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Let us focus on the aforementioned limiting cases: the
asymptotic limit (δ ≫ 1) and at horizon-crossing (δ = 0).
In the asymptotic limit (which requires E ≥ 1 to exist),

the system (21) gives δ̇ ∼ −(E2−1)1/2/rs, v̇ ∼ E−(E2−
1)1/2, δ̈ ≃ 0, and v̈ ≃ 0, hence from (27) with δ ≫ 1,

v̈−
v̇−

∣∣∣
asymp

≃ δ̇ − κv̇ = −κ
(
E +

√
E2 − 1

)
. (28)

Thus, in this limit we get

T asymp
− (E) = TH

(
E +

√
E2 − 1

)
. (29)

This formula is consistent with Hawking’s original predic-
tion, with a Doppler factor accounting for the relative mo-
tion between the detector and the black hole when E > 1.
In this regime the adiabaticity parameter ηasymp

− (E) is of
course vanishingly small.
At horizon-crossing (δ = 0), on the other hand, the

equations of motion (21) give δ̇ = −E/rs and v̇ = 1/2E,

and, by differentiation of the radial equation, δ̈ = −1/2r2s.
Plugging this into (27) now gives

v̈−
v̇−

∣∣∣
hor

=
δ̈ + 2δ̇(δ̇ − κv̇)

δ̇
= −2E

rs
= −4κE (30)

and therefore

T hor
− (E) = 4ETH . (31)

Thus, not only is the quasi-temperature not zero on the
horizon, but for unbound states (E ≥ 1) it is actually
larger than the Hawking temperature perceived by static
observers at infinity. The formula (31) is consistent with
the result of [10].2

We have stressed that the near-horizon regime is not
stationary, hence that whether (31) can be interpreted
as a temperature depends on the value of η−(E) there.
Further differentiation of (21) and (27) gives

ηhor− (E) =
π

4

(
2 +

1

E2

)
. (32)

This number is of order 1 for all unbound trajectories
(E ≥ 1), and never smaller than π/2 ≃ 1.6: detectors
with frequency Ω ≃ T hor

− (E) will not confuse the vacuum
state with a thermal state. Large-frequency detectors
(Ω ≫ T hor

− (E)), on the other hand, will not be able to
make this difference.

2 Considering an “observer freely falling from infinity”, they find
that “in the last stages of his approach to the horizon, and sur-
prisingly at first sight, the effective temperature rises reaching
exactly four times HawkingÕs temperature” [10].

Incoming modes. Let us now consider the quasi-
temperature of incoming modes. As we saw earlier, these
do not couple to UDW detectors on stationary trajecto-
ries (static or circular); it may seem appropriate to as-
sume that the same holds along radial trajectories. This
is indeed the case in the asymptotic limit, where we
have seen that v̈ ≃ 0—but what about the near-horizon
regime?
We have obtained v̇ = 1/2E on the horizon. To get

the corresponding value of v̈, we differentiate the second
equation of (21). On the horizon, this gives v̈ = −κ/4E2,
and therefore

T hor
+ (E) =

TH

2E
. (33)

For unbound states (E ≥ 1), this quasi-temperature is
always smaller than that of outgoing modes. The sit-
uation is different for bound states (E < 1): for any

E < 1/
√
8 we have T hor

+ (E) > T hor
− (E), i.e. the incom-

ing modes dominate the outgoing modes, and in the limit
where E → 0 (detectors dropped with zero velocity from
close to the horizon), the quasi-temperature of incoming
modes diverges. Taking these modes into account, we
can therefore conclude that the slower it is approached,

the “hotter” a black hole appears. In our view, this sur-
prising result is the main contribution of this work. We
will comment further on this finding in sec. VI.
Again, the proper interpretation of this result should

be derived from the value of the adiabaticity parameter.
In this case, we get

ηhor+ (E) = 2π|1− 8E2|. (34)

Thus, just like for outgoing modes, ηhor+ is bounded from
below by a number of order one (actually 2π ≃ 6.2): that
is, the adiabatic approximation is not good in this regime,
and (33) can only be interpreted as the ultraviolet decay
rate of detector spectra.

D. Inspiral orbits: effect of angular momentum at
horizon-crossing

It is not difficult to generalize the above results to in-
spiral trajectories with non-zero angular momentum. As
before, the equations of motion (21) gives δ̇, δ̈, etc., as
functions of E and L in the various regimes, and using
(27) it is a simpler matter to derive T hor

± (E,L). We do
not repeat this computation here; the results are

T hor
− (E,L) = 4ETH (35)

and

T hor
+ (E,L) =

TH

2E

∣∣∣∣1 +
L2

r2s

(
1− 8E2

1 + L2/r2s

)∣∣∣∣ (36)
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0.5 1.0 1.5 2.0 2.5 3.0
E
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hor

T-
hor

T-
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FIG. 6. Radially infalling trajectories: quasi-temperature of
outgoing and incoming modes in different regimes, as func-
tions of the energy E. For small energies E ≪ 1 (bound
states), incoming modes dominate.

and similar formulas for ηhor± which we do not give here.
Thus, while the quasi-temperature of outgoing modes at
horizon crossing is independent of the angular momen-
tum of the trajectory, the quasi-temperature of incom-
ing modes is not. Instead, it is given by the above non-
monotonous function of E and L.

IV. HAWKING FLUX ALONG RADIAL
TRAJECTORIES

It is well-known that the response of UDW detectors
to vacuum radiation is a priori independent from the ex-
istence of a non-zero energy-momentum tensor 〈Tab〉. In
the Hawking effect (unlike the Unruh effect), however,
it turns out that 〈Tab〉 6= 0 after the collapse: at future
infinity, one finds 〈Tuu〉 = πT 2

H/12 (and all other compo-
nents zero), confirming that a Schwarzschild black hole
does produce a stationary outgoing flux—that it actually
evaporates.
What flux would infalling observers measure at

horizon-crossing? Given the (surprising) results we have
found for the response function of UDW detectors in the
limit E → 0 (also because they are based on an adiabatic
expansion, which might seem uncompelling to some read-
ers), it is interesting to consider the flux

F(E) = 〈Tab〉uanb (37)

along radially infalling trajectories ua(E) as a function
of their energy E, say in the direction nb orthogonal to
ua in the outwards direction. This quantity has been

0.5 1.0 1.5 2.0
E

-150

-100

-50

12 FHEL

Π TH
2

hor

asymp

FIG. 7. The flux F(E) perceived by radially infalling ob-
servers with energy E, both in the asymptotic region (“asym”)
and at horizon-crossing (“hor”). Compare with Fig. 6.

considered previously by several authors, see [22–24]. Is
this quantity also divergent as E → 0?
To answer this question, we can rely on standard results

on vacuum energy-momentum tensor in two-dimensional
spacetimes: given null coordinates (v+, v−), the vacuum
energy-momentum tensor can be written as [19, 25, 26]

〈Tv±v±〉 = − 1

12π
C1/2∂2

v±C
−1/2

〈Tv+v−〉 = 〈Tv−v+〉 =
RC

96π
, (38)

where C is the conformal factor such that

ds2 = −C(v+, v−)dv+dv− (39)

and R = −4C−1∂v+∂v− lnC the two-dimensional scalar
curvature.
In our case—which, by virtue of our assumption of

spherical symmetry, is effectively two-dimensional—the
factor C(v+, v−) can be obtained from the Vaidya metric
(1) by inverting the relation (3) between v− and (v, r).
This gives

C(v+, v−) =
a− 1

a

W
(
− ae−a+κv+

)

1 +W
(
− ae−a+κv+

) (40)

where a = 1 + κv−. Applying the formulas (38) and
considering the a → 0 limit for κv ≫ 1 (at late times),
we compute

〈Tv+v+〉hor = −πT 2
H

12

〈Tv−v−〉hor ∼
πT 2

H

2
e2κv. (41)
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Note that the incoming component 〈Tv+v+〉 at the horizon
is minus the outgoing component 〈Tv−v−〉 at infinity.
Contracting (41) with the radial 4-velocity ua (with

components v̇ = 1/2E and v̇− = 2Ee−κv at the horizon)
and its outwards-pointing unit normal nb (with compo-
nents n+ = 1/2E and n− = −2Ee−κv), we arrive at

Fhor(E) = −πT 2
H

(
2E2 +

1

48E2

)
. (42)

This describes an ingoing flux, which—like the quasi-
temperature T hor

− —diverges when E → 0. This expres-
sion is to be compared with the flux at infinity, given
by

Fasymp(E) =
πT 2

H

12

(
E +

√
E2 − 1)

)2
. (43)

We plot both functions of E in Fig. 7. Numerically,
an observer dropped with zero velocity from e.g. r =
100rs/99 (i.e. such that E = 0.1), the flux given by (42)
is ≃ 25 times larger than the Hawking value πT 2

H/12.

V. ROLE OF CURVATURE IN NEAR-HORIZON
HAWKING RADIATION

We have found that UDW detectors crossing the hori-
zon of a Schwarzschild black hole will in general record
non-zero quasi-temperatures as well as an ingoing flux.
How much of this effect is due to the structure of the
collapse vacuum, and how much to the mere fact that
spacetime is curved on the horizon? It is impossible to an-
swer this question within the framework of Schwarzschild
black holes, because both their surface gravity (hence
TH = κ/2π) and their Riemann curvature on the hori-
zon are controlled by the same parameter, namely their
mass. To get some insight into the role played by cur-
vature in the Hawking effect, it is therefore necessary to
consider artificial black holes with non-Schwarzschild ge-
ometry, in the spirit of the “analogue gravity” program
[27].

A. Artificial black holes with flat horizons

Since we are interested in models of gravitational col-
lapse, we shall consider generalizations of the Vaidya met-
ric of the form

ds2f = −
(
Θ(−v) + Θ(v)f(r)

)
dv2 + 2dvdr + r2dΩ2 (44)

where f(r) could in principle be essentially any func-
tion of r. In particular, a function f(r) such that (i)
f(rs) = 1, (ii) f ′(rs) = 2κ, (iii) limr→∞ f(r) = 1

and (iv) limr→0 f(r) = −∞ will yield a black with the
same asymptotic structure and surface gravity κ as the
Schwarzschild black hole, but with a different Riemann
curvature distribution. Here we will focus on an artificial
collapse metric of the form f(r) = (r/rs − 1)Ψ(r), where
Ψ(r) is constant near the horizon but ensures that con-
ditions (iii, iv) above is satisfied. This corresponds to a
spacetime where curvature (in the (v, r) sector) is concen-
trated on two locations: at the shell (v = 0), where it has
a δ-function singularity, and at large radii (say r ≥ rc),
where the derivatives of Ψ(r) start taking non-zero val-
ues. So long as we only consider trajectories contained
within the domain F ≡ {v > 0, r < rc}, we can think
of this model as describing a “flat black hole”. Does this
spacetime radiate in the same way as the Swarzschild
black hole?
Repeating the computation leading to (3) in the Vaidya

case, we find for this “flat black hole”

v−(v, r) = −2rs(1 + δ e−κv). (45)

Just like the Vaidya case, this equation defines a “Hawk-
ing region” where v− ≃ −κ−1; the only difference dif-
ference is this region grows relatively faster than in the
Vaidya case, as can be confirmed by comparing the con-
ditions δe−κv ≪ 1 (flat) and δeδ−κv ≪ 1 (Vaidya).

B. Quasi-temperatures at the flat horizon

To estimate the quasi-temperatures measured by UDW
detectors in geodesic motion around this flat black hole,
we repeat the steps in sec. III: write the geodesic equation
for trajectories with orbital parameters (E,L), which is
now

{
ṙ2 + f(r)(1 + L2/r2) = E2

−f(r)v̇2 + 2v̇ṙ + L2/r2 = −1,
(46)

and from (45) compute

v̈−
v̇−

=
δ̈ − 2κv̇δ̇ − κδ(v̈ + κv̇2)

δ̇ − κδv̇
. (47)

Clearly, in the asymptotic limit, provided f(r) → 1 for
r → ∞, these equations lead to the same results as in
the Schwarzschild case. This confirms that asymptotic
Hawking radiation is a global phenomenon which does
not depend on the actual curvature distribution around
the black hole.
Consider however the case of UDW detectors in the

near-horizon region, where f(r) ≃ r/rs − 1 = δ. In this

regime, (46) gives the same values for δ̇, v̇ and δ̈ as in

the Schwarzschild case, and in particular δ̈ = 2κv̇δ̇, but



11

now v̈ = −κv̇2. Thus, all terms on the numerator of (47)
cancel, and therefore

T near-hor
− (E,L) = 0. (48)

The superscript indicates that this identity holds not
just on the horizon, but in the whole near-horizon region
where the black hole is flat. In this regime, the outgoing
modes do not couple to UDW detectors. This shows that,
for these to become thermal, there must be a region where
the Riemann curvature is non-zero between the horizon
and the observer (even if its actual distribution in space
is irrelevant).
As for the incoming modes, the relationship v̈ = −κv̇2

gives

T hor
+ (E,L) =

TH

2E

(L2 + r2s)

r2s
. (49)

The incoming modes, which unlike the outgoing modes
must have encountered some curvature on their way to
the horizon, do couple to UDW detectors, even more so
that L is large and E small.
We have seen at the end of the previous section that

there exists an “irreducible non-adiabaticity” of horizon-
crossing radial geodesics in the Schwarzschild spacetime.
This “irreducible non-adiabaticity” is also present in the
flat case, as can be confirmed by the computation of ηhor+ :
sticking for simplicity to L = 0, we get

ηhor+ (E) = 2π. (50)

This irreducible non-adiabaticity is thus independent of
the local geometry of the horizon; it is an intrinsic feature
of Hawking radiation as perceived by freely-falling near-
horizon observers.

C. Flux at the horizon

We close this section by repeating the computation
of the flux measured by infalling observers F(E) =
〈Tab〉uanb. In the flat case, the relation (45) gives
C(v+, v−) = eκv, hence from the Davies-Fulling-Unruh
formula (38)

〈Tv+v+〉 = −πT 2
H

12
; 〈Tv−v−〉 = 〈Tv−v+〉 = 0. (51)

and therefore

Fhor(E) = − πT 2
H

48E2
. (52)

Again, we find that flattening the horizon cancels the
effect of outgoing modes at the horizon, but not that of
ingoing modes.

VI. DISCUSSION AND CONCLUSION

In this paper, we have considered Hawking radiation
from the perspective of UDW detectors evolving on non-
asymptotic trajectories. When the trajectory is not sta-
tionary, or just after the collapse, their response is not
exactly thermal, but by using a “quasi-temperature” for-
malism based on a suitable adiabatic expansion, we have
shown how to get a basic understanding of their response,
especially in the large frequency limit. This quasi-
temperature formalism is especially convenient from the
computational perspective: formula (II E) is explicit and
can be straightforwardly applied to any trajectory of in-
terest.
Following this approach, we have obtained several in-

teresting results, which disprove the notion that Hawking
radiation reduces to Unruh radiation at the horizon, or
that “the equivalence principle is restored” [4] there (that
is, assuming that the Hawking effect violates it in some
sense,3). They are:

• In spite of the fact that these trajectories are not
accelerated, the temperature perceived on circular
orbits is always higher than that on static trajecto-
ries at the same distance from the hole—it actually
diverges on the photon sphere.

• In the near-horizon region, a freely-falling detec-
tor couples to both the outgoing and the incom-
ing modes of the field, to which it associates two
different quasi-temperatures,4 depending on its en-
ergy and angular momentum. Both can be arbi-
trarily high (though in different regimes: for fast
and slow moving detectors respectively) and nei-
ther has a Dopplerian velocity-dependence relative
to the hole. This singular behavior of Hawking ra-
diation in the E → 0 limit is confirmed by a flux
computation.

• While the thermality of outgoing modes relative
to near-horizon geodesic observers can be traced
back to the spacetime curvature, this is not the
case for incoming modes: these appear thermal
(both in terms of UDW response functions and of
fluxes) to infallers also in spacetimes with flat hori-
zons. In both cases, there exists an irreducible
non-adiabaticity at the horizon, in the sense that
|Ṫ±| ∼ T 2

± at the horizon.

3 We probably would not have described the Hawking effect in
those terms anyhow.

4 At least in the s-wave approximation discussion in this paper.
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In a nutshell: far from a no-particle vacuum, a detector
dropped with zero velocity from near the horizon will per-
ceive intense Hawking radiation coming from infinity—
that is, from the sky.
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Appendix A: Adiabatic expansion of UDW-like
response functions

The validity of the adiabatic approximation mentioned
in sec. II E has been studied in some detail [17, 28, 29]
in the context of non-uniformly accelerated UDW detec-
tors in flat spacetime (approximate Unruh effect). In this
setup, Barbado and Visser [29] have devised an “adiabatic
expansion” for the UDW transition rates in terms of the
quantities a(n)(τ)/a(τ)n+1 , where a(τ) is the instanta-
neous acceleration of the detector.
In this appendix, we describe the adiabatic expansion

of any functional of a slowly varying function k(τ) of the
form

R(τ,Ω; k] ≡
∫ ∞

−∞

dsK(Ωs) g(∆τ,s[k]). (A1)

where K, g are any functions such that the above integral
is well-defined, and ∆τ,s[k] is the functional

∆τ,s[k] ≡
v(τ) − v(τ − s)

v̇(τ)s
, (A2)

with v(τ) any solution of the differential equation

v̈(τ) = −k(τ)v̇(τ). (A3)

The UDW response functions of the kind discussed
in this paper obviously fit this scheme, with K(z) =
exp(−iz), g(z) = ln(z), and k (divided by 2π) the quasi-
temperature function.
The functional R(τ,Ω; k] defined by (A1) may be seen

as a function of τ , Ω, and the infinitely many deriva-
tives k(n)(τ) of k at a given instant τ , or—better—as
Ω−1 times the dimensionless function

R(ν0, ν1, . . . ) ≡
∫ ∞

−∞

duK(u) g(∆τ,u/Ω[k]) (A4)

of the dimensionless ratios νn ≡ k(n)(τ)/Ωn+1. If we
denote R0(ν0) the value of R(ν0, ν1, . . . ) in the partic-
ular case where k(τ) = k is constant, the question we
wish to answer is: in the general case where k(τ) is not
constant, can R(ν0, ν1, . . . ) be systematically expanded
about R∗(ν0), with each corrective term depending on
only finitely many νn’s?
The key idea to get started with this question, which we

found in [29], consists in introducing a scaling parameter

α and k(α)(τ −s) ≡ k(τ −αs). Denoting ν
(α)
n ≡ αnνn the

corresponding scaled dimensionless ratios, we have

R(ν0, ν1, . . . ) =

∞∑

m=0

1

m!

dm

dαm
R(ν

(α)
0 , ν

(α)
1 , . . . )

∣∣
α=0

.

(A5)
Using Faà di Bruno’s formula (chain rule for higher
derivatives), we may write the m-th term in this expan-
sion as

1

m!

m∑

j=0

∫ ∞

−∞

duK(u)g(j)(∆0)Bm,j(∆1, · · · ,∆m−j+1).

(A6)
where Bn,j are the Bell polynomials5, and

∆j ≡ ∂j
α∆τ,u/Ω[k

(α)]
∣∣
α=0

. (A7)

In the next paragraph, we will show that ∆j is given by

∆j =
νj

νj+1
0

δj(ν0u) (A8)

for some function δj . This result calls for several com-
ments:

• The m-th term in the Taylor expansion (A5), given
by (A6), is is a function Rm(ν0, · · · , νm) of the first
m+ 1 parameters νn only, viz.

R(ν0, ν1, . . . ) =

∞∑

m=0

Rm(ν0, · · · , νm). (A9)

• The relevant parameters controlling the conver-
gence of the adiabatic expansion (A9) are indeed

νj/ν
j+1
0 = k(j)(τ)/k(τ)j+1, as observed in [29] in

the context of the Unruh effect; in particular, we
have for each m ≥ 1

Rm(ν0, · · · , νm) = O
(

sup
1≤j≤m

νj

νj+1
0

)
. (A10)

5 The Bell polynomials are defined by Bm,k(z1, · · · , zm−k+1) =

m!
∑∏m−k+1

i=1
1
ji!

( zi
i!
)ji , where the sum runs over all sequences

of non-negative integers (ji, · · · , jm−k+1) such that j1 + · · · +
jm−k+1 = k and j1 + 2j2 + · · ·+ (m − k + 1)jm−k+1 = m.
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When k(τ) is a polynomial function of τ (so that
only finitely many νn’s are non-vanishing), we are
assured that

R(ν0, ν1, · · · ) = R0(ν0) +O
(
sup
j≥1

νj

νj+1
0

)
. (A11)

In other words, the adiabatic approximation is good
when all the expansion parameters νj/ν

j+1
0 are

small.

• The adiabatic expansion is not a high-frequency
expansion; indeed, the functions δj(ν0u) =
δj(k(τ)u/Ω) can well be non-polynomial in 1/Ω.

To prove (A8), we begin by expressing the argument of
g in (A4) explicitly in terms of the dimensionless ratios
νn’s. From (A3), we have

∆τ,u/Ω[k] =
Ω

u

∫ 0

−u/Ω

dσ exp

∫ 0

σ

dρ k(τ + ρ). (A12)

Expanding k(τ+ρ) in powers of ρ and making the change
of variable µ = Ωσ in the σ-integral, this gives

∆τ,u/Ω[k] =
1

u

∫ u

0

dµ exp

∞∑

n=0

µn+1νn
(n+ 1)!

. (A13)

Next, we consider the effect of scaling by α on (A17),

∆τ,u/Ω[k
(α)] =

1

u

∫ u

0

dµ exp

∞∑

n=0

µn+1αnνn
(n+ 1)!

(A14)

and compute its j-th derivative with respect to α, as in
(A17). The 0-th derivative is easily found to be

∆0 =
eν0u − 1

ν0u
(A15)

and for, j ≥ 1,

∆j =
νj

j + 1
∂j+1
ν0 ∆0. (A16)

Computing explicitly the derivatives of (A15), we arrive
at (A8) with

δj(z) =
(−1)j+1j!

z

(
ez

j+1∑

r=0

(−1)r

r!
zr − 1

)
. (A17)

We close this appendix by evaluating explicitly the first
corrective term R1 in the particular case where K(z) =
e−iz and g(z) = ln z, namely

R(τ,Ω; k] = Ω−1R(ν0, · · · ) ≡
∫ ∞

−∞

ds e−iΩs ln(∆τ,s[k]).

(A18)
The real part of this integral is the UDW response func-
tion along a trajectory with quasi-temperature T = k/2π,
studied in the main body of this paper. As is well-known,
the 0-th order R0(ν0) is the standard two-dimensional
thermal spectrum

R0(ν0) =
2π

e2π/ν0 − 1
. (A19)

From (A6), (A7) and (A17), we have

R1(ν0, ν1) =
ν1
ν20

×
∫ ∞

−∞

du e−iu e
ν0u(1 − ν0u+ (ν0u)

2/2)− 1

eν0u − 1
(A20)

The integrand has simple poles at un = 2iπn/ν0 for each
integer n 6= 0. Closing the contour in the lower half-plane
and summing over n ≤ −1, we obtain

R1(ν0, ν1) =
ν1
ν20



π2
(
1 + iπ coth(π/ν0)

)

ν0 sinh
2(π/ν0)


 . (A21)

Reinstating the dimensionful variables k(τ), k̇(τ) and Ω
and writing T = k/2π, this gives

Re{R(τ,Ω; k = 2πT ]} =
2π

Ω(eΩ/T − 1)

(
1 + (A22)

Ṫ (τ)

T (τ)2
Ω

8πT (τ)

eΩ/2T (τ)

sinh2(Ω/2T (τ))
+ · · ·

)
. (A23)

Remarkably, the second term in the brackets is exponen-
tially vanishing in the ultraviolet limit, showing that the
adiabatic approximation is excellent in this regime, what-
ever the value of the parameter Ṫ (τ)/T (τ)2.
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