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Analytic modelling of tidal effects in the relativistic inspiral of binary neutron stars
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To detect the gravitational-wave (GW) signal from binary neutron stars and extract information about the
equation of state of matter at nuclear density, it is necessary to match the signal with a bank of accurate templates.
We present the two longest (to date) general-relativistic simulations of equal-mass binary neutron stars with
different compactnesses,C = 0.12 andC = 0.14, and compare them with a tidal extension of the effective-one-
body (EOB) model. The typical numerical phasing errors overthe≃ 22 GW cycles are∆φ ≃ ±0.24 rad. By
calibrating only one parameter (representing a higher-order amplification of tidal effects), the EOB model can
reproduce, within the numerical error, the two numerical waveforms essentially up to the merger. By contrast,
the third post-Newtonian Taylor-T4 approximant with leading-order tidal corrections dephases with respect to
the numerical waveforms by several radians.

PACS numbers: 04.25.dk, 04.25.Nx, 04.30.Db, 04.40.Dg, 95.30.Sf, 97.60.Jd

Introduction.Inspiralling binary neutron stars (BNSs) are
among the strongest sources of gravitational waves (GWs) and
certain targets for the advanced and new-generation ground-
based GW detectors LIGO/Virgo/GEO/ET [1]. These detec-
tors will be sensitive to the inspiral GW signal up to GW fre-
quencies of about1 kHz, which are reached just before the
merger. The late inspiral signal will be influenced by tidal
interaction between the two neutron stars (NSs), which, in
turn, encodes important information about the equation of
state (EOS) of matter at nuclear densities. However, to re-
liably extract such information, both a large sample of numer-
ical simulations and an analytical model of inspiralling BNSs
which is able to reproduce them accurately, are needed. In this
Letter we report on significant progress on this problem by
presenting the longest (to date) simulations of merging equal-
mass BNSs and by showing how to use them to calibrate an
effective-one-body (EOB) model of tidally interacting BNSs.

Numerical simulations of merging BNSs in full general rel-
ativity have reached a high-level of accuracy and have become
more realistic (e.g. , with the inclusion of magnetic fields)
only recently [2–5]. The analytical description of tidally-
interacting binary systems has been initiated very recently [6–
9], with the following two major results. First, the dimension-
less quantitykℓ (Love number) in the (gravito-electric) tidal
polarizability parameterGµℓ ≡ 2kℓR

2ℓ+1/(2ℓ− 1)!! measur-
ing the relativistic coupling (of multipolar orderℓ) between a
NS of radiusR and the external gravitational field in which it
is embedded has been found to be a strongly decreasing func-
tion of the compactness parameterC ≡ GM/(c2R) of the NS.
Second, a comparison between the numerical computation of
the binding energy of quasi-equilibrium circular sequences of
BNSs [10] and the EOB description of tidal effects [9] has
suggested that higher-order post-Newtonian (PN) corrections
to tidal effects effectively increase by a factor of order two
the tidal polarizability of close NSs. The main aim of this

paper is to extend the domain of applicability of the EOB
method [11], from the inspiralling binary black hole (BBH)
case (for which it recently provided a very accurate analytic
description [12, 13]), to the yet unexplored case of inspiralling
BNSs. To this aim we have performed two accurate and long-
term BNS simulations covering approximately20 − 22 GW
cycles of late inspiral, and we will show that they can be re-
produced accurately almost up to the merger by a new tidal
extension of the EOB model.

Tidal corrections in the EOB approach.We recall that
the EOB formalism [11] replaces the PN-expanded two-body
dynamics by aresummeddescription with, in particular, a

Hamiltonian of the form:HEOB ≡ Mc2
√

1 + 2ν(Ĥeff − 1),
where M ≡ MA + MB is the total mass and where
ν ≡ MAMB/(MA +MB)

2 is the symmetric mass ratio.
Here the “effective Hamiltonian”Ĥeff is a simple function
of the momenta and it incorporates the relativistic gravita-
tional attraction mainly through the so-called “EOB radial
potential” A(r). The structure ofA(r) is remarkably sim-
ple at 3PN:A3PN(r) = 1 − 2u + 2 ν u3 + a4 ν u

4, where
a4 = 94/3− (41/32)π2, andu ≡ GM/(c2rAB). An excel-
lent description of BBHs has been found to be given by [12]
A0(r) = P 1

5

[

1− 2u+ 2νu3 + a4νu
4 + a5νu

5 + a6νu
6
]

,
wherePn

m denotes an(n,m) Padé approximant and where
values of the coefficienta5 = −6.37, a6 = +50 provide a
very good agreement between EOB and numerical-relativity
(NR) waveforms for BBHs [12] (the results presented here are
insensitive to this choice as long asa5 anda6 are chosen in a
well defined range). Ref. [9] suggested to include tidal effects
as corrections both to the radial potential and to the waveform
(and radiation reaction). The tidally corrected radial potential
readsA(u) = A0(u) +Atidal(u), where

Atidal =
∑

ℓ≥2

−κT
ℓ u

2ℓ+2Âtidal
ℓ (u) . (1)
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HereκT
ℓ u

2ℓ+2 describes the leading-order (LO) tidal interac-
tions. It is a function of the two masses, of the two compact-
nessesCA,B, and of the two (relativistic) Love numberskA,B

ℓ

κT
ℓ = 2

MB M2ℓ
A

(MA +MB)2ℓ+1

kAℓ
C2ℓ+1

A

+ { A ↔ B} . (2)

The additional factorÂtidal
ℓ (u) in Eq. (1) represents the ef-

fect of higher-order relativistic contributions to the tidal inter-
actions: next-to-leading order (NLO), next-to-next-to-leading
order (NNLO), etc. A number of different prescriptions can
be considered for the correcting tidal factorÂtidal

ℓ and these
will be presented in a longer companion work [14]. Here, we
will limit ourselves to anℓ-independent, “Taylor-expanded”
expressionÂtidal

ℓ (u) ≡ 1 + ᾱ1u + ᾱ2u
2 [9], whereᾱn are

pure numbers in the equal-mass case, but functions ofMA,
CA, andkAℓ in the general case. The analytical value of the
(ℓ = 2) 1PN coefficient̄α1 has been reported in [9] (and re-
cently confirmed in [15]). In the equal-mass case, it yields
ᾱ1 = 1.25. We will use this analytical value in the following
and use our simulations to constrain the value of the 2PN co-
efficient ᾱ2. Similarly, one takes into account anℓ = 2 tidal
correction to the waveform and radiation reaction, as given
at LO in Sec. V of [9]. Additional coefficients parametrizing
higher-order tidal relativistic contributions in the waveform
and radiation reaction (such asβ1 in Eq. (71) of [9]), were
found to have a small effect [14] and will be neglected here.
In principle, tidal effects can also be accounted for via modi-
fications of one of thenon-resummedPN models, such as the
Taylor-T4 one; see below for its comparison with the NR re-
sults.

In order to measure the influence of tidal effects, it is useful
to consider the “phase acceleration”ω̇ ≡ dω/dt ≡ d2φ/dt2,
whereφ ≡ φ22 is the phase of either the curvature or of the
metric ℓ = m = 2 GWs. The functionω̇(ω) is independent
of the two “shift ambiguities” that affect the GW phaseφ(t),
namely the shifts in time and phase, and thus a useful intrinsic
measure of the quality of the waveform [17]. However, here
we use another diagnostic to measure the phase acceleration,
namely the dimensionless function

Qω(ω) =
dφ

d ln ω
=

ω dφ/dt

dω/dt
=

ω2

ω̇
. (3)

Numerical Simulations.They were performed with the
Cactus-Carpet-Whisky [18] codes and, in essence, we
use the same gauges and numerical methods already discussed
in [2]. As initial data we use quasi-equilibrium irrotational bi-
naries generated with the multi-domain spectral-method code
LORENE, within a conformally-flat spacetime metric [19].
The EOS of the initial data is the polytropic onep = K ρΓ,
wherep, ρ, K = 123.6, andΓ = 2 are the pressure, rest-
mass density, polytropic constant, and adiabatic index, re-
spectively (in units wherec = G = M⊙ = 1). The evo-
lutions are instead performed with either a polytropic EOS
or an “ideal-fluid” one,p = ρǫ(Γ − 1), whereǫ is the spe-
cific internal energy; the differences in phasing introduced
by the different EOSs are of order±0.13 rad [14]. Because

FIG. 1. Comparison of the EOBQω curves for different choices of
the effective tidal amplification factor̂Atidal

ℓ (u) = 1+ ᾱ1u+ ᾱ2u
2,

with the corresponding NR ones (dashed lines with open circles)
for the two binaries considered. The dotted line corresponds to the
“tidal-free” ( or “point-mass”) EOB, namely when ignoring tidal ef-
fects. The figure also includes two Taylor-T4 models: tidal-free, and
augmented by LO tidal effects.

the stellar compactness represents the most important param-
eter determining the size of tidal effects, we have considered
two different (equal-mass) binaries having total Arnowitt-
Deser-Misner (baryonic) mass of either2.69 (2.89)M⊙ or
3.00 (3.25)M⊙, thus with compactnessesC ≡ CA = CB =
0.12 or C = 0.14. The dominant (ℓ = 2) tidal parameters for
the two compactnessesC = 0.12 (0.14) are found to be [7],
respectively,k2 ≡ kA2 = kB2 = 0.00969 (0.07894), and there-
fore κT

2 = 496.01 (183.81). Hereafter the two binaries will
be referred to asM2.9C.12 andM3.2C.14, respectively.
The number of refinement levels and their resolutions are the
same as those in [2], but the initial coordinate separation be-
tween the stellar centers is60 km, i.e.considerably larger than
the one considered in [2]. This yields about10 orbits be-
fore merger, thus the two longest BNS waveforms produced
to date.

Discussion.We start our comparison between the NR re-
sults and the EOB ones by showing in Fig. 1 theQω diagnos-
tics for various possible LO/NLO tidal models and for scaled
GW frequenciesMω . 0.06 [i.e. up to3 (5) GW cycles be-
fore merger for theM2.9C.12 (M3.2C.14) binary]. [We
have estimated the NRQω by fitting each NR phase evolu-
tion on a (scaled) frequency intervalI = [0.043, 0.057] with
an analytical expression that reproduces at lower order thebe-
havior expected from the PN approximation, thereby filtering
out the amplified numerical noise coming from the two time
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FIG. 2. Comparison between NR and EOB phasing for theM2.9C.12 (left panels) andM3.2C.14 (right panels) binaries. The top panels
show the real parts of theh22 waveforms, while the bottom panels show the corresponding phase differences. Note the excellent agreement
almost up to the time of merger (vertical dashed and dot-dashed lines) and the very large errors when tidal effects are neglected (dotted line).

derivatives inω̇ ≡ d2φ/dt2 (more details will be presented
in [14])]. The first thing to note is that both thetidal-free
EOB model (EOBTF, dotted line) and the EOB model includ-
ing only LO tidal corrections (EOBLO, dot-dashed line) are
clearly unable, both for theM2.9C.12 (upper panel) and the
M3.2C.14 binaries (lower panel), to match the correspond-
ing NR curves (dashed line with open circles). The dephas-
ing accumulated over the frequency intervalI ∆Iφ

EOBNR ≡
∫

I(Q
EOB
ω − QNR

ω )d lnω , by the EOBLO model relative to
the C = 0.12 (0.14) NR data is about5.5 (2.0) rad. This
is much larger than the NR phasing error, related to a finite-
radius extraction and EOS dependence, estimated to be∆φ =
±0.24 [14].

The inclusion of the NLO 1PN tidal effect (ᾱ1 = 1.25 [9])
only slightly reduces these dephasings to about4.9 (1.8) rad
(EOBNLO curves in Fig. 1). This clearly indicates the need
for NNLO (2PN and higher) tidal effects. We then found
that choosinḡα2 ≈ 130, yields a good match between the
Qω curves (solid line, EOBNNLO) and the NR data (dashed
line with open circles) forbothbinaries, with a corresponding
phase difference∆Iφ

EOBNR ≈ 0.1 rad. The valuēα2 ≈ 130
is probably only an effective description of higher-order rel-
ativistic tidal effects. Moreover, the precise value ofᾱ2, or
more generally of the amplification factor̂Atidal

ℓ (u), is sen-
sitive to the numerical truncation error. When considering
resolution-extrapolated GWs [14], we found a smaller value
of ᾱ2, which is compatible with the estimate obtained using
the binding energy of circular BNSs [10].

Figure 1 also reports theQω diagnostics obtained when
using two versions of the Taylor-T4 approximant: the tidal-
free model (T4TF, magenta, upper solid line), and the Taylor-

T4LO one (thick-dashed line). The latter model includes
only the LO tidal effects [6],i.e. the LO tidal contribution
atidal(x) ∝ κT

2 x
5 to dx/dt [wherex ≡ (Mω/2)2/3; see [8]

and Eqs. (86)–(88) of [9]]. Note that the tidal-free Taylor-T4
Qω curve nearly coincides with the tidal-free EOB one, with a
dephasing∆Iφ

T4EOB = 0.013 rad. On the other hand, theI-
integrated dephasings between the T4LO description and the
NR results are rather large, namely∆Iφ

T4NR = 6.96 (2.53)
rad forC = 0.12 (0.14). We have investigated whether a suit-
able PN-amplification factor̂atidal(x) = 1 + aT4

1 x + aT4
2 x2

of atidal(x) might accurately reproduce the NR data, but
we found that this was not possible with asinglechoice of
âtidal(x) for the two simulations [14]. The latter result sug-
gests that the EOB modelling of tidal effects may be more
robust than the corresponding Taylor-T4 one

We next consider the comparison of the waveforms in the
time domain andover the full inspiral up to the merger. This
is shown in Fig. 2, whose left panels refer to theM2.9C.12
binary and the right ones toM3.2C.14. The top parts com-
pare the (real part) of the EOBNNLO (with ᾱ1 = 1.25, ᾱ2 =
130) and NR metrich22 waveforms, while the bottom panels
show the corresponding phase differences,∆φEOBNR(t) ≡
φEOB(t) − φNR(t) (suitably shifted in time and phase à
la [16]). The two vertical lines indicate two possible markers
of the “time of the merger”; more specifically, the dashed lines
refer to the NR merger, defined as the time at which the mod-
ulus of the metric NR waveform reaches its first maximum,
while the vertical dash-dotted line represents the EOB esti-
mate of the “formal” contact [9]. Figure 2 clearly shows that
the agreement in the time domain between the analytic EOB
description and the numerical one is extremely good essen-
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tially up to the merger, with a phase error which is well within
the estimated error bar. More precisely: (i) in theM3.2C.14
case, the phase difference∆φEOBNR(t) varies between−0.1
rad in the early inspiral and+0.04 rad at the NR merger; (ii) in
theM3.2C.12 case,∆φEOBNR(t) varies between−0.15 rad
in the early inspiral and−0.15 rad as late as130M (i.e. ap-
proximately1.5 GW cycles) before the NR merger. For the
latter binary, it is only just before the NR merger that the de-
phasing becomes of order 1 rad.

Conclusions.We have presented the first NR-EOB com-
parison of the GWs emitted during the inspiral of relativis-
tic BNSs. In particular, we have analyzed the longest to date
numerical simulations of equal-mass, irrotational BNSs with
two different compactnesses. We found that tidal effects are
significantly amplified by higher-order relativistic corrections
(2PN and higher) and that the inclusion of such corrections is
necessary for an accurate phasing of the GW signal. Such an
amplification is equivalent to a (distance-dependent)effective
increaseof the Love numbers. When asinglechoice for the
uniquefree parameter in the NNLO term is made, the EOB
model is able to reproduce the two NR phase evolutions well
within the estimated NR error and essentially up to merger

(and in fact up to merger in theC = 0.14 case). By contrast,
we have shown that the use of the Taylor-T4 PN approximant
considered in [8] leads to phase disagreements (over the fre-
quency intervalI = [0.043, 0.057]) ∆Iφ

T4NR = 6.96 (2.53)
rad forC = 0.12 (0.14).

The work reported here provides the first evidence that an
accurate analytic modelling of the late inspiral of tidallyin-
teracting BNSs is possible, thereby opening the possibility to
extract reliable information on the EOS of matter at nuclear
densities from the data of the forthcoming advanced GW de-
tectors. These encouraging results, however, also call fora
continued synergy between more accurate numerical simu-
lations (notably exploring different mass ratios) and higher-
order analytic results.
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