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Black-hole horizons as probes of black-hole dynamics|: post-merger recoil in head-on collisions
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The understanding of strong-field dynamics near black-hot&zons is a long-standing and challenging prob-
lem in general relativity. Recent advances in numericatigty and in the geometric characterization of black-
hole horizons open new avenues into the problem. In thisdaper in a series of two, we focus on the analysis
of the recoil occurring in the merger of binary black holegeading the analysis initiated il [1] with Robinson-
Trautman spacetimes. More specifically, we probe spacatfiyjnamics through the correlation of quantities
defined at the black-hole horizon and at null infinity. Thegetry of these hypersurfaces responds to bulk
gravitational fields acting as testreensn a scatteringperspective of spacetime dynamics. Withi3 & 1
approach we build an effective-curvature vector from thénsic geometry of dynamical-horizon sections and
correlate its evolution with the flux of Bondi linear momemtat large distances. We employ this setup to study
numerically the head-on collision of nonspinning blackdsoand demonstrate its validity to track the qualita-
tive aspects of recoil dynamics at infinity. We also make aonwith the suggestion that the antikick can be
described in terms of a “slowness parameter” and how thisbeacomputed from the local properties of the
horizon. In a companion papél [2] we will further elaboratetbe geometric aspects of this approach and on
its relation with other approaches to characterize dynahgimperties of black-hole horizons.

PACS numbers: 04.30.Db, 04.25.dg, 04.70.Bw, 97.60.Lf

I. INTRODUCTION to occur. Furthermore, as highlighted in[[32], it is also sios
ble to describe this process without ever discussing BHs and

Understanding the dynamics of colliding black holes (BHS)jUSt using the mathematical properties of the evolution of a

is of major importance. Not only is this process one of thed"’"’nped oscillating sigrfh

main sources of gravitational waves (GWSs), but it is also Althoug_h the presence of a common AH,iS not a neces-
responsible for the final recoil velocity (i.¢ick” ) of the sary condition for the appearance of an antikick (which doul

merged object, which could play an important role in theindeed be produced also by the scattering of a system involv-

growth of supermassive BHs via mergers of galaxies and9 One or two neutron stars), when a common ipresent
on the number of galaxies containing BHs. The recoil o

fthrough the merger of BH binary, we can use information on
BHs due to anisotropic emission of GW has been known fo

the latter to gain insight in the physical mechanisms behind
decades [3,]4] and first estimates for the velocity have beeH® antikicl. We believe that constructing an intuitive picture
made using approximated and semianalytical methods such %thel dynamics of general rglatlvny in a region of very sigo

a particle approximation [5-7], post-Newtonian methdds [8 leld is not o_nly of general interest _but also of practhal use
and the close-limit approximation [12,]13]. However, it to explain this process. In Refl[1], in fact, a new conjeetur

is only thanks to the recent progress in numerical relativit &S Suggested in which the antikick produced in the head-on
that accurate values for the recoil velocity have been comgollision of two B,HS \,N'th unequal masses was understood n
puted [14°21]. terms o_f the dlSSlpatlo_n of the A_H intrinsic deformauon. As
shown in the schematic cartoon in Fig. 1 (cf. Fig. 1[6f [1] and
also Fig[Tl for a comparison with numerical data), the kick
@nd antikick can be easily interpreted in terms of simple dy-
namical concepts. Initially the smaller BH moves faster and
Yinear momentum is radiated mostly downwards, thus leading

. . . to an upwards recoil of the system [stage (1)]. When a sin-
aligned 17| 18[ 20] or perpendicular to the orbital angulargle AH is formed at the merger, the curvature is higher in the

momentum|[16, 22, 23] (see [24]25] for recent reviews). upper hemisphere of the distorted BH and linear momentum

_In a.ddiytion to a netrecoil, many of the simulations show anjs yadiated mostly upwards leading to the antikick [stag (2
antikick,” namely, one (or more) decelerations experiencedrhe By decelerates till a uniform curvature is restored @n th

by the recoiling BH at late times. In the case of merging BHs, A [stage (3)]. The qualitative picture shown in the cartoon
such antikicks seem to take place after a single appareit hor

zon (AH) has been found [26] (see Fig. 8 of Ref [20] forsome

examples). An active literature has been developed over the

last few years In chaattempt to prowde useful interpretzdi 1 On the other hand, if an exponentially damped oscillatiggaiis present,
to this procesﬁ 0]' Interestlngly, some of these wdrks this is indeed a signature of the presence of a BH ringing down

not even require the merger of the BHs. As pointed outih [31]2 Here and in the companion paper we will show that even wherriadro
when studying the scattering of BHs, in fact, the presence of is not present, the considerations made here can be extendeduitably
the common AH is not a necessary condition for the antikick defined 2-surface.

Indeed, simulations of BHs inspiralling on quasicircular
orbits have shown, for instance, that asymmetries in th
mass can lead to kick velocities < 175km/s [14, [15],
while asymmetries in the spins can lead respectively t
v S 450km/s or vy < 4000km/s if the spins are
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. : troduces an executive summary, where the main concepts
0 : Pow | presented in these two papers are summarized for those not
: : wishing to enter into the mathematical details. Secfigh 11|
N on the other hand, extends the analysis carried outlin [1]
N for RT spacetimes by considering more general initial data
and by analyzing aspects of the evolution of the AH cur-
vature. Sectiofi IV extends the methodology and diagnostic
tools to BH spacetimes representing the head-on collision o
unequal-mass BHs. In particular, we develop the mathemat-
ical tools necessary to measure the relevant quantitiehen t
two screens and we show how they closely correlate. Finally,
; : the conclusions are discussed in Sec. V, while the Appendix
(1) 2) (3) is used to providg details_ on our definitions of the correlati
and matching of time series.

This paper also builds on the material presented in its com-
FIG. 1. Generation of the antikick in the head-on collisidrtveo panion paper I, where we present a more detailed discussion
unequal-mass Schwarzschild BHs as describefl in [1]. liyitiae of the mathematical aspects of our framework. In particular
smaller BH moves faster and linear momentum is radiated lnost we revisit there the evolution of relevant geometric olgeut
downwards, thus leading to an upwards recoil of the systéayés the AH and introduce preferred null normals on a dynamical
(1)]. At the merger the curvature is higher in the upper h@mise  horizon. In our discussion of a newslike function on the dy-
of the distorted BH (cf. red-blue shading) and linear momemis 1,5 ic4| horizon and its relation to the problem of quasiloca

radiated mostly upwards leading to the antikick [stage. (PJie BH linear momentum, we also stress the importance of the inner
decelerates till a uniform curvature is restored on the Atdds (3)]. . L .

This cartoon should be contrasted with the results of nuraesim- ~ 1011Z0n when evaluating fluxes across the horizon.
ulations in Fig[TlL. We use a spacetime signature, +, +, +), with abstract

index notation (first lettersg, b, c..., in Latin alphabet) and
Latin midalphabet indices, j, k..., when making explicit the

was then investigated by exploiting the analogy betwees thispacelike character of a tensor. Greek indices are useafor e
process and the evolution of Robinson-Trautman (RT) spacd2€ssions in particular coordinates systems. We also gmplo
times [33/34] and by showing that a one-to-one correlatiorthe standard convention for the summation over repeated in-

could be found between the properties of the AH perturbatiofices: Finally, all the quantities are expressed in a system
and the size of the recoil velocityl[1]. units in whichc = G = Mg = 1, unless otherwise stated.

)

In this paper and in its companidn [2] paper (hereafter paper
| and Il, respectively), we provide further support to thenco

jecture proposed in [1] by extending our consideration&lin [ I1. THE CROSS-CORRELATION APPROACH: AN
to more generic initial data and, more importantly, by irties EXECUTIVE SUMMARY

gating in detail numerical spacetimes describing the read-
collision of two BHs with unequal masses. To do this we in- As mentioned above, this section is meant to provide a
troduce across-correlationpicture in which the dynamics of general summary of the results and methodology of papers |
the spacetime can be read off from two “screens” providedand Il, focusing mostly on the conceptual aspects and lgavin
naturally by the black-hole event horizéhand by future null  aside the mathematical details, which can instead be faund i
infinity .#*. In practice, using the standa3dt- 1 approach the corresponding main texts.
in general relativity, we replace these screens with effect ~ We start by recalling that Ref./[1] suggested an approach to
ones represented, respectively, by a dynamical horiZ6n  study the near-horizon nonlinear dynamics of the grawvitetl
and by a timelike tubés at large spatial distances. We then fields based on the systematic analysis of the deformations i
define a phenomenological curvature vedidti(t) in terms  the BH horizon geometry. In particular, it was shown how the
of the (mass multipoles of the) Ricci scalar curvatéieat  gravitational dynamics responsible for the antikick adsi-
H* and show that this is closely correlated witlgeometric  nary merger can be understood in terms of the anisotropies in
quantity(dPF /dt)(t), representing the variation of the Bondi the intrinsic curvature of the AH of the resulting merged BH.
linear momentum in time on? ™. This construction, which  Considering a RT spacetime, the kick velocity constructed
is free of fitting coefficients and valid beyond the axisymmet from the Bondi momentum (a geometric quantity at null infin-
ric scenario considered here, correlates quantities okhe ity) was put in a one-to-one correspondence with a quasiloca
with quantities at large distance, thus providing us witlo tw geometric quantity constructed on the horizon, namelyh wit
important tools. Besides confirming the association of iteco the effectivecurvature parametei{.;. This geometric pa-
dynamics with the dissipation of anisotropic distributioh  rameterk . encodes the part of the AH geometry whaoks
curvature on the AH, it opens a new route to the analysis oipationthrough gravitational radiation can be related to the
strong-field effects in terms of purely local quantitieslava final value of the kick. Stated differently, very differenit b
ated either on the AH or on other suitable surfaces. nary systems, e.g., with very different mass ratio, give tts
This first article is organized as follows. Sectibh Il in- the same final kick velocity as long as they share the same



value of theK ¢ parameter.

The following criteria were employed in Refl[1] for the
construction of theurvature parameteK .g: i) K¢ should
not depend on how the AH is embedded in the spacetime; ii)
K. should change sign (i.e., it should be an odd function)
under reflection with respect to a plane normal to a given axis
From the first requiremenf{.¢ was constructed in terms of
the intrinsic geometry of the AH, namely as a functional on
the Ricci scalafR associated with the induced metric on the
AH. The ansatz foi ¢ in Ref. [1], compatible with require-
ment ii) above and within axisymmetry, had the following
structure

Kot = foven (Mag) X foaa (Mar41) , 1)

whereM,’s are the so-calleidolated-horizon mass multipoles

associated with a spherical harmonic decompositiofizoihn

the axisymmetric casé [35,136]. The odd pAsiq accounts

for the directionality of the kick, whereas the even pakt.,

controls its intensity. FIG. 2. Carter-Penrose diagram for the RT spacetimel[40, g
In order to validate this Suggestion' we ana|yzed a fam”ysolutions eX?St foru 2 UO.. TheWhlte hole emits GWs Un_tll the

of Robinson-Trautman (RT) Spacetimg “@' 34], represgnti Sghwarzschllq qugetlme is achieved, althqugh thg numenmu-.

an (eternal) BH together with purely outgoing gravitatibna !at|ons run until a finiteusna1, When an essentially stationary solution

S . . . is found.
radiation. The mathematical properties of this class otexa
solutions is already well understodﬂ@—%}é?&eforie th
1, 42] an

spacetime is a good test for numerical sche o
it is an excellent toy model for problems dealing with radi- Ieloreover, the good quantitative agreement betwegecal-

ation in BH environments [43-54]. Although the associate ulated from full binary BH numerical simulations and from
BH horizon is stationary, these RT spacetimes also contain%‘-r models, suggested the presence of a generic behavior in

white-holehorizon?{~ [40,55.157], or, more precisely,ast is phyS|caI process. Overall, therefore, the WOfK in FEBf. .

outer-trapping horizor58], whose dynamics offers a particu- prowded an app.roach to und.e.rstand global recoil propertie

larly well-suited scenario to test our geometric approddtis In terms of (qua3|-)local quantities on the_AH, and_an Inveit

is shown in Figl R, which reports a Carter-Penrose diagram fogwdelln_e to interpret the black-h_ole reco_ll_propertlemrms

the RT spacetime (see al$ol[40| 57]). The solutions exist fo?']c the d|.53|pat|0n of AH g_eornetrlc quantities. )

u > ug and the white hole emits GWs until the Schwarzschild_ Despite the valuable insight, the treatment presented in

spacetime is achieved asymptotically. In practice, nucagri R€f- [1] had obvious limitations. First, the ansatz g

simulations run up to a finiteg,.; and show the exponential " Ed- () is not straightforwardly generalizable to the aon

convergence to a solution which is essentially stationary. ~ 'Symmetric case. Second, the phenomenological coefficient
In Ref. [1], the functionsfe.en and foaa appearing in  4¢SiN Eq. (2) depend on the details of the employed RT initial

Eq. [3) were written in the simplest possible form, i.e., as gdat@. Finally, the white-hole horizon analysis in RT space-
linear expansion if/,’s times needs to be extended to the genuine BH horizon case.

All of these restrictions are overcome in the work reported i
Keﬁ‘ = (a2M2 + a4M4 —+ .. ) X ((IgMg + a5M5 —+ .. ) . papers land I1.
2) While the focus in Ref[[1] was on expressing the difference
Then, using suitably defined initial data, a set of numelgical between thdinal kick velocity v, and the instantaneous kick
fitted coefficientsy;'s was found so that a one-to-one depen-Vvelocity v (u) at an (initial) given timex, in terms of the ge-
dence between the final kick velocitiesand K. at a given ~ ometry of the common AH at that time we here focus on ge-
retarded timeu could be found: i.e.Av, = v, — v(u) =  Ometric quantities that are evaluated at a given time dutiag
A x Keg(u), wherevy (u) is the recoil velocity at time, and ~ evolution. More specifically, we will consider the variatio
A'is a constant. This injectiflerelation betweenk s and  Of the Bondi linear momentum vector in tim@P? /du)(u)
v, permits us to understand the degeneracy of the latter, &&s the relevant geometric quantity to monitor at null infinit
a function of the mass ratio in terms of AH quantities at a-# . To this scope, we need first to construct a vedfgg (v)
given (initial) timew (cf. Fig. 3 in Ref.[1] and Fig.19 below). (function of an advanced time) as a counterpart on the BH
horizon#H*. Then, we need to determine hdW (v) onH ™
correlates tddPP /du)(u) at & .
In the RT case, the causal relation between the white-hole
3 Note that the relation is not only injective, but also lineBhis is ultimately ~ horizon?{~ and null infinity .# * made possible to establish
due to the writing ofK .+ as the product of two functions (of even and odd an explicit functional relation betweetvy /du and K/ (u).
multipoles), such that each of these functions is lineahé@rhultipoles. In the case of generic BH horizon, however, such a direct




1 )

FIG. 3. Carter-Penrose diagram illustrating geatteringapproach  FIG. 4. Carter-Penrose diagram for teatteringpicture in a Cauchy

to near-horizon gravitational dynamics in a generic sigadif sym-  initial value approach. The dynamical horizég™ and a large-
metric collapse. The event horizafi and null infinity . = pro- distance timelike hypersurfac8 provide inner and outer screens.
vide spacetime canonical screens on wigelbmetric quantitiese- Note that a the dynamical horizon is split in two portionstesiand
spectively accounting for horizon deformations and wavéssion, inner (solid and dashed blue lines, respectively) and tha8 t+ 1

are defined. Their cross-correlation encodes nontriviafigrmation  slicing sets a common timefor cross-correlations.
about the bulk spacetime dynamics.

marized in the Carter-Penrose diagram in Eig. 3, which-llus
causal relation between the inner horizon affd™ is lost  trates the cross-correlation approach to near-horizovitgra
(compare Fig[2 with Figd.13 arild 4). However, since theirtional dynamics. The event horizafi and null infinity .7+
respective causal pasts partially coincide, nontrig@irela-  provide natural spacetime screens on which geometric quan-
tions are still possible and expected. This can be measuretities, respectively, accounting for horizon deformas@and
through the cross-correlations of geometric quantiigs(v)  wave emission, are defined. Their cross-correlation ersode
atH™ andheu(u) at.# T, both considered here as two time information about the bulk spacetime dynamics.
seriel. In particular, we will takef{;'ff(v) as hinn(v) and Although the picture offered by Fi@l 3 is quite simple and
(dPB /du)(u) ashous (u). convincing, it is not well adapted to the 3+1 approach uguall

This approach to the exploration of near-horizon gravita-adopted in numerical studies of dynamical spacetimes. In-

tional dynamics resembles therefore the methodology &diopt deed, neither the BH event horizon nor null infinity are ingen
in scatteringexperiments. Gravitational dynamics in a given eral available during the evolutiin However, we can adopt
spacetime region affects the geometry of appropriatelgeho as inner and outer screens a dynamical horizph (future
outer and inner hypersurfaces of the BH spacetime. Theseouter-trapping horizon [58-50]) and a timelike tuBat large
hypersurfaces are then understoodtest screen®n which  spatial distances, respectively. In this case, the timetfant
suitablegeometric quantitiemust be constructed. The corre- associated with thg+ 1 spacetime slicing provides a (gauge)
lations between the two encode geometric information aboumapping between the retarded and advanced timasd v,
the dynamics in the bulk, providing information useful for so that cross-correlations between geometric quantitiésa
aninverse-scatteringpproach to the near-horizon dynamics. and 3 can be calculated as standard time setigg(t) and
As a result, in asymptotically flat BH spacetimes, null in- hout(t). This is summarized in the Carter-Penrose diagram in
finity .#+ and the (event) BH horizo#’ provide preferred  Fig.[4, which is the same as in Fig. 3, but whereihel slic-
choices for the outer and inner screens. This is nicely suming sets an in-built common timefor cross-correlations be-

tween the dynamical horizgH™ (i.e., the inner screen) and a

large-distance timelike hypersurfaBgi.e., the outer screen).

4 Note that the meaningful definition of time series crosgalations re-
quires the introduction of a (gauge-dependent) relatiawéen advanced
and retarded time coordinatesandw. In an initial value problem thisis  ® The latter would properly require either characteristicadnyperboloidal
naturally provided by th& + 1 spacetime slicing by time evolution approach.



Within this conceptual framework it is then possible to de-which, from Eq.[6), has a Gaussian curvature
fine a phenomenological curvature vectsf(¢) in terms
of the mass multipoles of the Ricci scalar curvatéife at K = 2Mo _ 8)
H+ and show that this is closely correlated with a quantity " R3

hs : red v .
(dP7”/dt)(t) on B, representing an approximation to the vari- 5, the other hand, the mass and momentum are computed

: S . ¥ :
atlon_of_the Bof‘d' linear momentum “”?e oA HOW o atfuture null infinity using the Bondi 4-momentum &sl[37, 38,
do this in practice for a BH spacetime is the subject of thm]

following sections.

« — MOO 77a

with {n®} = {1, sin 0 cos ¢, sin O sin p, cos 6}.
From now on, we restrict our problem to axisymmetry and
We recall that the RT spacetimes are a class of solutiontroducez = cos@. Clearly, all the physically relevant in-
of the vacuum Einstein equations admitting a congruence oformation is contained in the functio(u, x), and this in-
null geodesics which are hypersurface-orthogonal, sfrear- cludes also the gravitational radiation, which can be exéth
but with nonvanishing expansion. As such, it can be regardethrough the radiative part of the Riemann tensor [33, 34],
as a white hole emitting GWs, thus representing a valuablgvhich in axisymmetry is given by
tool for studying the spacetime geometry in physical condi-

aQ, 9)

I11.  ROBINSON-TRAUTMAN SPACETIMES: A TOY
MODEL

tions that are similar to the final stages on the dynamics of BH P, — Q_Qa (1—22)92Q (10)
binaries[38]. The RT metric can be written as|[49] 4T g Q '
2M 2r0,Q r’ The dynamics of this solution can be summarized in[Hig. 2
2 _ o oo u 2 o 2 y
ds” = <K r Q ) du” = 2dudr + 73 A which shows the Carter-Penrose diagram for the RT space-

3) time. The final configuration is a stationary nonradiativieiso
where@ = Q(u, ), u is a null coordinatey is an affine pa-  tion which has the form [49]
rameter of the outgoing null geodesics, affd® = d6? +

in? 2 i i 2 1 Fwe
sin” fdy=~ is the metric of a unit spheré“. Here M., S.(0) = 0) — (1 F o) 11
is a constant and is related to the mass of the asymptotic +(0) = Q(c0,6) V1= ' 11

Schwarzschild BH, while the functioA (u, ) is the Gaus- _ _
sian curvature of the surface with= 1 andu = const., and  Note that since the Bondi 4-momentum of the stationary solu-

is given by tion is

Mo
K(u,Q) = Q°(1+A3InQ), 4) P (00) = T {1,0,0, £} , (12)
— U
A}, being the Laplacian operator on the unit sphefe The <
Einstein equations then lead to the RT evolution equation  the parameter in Eq. (I11) is interpreted as the velocity of
the Schwarzschild BH in the-direction.
A?ZK(uv Q)

_ N3
0uQ(u, ) = -Q 120,

(5)

Any regular initial data) = Q(uo, 2) will smoothly evolve A. Massmultipoles
according to[(b) until it reaches a stationary configuration ) ) ) o
responding to a Schwarzschild BH at rest or moving with a  Given a closed 2-surfac, the invariant content of its in-
constant speef [39]. Equatidd (5) implies the existencheof t triNSiC geometry is encoded in the Ricci scalar curvatiite
constant of motiopd = fs dQ/Q?, which clearly represents associated with the induced mettjg, onS. Moreover, ifS

the area of the surface — const.. » — 1 and can be used to 1S @n axisymmetric surface, with" as the axial Killing vector,
normalize( so thatA — 4. ' a preferred coordinate systef, ¢) can be constructed such

The dynamical compact object modeled by RT spacetimed'atdas has the form([3&, 36]
is described by the past AH, which has a vanishing expansion o b 2 (1. 25 132 s
of the ingoing future-directed null geodesics. Sml::%f;asﬁs\H qapda®da’ = R (f sin“0 df” + f dp ) , (13)

described by the surfage= R(u, §2) satisfyin ~ .
Y (. &) fying [55:57] where f(6) = gu¢®¢®/R2, with R, the areal radius4 =

Q*A2InR =K — 2]\200 _ (6) [sdA =4mR?). The coordinaté is determined by
The line element restricted to the AH surface= const. D, = %%ba(bb, (14)
andr = R(Q) is Ry
P R2? 402 ; where the coordinatéis defined by = cosf and%,, is the
sle = o2 ’ ) alternating symbol. In addition, the normalization coratit

QQ
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4, (dA = 0 must be imposed. We note that the Ricci scalarThis equation is solved with the conditig0) = 1 and then

2R on S can be written as [35] one computes the mass multipoles moments through the ex-
v pression
R=———=( (15) .
2 ) {+1
g dc2 v, = g, B) Q2P§(1§Q) gl @
and that regularity conditions on the metric impose s @ (O)R(
. = . df -
dim (=0, dim L2 e 5. Thenumerical setup
(—=+1 (—=+1 dC

A crucial feature of this coordinate system is that the a@ssoc  As discussed in detail in Ref._[49], for the numerical solu-
ated expression for the area element is proportional to thaion of the Einstein equations we introduce a Galerkin decom
of the “round sphere” metric dA = R2sinf dfdp. This  position forQ(u, z)

provides the appropriat@easureon S to "define the standard

spherical harmonic}s’gﬂmzo(é) with the standard orthonormal N
relations Qu,x) =Y be(u)Po(x), (24)
: =0
0 0 _ 2
féno(@)n'”(@)d‘él =Ry 0w, (17) where P (z) stands for the Legendre polynomial of order

] . ) . ) By using standard projection techniques, Edj. (5) can be writ
so that dimensionless geometric multipolescan be intro- e as a system of ordinary differential equations
duced as the spherical harmonics components of the Ricci

. 20+ 1
Scalar CurvatUTéR [@] be — 724]& <Q3893 [(1 o I,Q)aIK} 7PZ>7 0= 07 1, . N,
N N I I ; b (25)
L= Z?{g R Yio(0) dA, °R = R2 > 1¥eo(®). (18) where the inner product is given by, g) = [, fgda. In

H n=0

this way, the Cauchy problem for the RT ER.](25) consists
The mass multipoles/,’s are then defined as appropriate di- basically in choosing the initial value of the mode functon

mensionful rescalings of the geometfics b¢(u) according to
¢ 20+1
M= AT MR (19) bi(0) = =5—(Q(0, ), F), (26)
2n+1  2m ’

. . and then to solve the initial value problem given byl (25). éNot
wherel,, denotes some a_pproprl_ate quasnpc_a_ll mass fOF th?nat, asu — oo, by — 0 for ¢ > 1 and that the nonzero modes
surfaceS. Because we will consider here initial data with |\« satisfyb, (00)2 — bo(oc)? = 1, with the finalu, param-

zero angular momentuny/,, will denote the irreducible mass o of Eq.[[TlL) being given simply by, = —by (00) /bo(c0).
My = /A/(16m) = Ry/2. For later convenience, we in-  Equation [(8) can be solved for the horizé¥fu, ) either

troduce the rescaled geometric multipoles by imposing regular conditions on the bound@gyR(0) =
_ 1 4 0 and 9y R(w) = 0 and using an ordinary shooting method
Iy = R — Iy = (R—)QIZ’ (20)  to find R(0) and R(r), or by following the approach in_[61]

introducing another Galerkin decomposition on the horizon

with dimensiong ;] = [length]~2. The Ricci scalar curva- and truncated at the orded,
ture can then be written as R Nu
o n = co(u)Py(x). (27)
2R — Z IV . 1) Moo 35

The projection of EqL{6) on the basis of the Legendre polyno-
A crucial remark for the discussion in Séc. IV B is the vanish-mials couples the known Galerkin modgsvith the unknown
ing of the? = 1 mode, i.e..J; = 0, which can be interpreted coefficientsc, and the resulting algebraic nonlinear system
as a choice otenter of mass framef the AH in [35]. This can be easily solved via a Newton-Raphson method.
follows by first msertmg expressmﬂllS) into the definitiof

I, so thatl; f (¢ §d§, and then by making use of

regularity condmonsﬂ]]G) after integrating by parts. C. Theinitial data
In the particular case of a RT spacetime, the preferred ax-

isymmetry coordinate syste(ﬁ, @) is related to the RT spher- In general, any family of regular functiong, i.e.,0 <

ical coordinates ag = ¢ andd = () satisfying Q(ug, ) < 0o, Vx € [—1,1] can be used as an initial data for
the RT spacetime. For any of such family, one can set a param-
eter() to ensure the constant of motion to de= 47. More-
over, the deformed BH will not be initially at rest in general

> sinfR(0)?
0= (R, 2Qo) (22)



golons muay -
ST -y
e oy
sy

S AT
ST
i iigiy

&t

Schwarzschild Schwarzschild

05—

- W=0.25 - W=0.25

...... w=0.50
s W=0.75

______ w=0.50

wn W=0.75

I
y [2M,]

v
gt

-0.5

2 y
T AR L TP TR A U S
L4 - . v -

------- SLLLIEL L

FIG. 5. AH of the head-on initial data given in EQ.128). Thegmaeters; andw control the deformation of the surfaces. The final configarat
is a Schwarzschild BH (continuous black line) and it is aehieafter the deformation is dissipated with the emissio®Wfs. Our results
confirm the interpretation givef [48] faras the mass ratio of the BHs. However, we attach no physicahing tow as done in[48], for RT
models a single deformed horizon, and nothing can be saidt dbe velocities of the individual colliding BHs.

As a result, given the initial velocity, o = P3(0)/P°(0), The interpretation of as a mass-ratio parameter is not to-
we perform a boosP” = A% (vy.0) PP with A% (v 0) the tally unreasonable. For instance, Fig. 3(0f [1] showed the fin
value of the velocity in RT spacetime evolved from the head-
on initial data against the reduced mass ratia q/(1 + ¢).
The curve obeys the distribution

associated Lorentz transformation, so tf_?gto) = 0 by con-
struction. The kick velocity is then defined at any time as
v(u) = F3(u)/ﬁo(u).

Despite this overall simplicity, the definition of initiabth v = Av®/1 — 4v(1 + Br), (29)
that is physically meaningful represents one of the maiii-dif . ) . ) )
culties in the study of RT spacetimes. Since we are here mor@s found in all numerical S|mul_at|ori§[24_1], with the value of
interested in a proof of principle than in describing a ali 4 @ndB depending on the particular choicewf _
tic configuration, we have adopted both a prescription remi- Since the solution does not exist for< w, it is impossi-

niscent of a “head-on” collision of two BH5 [48] and a new ble to assign a value far that could account for any previous
variant of it. stages on the evolution of the binary. With the original in-

terpretation ofw as the velocities of the BHSs, a first trivial
estimate, as proposed hy [43], is to assume a Newtonian evo-
lution of two particles with masses/; and M-, which start

at rest at an initial distanck,. At a given distancd., in the

. o ) frame wherey; = —v9 = w one has
As a first set of initial data we consider the one developed

in Ref. [48] 1<M M),

1. “Head-on” initial data

T L. (30)

w=4/=
s 2

_ 1 q
MM%Qoﬂim+ﬂ+m . (28)

with M = M; + M,. ChoosinglLg ~ 6 M andL ~ 2 M, one
obtainsw ~ 0.41. Furthermore, still in Ref[[1] it was shown
which was interpreted to represent the final stages (i.e., athatw = 0.425 presents a surprisingly good match with some
ter a common AH is formed) of a head-on collision of two results found in the close-limit approximation, where th i
boosted BHs with opposite velocities € [—-1,1] and mass tial data for the ringdown phase was given by a previous
ratio ¢ € [0,1] [4€]. Figure[® shows the shape of the sur- plunge with the BHs inspiralling towards each other from the
face R(uo, 9) for different values of those parameters. It is innermost circular orbit untik 201 [2€].

worth remarking that despite the name, this initial datasdoe It is important to remark that one should not expect a com-
not represent a binary system but is, strictly speakingy anl plete agreement between the valuesdfand B from the
distorted horizon. In a more conservative approach, one cahead-on collision in RT spacetimes with the ones found in
regardg and w just as free parameters that control the de-numerical-relativity calculations of binary BHs in quasic
formation on the horizon, and this is the view we will adopt cular orbits [15]. The first ones, in fact, (and modulo the
hereafter. However, a number of interesting analogiesthigh  interpretative issues discussed above) can only account fo
head-on collision of two BHs have been suggesteti[[48, 52}the post-merger phase, while the second ones account for the
and will be further discussed below. whole recoil. A complete discussion on the dependencé of
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FIG. 6. Left panel:Horizon mean curvatur&’,, for w = 1/2 shown as a function of reduced mass ratiand of the polar angle = cos 6.
Note that the distribution is symmetric with respect to theatorial plane for = 0 andv = 1/4. Right panel:Horizon curvature for some
representative values of the reduced mass ratio. The/lbwanch is characterized by large curvature gradients a¢chesAH but small values
of the curvature, while the high-branch small curvature gradients and large values of theature [1].

and B with respect tav can be found in[52]. For the sake of
convenience we will fixo = 0.5, but our results do not de-
pend upon this choice. The substitution— —w just changes
the sign of the recaoil velocity.

0.195 [18]. As the recoil vanishes far = 0 andv = 1/4,
there will always be two values of the mass parameter leading
to the same recoil when < v***. It is natural to wonder
whether two completely different systems (namely systems

The relation between the kick velocity and the reducedwith different mass ratios) share some common physicalprop

mass ratio expressed by EQ.{29) has a pg&k for v ~

70] I ‘ I ‘ I ‘ I ‘ I
0 0.05 0.1 0.15 0.2 0.25
v

FIG. 7. Lower-order mass moments far = 1/2. Note that they
all vanish atv = 0, while only the odd ones are zero for= 1/4.

As in Fig. 3 of [1], the colors represent the two different tiches
composing the curvey versusv. The color changes at the mass
ratio for which the recoil velocity is at a maximum.

erty which could lead to the same recoil. Thinking in terms of
the horizon’s intrinsic deformation provides a simple way t
explain this degeneracy. System with< v™* in fact, are
characterized by large curvature gradients across the AH bu
small values of the curvature, while system with- v™?* are
characterized by small curvature gradients and large galfie
the curvature. This intuitive picture can be best apprediat

in Fig.[d, which reports the horizon mean curvatuge for

w = 1/2 as a function of reduced mass raticand of the
polar anglei = cos @ (left panel) or for some representative
values of the reduced mass ratio (right panel). Note that the
low-v branch is characterized by large curvature gradients be-
tween the north and south poles of the AH, but small values
of the curvature, while the high-branch is characterized by
small curvature gradients and large values of the curvafAse
discussed in Ref[[1], it is the product of the deformations o
the horizon with the gradients across the equator that yield
the same recoil for two apparently different systems.

Complementary information to the one in the left panel of
Fig.[8 is depicted in Fid.]7, which shows the typical behavior
of the lower-order mass moments as a function of the reduced
mass ratio. Notice they all vanish for= 0, since this con-
figuration represents an undistorted BH. oe 1/4, on the
other hand, only the odd modes are zero, indicating that the
configuration is symmetric with respect to the equatoriahgl
and the emission of GW will not give rise to a recoil. Also
note that the maximum of the odd modes does not correspond
to the mass ratio at which the recoil velocity reaches ithhig
est value. Even though a net emission of momentum will only
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FIG. 8. Left panel:Curvature evolution for the distorted-AH initial data with= 1/2, » = 0.11. Note the small curvature excess at the south
pole, which is rapidly radiated away to yield an almost umifalistribution afteru /M., ~ 1.5. Right Panel:evolution of the recoil velocity
for representative values of the parametesome of which lead to no-monotonic changes in the velocity.

take place when there is an asymmetry on the horizon acrosghere Quo(x; ¢, w) corresponds to the head-on initial data
the equator (i.e Moqq # 0), the intensity of the emission will  (28). Clearly, this is just a mathematical choice and no phys
also depend on how deformed the BH is (iMqgyen # 0). cal significance can be associated to this initial data.

Without loss of generality, we can use the even modes t0 Note that [@1) maintains the symmetries provided by the
measure overall distortions on the horizon, while the odeson 1,55 ratio parameter for ¢ = 0 one recovers the nonde-
measure the asymmetries between the north and south hem§med Schwarzschild BH and = 1 gives an even initial
_spheres. To account for both contributions, we constructegata, i.e.Q(uo,z) = Q(ug, —z), which leads to a zero fi-

n [|1|]_an effective-curvature parameter as the product @ tW 5| recoil. Furthermore, note that the resulting recoiloeel
functions depending solely on the even or the odd modesy, goes not lead to the scaling expressed by Egl (29), thus
.8, Keft = feven (Man) X foda (Man41). This quantity rep-  giving strength to the idea that the head-on initial data is

resents a measure of the global curvature properties ofthe i ¢|osely related to the merger of a binary system as proposed
tial data, from which the recoil depends in an injective way.in Refs. [48/52].

Indeed, Fig. 4 in[[1] showed that with a suitable choice of
coefficients, i.e. Kot = Ms| >, _, Man11/3", the cor-
relation betweer .z measured at the initial time against the
final velocity is actually linear.

As anticipated, the use of this initial data leads to a more
interesting dynamics and this is shown in Hif. 8, whose left
panel reports the curvature evolution for= 1/2 andv =
0.11, while the right panel reports the evolution of the recoil
velocity for representative values of the parametesome of
which lead to nonmonotonic changes in the vel@itijote
the small curvature excess at the south pole, which is napidl

: o dissipated as GWs are emitted so as to yield an almost uniform
The evolution produced by the head-on initial ddfal (28) jistribution. As pointed outin [1], the velocity reachesfinal

leads to a monotonic increase/decrease of the recoil wgloci value when there is no asvmmetrv in the deformation between
once the initial data is specified on the white hole. However. y y

a more complex (i.e., nonmonotonic) dynamics can be easthe north ¢ > 0) and south£ < 0) hemispheres, i.e., after

ily produced through a simple variation of the head-on ahiti u/Mso 2 0.5.

data. We refer to this new family of initial conditions ashet ~ To prove that the approach discussed in the previous sub-
“distorted AHs” and we express them as section is indeed generic, we define an effective curvature
K¢ also for this family of initial data, again in terms of the
product of odd and even mass moments

2. Distorted-AH initial data

Q(uo, 2) = Qno(z; ¢, w) + q2*Quo(x; ¢, —w),  (31)

6 This evolution is related to the Bondi momentum as defined3y[B8]
and given by Eq.[{9). Recently, a different approach has Ipgeposed
in [52], where they showed a slightly different profile foetielocity time

evolution. However, the difference is not important in orguanent, since
we are mainly concerned with values of the curvature at tht&lirtime,
when we boosP? to its rest frame, and its correlation with the asymptotic
final velocity, when the momentum is unambiguously defined.
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FIG. 9. DifferenceAvi (u) = vk (us ) — vk (u) against the effective-  FIG. 10. Evolution of the velocity (red curve) measured vifitl flux
curvature parameter for several values of the “initial” ¢ima The  of momentum carried out by the GWs. Note the antikick at about
linear relation between the effective curvature] (32) arelkick ve-  ¢/M = 145 that decelerates the system before the final kick velocity
locity is preserved along the evolution as indicated by tifferént is reached. The GW signal is instead shown in the inset, nathel
symbols, each representing a specific time in the evolufidrs re- dominant\Ifi’O multipole (blue curve).

mains the case also at late times as shown in the inset.

that relates the effective-curvature parameter to thelffiea
to find that the set of coefficients, = 0.304,a = 0.178, Ol velocity through a one-to-one mapping. What however
as = 0.086,a10 = —0.186 and as = 0.076, a7 = —0.090, will not depend on the initial data is the functional depeme
ay = —0.183 leads to the expected injective, and actuallyOf the effective-curvature parameter as expressedly (t). |
linear, behavior. Clearly, and as it is also natural to exthe deed, in the next section we will generalize the idea and-func
coefficients are different from those found for the headrsni  tional form of the effective-curvature parameter to acddan
tial data, and they will always depend upon the specific fiamil the dynamics in binary BH spacetimes.
of initial data considered. The remarkable feature though,
that they remain constant in time. This is illustrated in.Bg
which shows that the effective curvatufe](32) is still linea V. BLACK-HOLE SPACETIMES: HEAD-ON COLLISIONS
with respect to the relative velocituvy (u) = v(uso) — v(u)
at any time during the evolution (this is shown by the différe A. Numerical Setup and Results
coloured symbols, each of which refers to a specific time) and
also at late times (sge !nset). Thls t|m¢_|ndepenQent PYYPE  The numerical solution of the Einstein equations has been
is general, and not limited to this particular family of ialt  yerformed using a three-dimensional finite-differencinge
data. In particular, it is also found, for instance, in thadhe solving a conformal-traceless* 1” BSSNOK formulation of

on case. This result reflects the fact that the deformations ghe Einstein equations (se ] for the full expressions) using
the horizon evolve in time in a self-similar manner, so thata the i nst ei n Tool ki t ], the Car pet ] adaptive

though the ranges fdk ¢ change in time (becoming smaller esh-refinement driverAHFi nder Di r ect ] to track
as_the defqrmatiqns are radiated away), _the cprresponeling lthe AHs, andQuasi Local Measur es [65] to evaluate the
coil velocities maintain the same proportionality (cf. i).  mass multipoles associated with them. Recent developments
As a concluding remark, we can summarize as follows thesuch as the use @&th-order finite-difference operators or the
insight gained through the study of RT spacetimes: the conadoption of a multiblock structure to extend the size of the
struction of the effective-curvature parameter dependsiqu wave zone have been recently presented if? [66iere, how-
titatively on the family of initial data considered, but tHar  ever, to limit the computational costs and because a vely hig
any choice of data, it is possible to find an explicit expr@ssi accuracy in the waveforms is not needed, the multibloclcstru
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FIG. 11. Realization of the cartoon in Fg. 1 with numericatalfrom a simulation of head-on collision with mass ratie- 1/2. The color
code shows the mean curvature on the apparent horizonshwhgthe same anisotropic behavior of the intrinsic cureatds described in
Fig[l, once the common horizon is formed, the curvatureranger in the region of the smaller BH and is dissipated dytie evolution.

ture was not used. Also, for compactness we will not report B. Geometric quantitiesat the BH horizon: K¢ (¢)
here the details of the formulation of the Einstein equation
solved for the form of the gauge conditions adopted. All of = Ag discussed in Seds. | aldl 11, the analysis of the recoil dy-
these aspects are discussed in detaiPify fo which we refer  namics in generic BH spacetimes requires a shift with reispec
the interested reader. to the methodology used in RT spacetimes. When consider-
ing standard + 1 numerical solutions of BH spacetimes, in
Tact, we study the near-horizon dynamics responsible fer th
BH recoil in terms of the time cross-correlations between a
vector (dPB/dt)(t) at a large-radius hypersurfa¢geand an
Fffectlve -curvature vectdk ¥ (¢) constructed from the intrin-
pic geometry on the dynamical BH horizé{r™. The vector
% PB/dt)(t) on B approximates the Bondi linear momentum
ux ( dPB/dt ) at Z*. From now on we will systemati-
cally refer to(d PB/dt)( ) (and to.# * instead off3), under-
standmg that we are actually using an approximation.
The construction of ¢ (¢) at#* is based on the following

Our initial data consists of head-on (i.e., zero angular mo
mentum) Brill-Lindquist initial data with a mass-ratio @f=
1/2. The initial separation of both BHs i)\ and they are
initially located at(0, 0, 6.6666) and(0, 0, —3.3333) to reflect
their center-of-mass offset. Both BHs have no angular no
linear momentum initially. We use a 3D Cartesian numerical®
grid with seven levels of mesh-refinement for the higher mas
and eight levels of mesh-refinement for the lower mass BH,
The resolution of our finest grid is = M /64, while the an-
gular grid used to find the AHs and evaluate any property on
these 2-surfaces has a resolution66fpoints in p-direction et . N
and128 points in#-direction. The extraction of GWSs is per- two guu;ielmes. ay<i (1) is bU|It+out Of the intrinsic geome-
formed calculating?, at finite-radius detection spheres with &Y Riccl scaéar curvaturélt on* sections; b) the functional
radii of 1, = 60 M ,ry = 85 M andrs = 145 M and then form ofl(dPi /dt)(t) |n.terms of the geometry a¥ * guides
extrapolating to infinity. the choice of the functional dependenced? (¢) on?R. The

first requirement is motivated by the success in the RT case,

Some of the most salient results of the numerical simulawhereas the second one aims at preserving those basic struc-
tions are summarized in Fig.110, which reports the evolutiortural features of the specific function to be cross-coreslat
of the recoil velocity (red curve) measured with the flux of ~Following these guidelines, we start by expressing the flux
momentum carried out by the GWSs. Note the development 06f Bondi linear momentum at null infinity. In terms of a re-
the antikick at about/M ~ 145 (followed by several smaller tarded timeu parameterizing# =, its Cartesian components
oscillations) that decelerates the BH before the final kiek v can be written as
locity is reached. Also shown in the inset is GW signal in dPB r2
its larger multipolar componenit;° (blue curve). Similarly, 7, (W)= lim —ﬂjé si IV (u, Q)]?dQ, (33)
Fig.[13 provides a realization of the cartoon in Elg. 1 with nu ' Sur
merical data from a simulation of head-on collision with sas wherer parameterizes the large-radius sphefgs along a
ratio ¢ = 1/2. Shown with a color code is the mean curvatureu = const. hypersurface;?ds is the area element afi, .,
on the apparent horizons, which shares the same qualitativé is its normal unit vector with Cartesian componesits=
properties, and in particular the anisotropic behaviorthef  (sinfcosyp, sinfising, cosf), and thenews functiong/(v) can
intrinsic curvature. As intuitively described in Higj.1,amthe  be expressed in terms of the Weyl scalaras

common horizon is formed, the curvature is stronger in the u

region of the smaller BH and is dissipated as the evolution N(u,Q) / Uy (u', Q)du’ . (34)
proceeds. Note that the curvature distribution is anigmtro -

already at the beginning, as the BHs are tidally distortiache In our 3 + 1 setting with an outer boundary at a finite spa-

other. tial distance we need to express the flux with respect to the
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t
/ Uy (¢, Q)dt’

— 00

time functiont parameterizing the spatial slicé%, so that in the time integrationt — —oo, appearing in Eq[{36) must
we replaceS,, , with S , be replaced by the time of first appearance of the common
horizon, when quantities &&(t, ) start to be well-defined.
dpp . 72 2 However, there is still a deeper difference betweéfr, Q2)
dt (t) = TIE{}O 167 7{; Si dsz, andJ\7(t, Q). Even though one can construct the former as in
o 35 EO. (32), i.e., as the time integral &f;, the definition of the
and where we can think of (related tou by u = t — »  newsfunctionislocal in time depending only on quantities o
near.# *) as parameterizing the cuts &+ by hyperboloidal S: and not requiring the knov_vledge of the_ past historysof .
slices or, alternatively, the cuts of the timelike hypefsoed ~ The latter thoughiis here defined as the time integrakdnd
approximating.# * at larger. We can now rewrite expres- (here is no reason to expect the same local-in-time behavior
sion [3%) in terms of a generic vectgf transverse taS, . specially ag — oc. In particular, we fix the function= (Q2)
(i.e., with a generically nonvanishing component along thePy imposinglim N/(#, €2) = 0.
normal toS,, ), so that the component of the flux of Bondi  All the points raised above are addressed in detail in the
linear momentum along' is accompanying paper Il and we adopt here a purely effective
5 approach taK (), sinceR represents an unambiguous ge-
dPB[¢] (t) = lim ij{ (€s;) a0 ometric object that captures the (possibly many, if mater i
dt o N ! ' included) relevant dynamical degrees of freedom in a single

t
/ Uy (t', Q)dt’

— 00

(36) effective mode. Ultimately, this heuristic proposal foe téf-
fective curvature is acceptable only as long as it can be cor-
We take this expression as the starting point for the conrelated withd P2 /dt, and this is what we will show in the
struction of K¢, It provides the functional form of the Bondi following.
linear momentum flux in terms of the relevant component of
the Riemann tensor af +, namely®,. Then, the two above-

mentioned guidelines for the constructionsf can be met 1. Axisymmetric BH spacetimes
by considering a heuristic substitution ¥, by R in expres-
sion [36). As a first application of the ansatz {37), we consider the

It is important to note that in the same way in which the axisymmetric case of the head-on collision of two BHs with
outgoing null coordinate: parameterizes naturally’*, the  unequal masses. We adopt therefore a coordinate system

ingoing null coordinate, which runs along¥ —, is a natural (r,6, ) adapted to the horizoK* so thatr = const. char-
label to parameterize the hOfiZG‘ﬂ+. However, within our acterizes Sectioné‘t and we can Wr|tegZ — ]\/[DZ.T’ with
3 + 1 setting, we use EqL(86) as the ansatz leading to thg;-2 — p.rDir (i.e., M—2 = ~4™"). Then, taking advan-
following proposal for the componerit.q[€](t) of K{™(t)  tage of the axisymmetry, we adopt & the preferred coor-
along a vectorﬁz (tangent to the slic&’;) transverse to the  ginated systentd, ) discussed in SeEIINA and consider the
sectionS; of H Cartesian-like coordinates constructed fromé, ) by stan-
dard spherical coordinates relations: = 7 sinf cosg,y =
rsinfsing, z = rcosfl. In these coordinates we haye =
M (sinf cos, sinf sing, cos#). Assuming thez-axis to be
with adapted to the axisymmetry, we choagein Eq. (37) as
¢ (€)' = M~1(9,)%, so that(&,)'s; = cosf. Inserting ex-
N(t,Q) = / R, Q)dt + Nt (Q). (38)  pression[(2) in Eqs(37) anld(38) we obtain
t

) Kef(t) = RF[e.)(t) = (39)

1

R0 = —5- f, (€0 |00

dA, (37)

In the equations abové@A is the area element &;, the 5
global negative sign accounts for the relative change ofthe 1 - (X - ~
entation of outgoing vector normal to inner and outer bound- = T T6n S (cos) <ZN€(tl)Y410(9)dt/> dA,
ary spheress’ are the components of the unit normal vector ! =0
to S, tangent tox,, andN*<(Q) is a generic function on the ith
surface to be fixed. .
Some remarks are in order concerning expresslods (37) and Y _ 15 4 rte
(38). First, there is a clear asymmetrygbet\?veen expr(ess)ions Ne(t) = /t L)+ Ne© (40)
(36) and [(3V) when substituting the complex quantity at ) . . )
7+ (encoding two independent modes corresponding to th8€ing the coefficients of a multipolar expansion of Hql (38).
GW polarizations) by the real quanti on the inner hori-  Inserting the formiA = Rf;sinfdfd; of the area element on
zon (a single dynamical mode). Inspection of EG.] (36) im-St and performing the angular integration we finally find
mediately suggests an alternative® by the natural inner

. . ~ 2 ~ ~ ~
boundary analogue o¥,, i.e., ¥y. However, this strategy Ko () = _% ZM’ (Dé?g_/\/é_l + D§?170M+1) :
=2

c

must face the issue of identifying an appropriate null thre,
H+ for the very construction of. Second, the lower limit (42)
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(0) _ ¢
LT+ nR—1)

(42)

As for the definition of K¢ in the RT case, Eq[(41) is
guadratic in the (geometric) mass multipoles, i.e., theesph
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thatit is fully general and, in contrast withl (2), no phenaoroe
logical parameters need to be fitted. An additional and etuci
feature is that terms involving = 0, 1 are absent, due to the
vanishinﬂ of I; as discussed after Eq. (21).

The quantity/ ¢ at the horizor{ ™ is to be correlated with
the componentd P2 /dt)(t) of the flux of Bondi linear mo-
mentum at.¥ ™, which is useful to express in its multipolar

ical harmonic components of the intrinsic curvature RiccCigyxpansion. First, we decompo®e into its multipoles

scalar curvaturér, although it involves a time integration,
absent in[(R). Also, it is an odd function under reflectionhwit

respect toz = const. planes and it involves only products

of odd and even multipoles, precisely one of the criteria for

the construction of{.¢ leading to the ansatz in Edqlif)In
essence, expressi¢n(41) e fulfills the two basic require-
ments for the curvature paramet&gg with the added value

= Y W Y0, 9), (43)
0>2,m<|¢|
where _Y'“™ (0, ¢) are the spin-weighted = —2 spheri-

cal harmonics. The explicit expression for the component of
(dPP /dt)(t) along thez-axis (e.g. Ref[[67]) then becomes

dPg . r? y (—2) e (—2) xre—1 (=2) pre+1
—(t) = lim Z NET X (Cpry' NO™ 4 Dy PN 4 Dy N ) (44)
dt r—oo 167 mele] ( )

tm =y (20 —1)(20 + 1) '

t
N“”z/ e (45)

The axisymmetric reduction of expressi@nl(44) is obtaingd b
settingm = 0 in the expressions above. Note tiatis purely
real in this cad® The resulting coefficients are therefore

being the corresponding multipolar components of the news

functions introduced i (34), with the coefficier(ﬁ%fnf) and C,E_BQ) =0, (48)
(-2)
Dy given by -2 _ [ (=2)(+2) (49)
GO\ 2e—-1)204+ 1)
_ 2 .
5,73) = @ Tl) , (46)  and we can write Eq[(44) as
|
dPB 2 t t _ B _
CE() = lim 1> / dt'v0 / at" (D w0+ DY W), (50)

>27—

Expression[(50) has obvious similarities with Eq.](41) forsions. This is nontrivial since the reasons underlying each

f(gff(t). First, the (real) mode@i’o play a role analogous to
those of the mass multipolds. The common geometric na-
ture of the underlying quantities, and?R as curvatures, in

particular, their dimensions as second derivatives of tké m

case are different: the = 2 spin weight of¥, in Eq. (50)
and the vanishing of; in (&), respectively. This is a cru-
cial feature for it directly impacts the determination okth
mode dominating the dynamical behavior and, therefore, sin

ric, is indeed at the heart of the definition of the geometricgles out the Ricci scal&r as a preferred quantity to be mon-
multipolesI,’s by Eqgs. [2D) and{21) as the correct analoguedtored instead of any other (spin-weighted# 2) function

of U}’ Second, modeé = 0,1 are absent in both expres-

7 Note that expressiof_. (1) cannot be factorized as a prodiesen and odd
functions, as proposed il(1).

8 The function\/*< (2) in Eq. [38) does not introduce= 1 modes either.

9 For instance, the GW cross polarizatibg vanishes¥, = f}'L+ +ihy.

that could measure in some way the deformations of the hori-
zon (for instance, the mean curvature). Besides the similar
ties, there are also differences between expressions (D) a

(&1). First, the coeﬁicient@éfg in (@2) and [4B) differ due
to the different spin weight ofR and¥,. Therefore, the cor-

relation betweerid PP /dt)(t) and K¢ encodes information
about the relative weight of the different couplings. Seton



14

the lower time-integration bound (- —cc) is well-defined  given the related but different nature # and ¥, it is not

for (dPB/dt)(t), whereagk ¢ (¢) can be measured only after obvious that a correlation should be found at all.

the formation of the common horizon. Fina”y, due to the ab- In order to assess the Va||d|ty of the approach’ we con-
sence in the general case of a preferred coordinate system @fruct K< (¢) and (dPZ/dt)(t) from the numerical simula-

S; and their associated spherical harmonics, there is no nafiyns described in SeE_IVIA. Note that becadsevanishes

ural multipolar expression foi ¢ in the nonaxisymmetric identically, the contributionsVo\; and N\, are absent in
case and one must resort to the full expresdioh (37). the expression fof ¢ (t). Furthermore, since higher-order

multipoles I, become increasingly difficult to calculate, we
truncate expressiof (1) 4t= 6; in our case, this has little
influence on the overall results as we will show that the lawes
(i.e.,£ = 2,3) modes are by large the dominant ones.

i off i i ~
The effective-curvature vectdf;" introduced in the previ- The values fofd P2 /dt) and K¢ as functions of the time

ous section can now be used as a probe of the degree of €9"and corresponding to the numerical simulations desctitbed

relation between the geometry at the horizon and the geomy,q previous Se€_IVA, are presented in figl 12. The signals
etry far from the BH. More specifically, we aim at assessingy, e peen normalized with respect to their maximum value [a

. . g eH‘ .
the correlatloanetweemi,m(t) N KZ (t) atthe h_0r|z_on and global rescaling does not affect the cross-correlationgpr
hout(t) = (dP7/dt)(t) at large distances, considering these ries of two functionsh, (t) and ha(t), cf. AppendixA].

two quantities as time series. As discussed in Bkc. Il, the us,, Fig. (12 (a), the quantity®® is shown from the time
) , ¢

of a common time varla_blefor funCt'on.Shi““ andhou; as- t. =~ 49.2M of first appearance of the common horizon (red
sumes a (gauge) mapping (cf. footnatén SecLll) between dashed line). After time,,,.x ~ 1200 the error in the calcu-

i izing+ L

E;e+aggzng§gvzrd [rert]aé(f? 2“”; iens, [l))arzri]meetresrhzrlfr;%e énf lation of thel, multipoles becomes comparable with the value
rO\;idespsuch ayrﬁa ina. thou hganyint);irr)13ic time—strt hi of the multipoles, spoiling the evaluation of the integrials

P ppIng, 9 eg ). Hence, we seﬂ(ﬁﬁ to zero fort > t,.x. Similarly, the

ambiguity between the signals at the two screens is preser; S B
. o . ux of Bondi linear momentunid P;” /dt) as computed by an

.due to the gauge nature of th? slicing. This will be discusse Observer at 00 M from the orirgﬁitliw izs/spl)it ina pa?t beforg the
n more detgll later n t_hls_s_ecu_on. . . appearance of the common AH (blue dotted line) and in one

To quant!fy the S|_m|lar|t|es n the time series we employWhich is to be compared with  (blue dashed line). In pan-
the correlatltt)jn ff_un((:jtlon between time seriest) andhs(t), els (b) and (c) of Fig_12 we sﬁow instead" and(dPE /dt)
C(ha, ha; 7), defined as separately and in different time intervals for a better eagih

oo of the similarities.

Clhy has7) = / ha(t +7)ha(t)dt . (51) Some interesting remarks on Figl] 12 can be made already
- at a qualitative level. In particular, it is clear that™ suc-
The structure o€ (hy, ho; 7) encodes a quantitative compari- ceeds in tracking key features @fPF /dt). This is apparent
son between the two time series as a function of the time shiff) the relative magnitude of the three first positive peaks in
7 (referred to as “lag”) between them. This correlation func-the two signals and the qualitative agreement is maintamed
tion encodes the frequency components held in common bdime. As expected, some specific featuregit? /dt) are not
tweenh; andh, and provides crucial information about their faithfully captured ink ¢, such as the magnitude of the nega-
relative phases. Because the time series are intrinsidétly tive peak around ~ 148/ relative to the neighboring peaks.
ferent by a time lag, we measure the correlation between However given the heuristic characterigt® and the fact that
andhs as its geometric definition does not leave room for any tuning,
the overall qualitative agreement witd P> /dt) at .#* al-
ready represents a remarkable result, shedding light on the
T (52) near-horizon dynamics. This agreement betwgRS /dt)
) and K¢ is indeed the main result of this section and the ulti-

This number is confined betwe®mnd 1 (Wherel indicates mate jUStiﬁcation for the introduction (ffgﬂ. Itis also worth

perfect correlation, and no correlation at all) and provides Stressing that attempts employing other quantities (ebtinel

the maximum matching between the time serigsand k. application of the methods used for RT spacetimes) would not

obtained by shifting one with respect to the other in timej an lead to such a clear matching.

then normalized in frequency space. Besides providingamea From a quantitative point of view, the correlation analysis

sure of the correlation, expression Hq.l(52) also gives atijua for the time intervals shown in Fif_112 (b) and (c) indicates

tative estimate of the coordinate time detfay.. between the that the two signals yield a typical correlationt ~ 0.93 and

two signals. atime lagr = 97M (we recall that the observer is &0 M
Note that one should not expect a perfect match betweeand that the common AH has the size of a coupl&/Qf How-

(dPB/dt)(t) at #+ and K¢ (t) atH*, even if the latter re-  ever, as one tries to extend the analysis to the very first time

sults to be a good estimator of the former. Indeed, (nonfinea of the formation of the apparent horizon, the correlatioopdr

gravitational dynamics in the bulk spacetime affect antbdis  significantly. The reason for this drop is related to thetstre

the possible relation between both quantities. Furtheemor ing of the time coordinate between the two screens. In addi-

C. Correlation between the screens

C(hl, hg;T)
[C(h1,h1;0)C(ha, ha; 0

T

M(hy, ha) = max <



15

(a) (b) (c)

0.75 0.006 i

[ 0.004
05

0.002

L, 5
[ 025 | | oL VoL~ I 0.25 0 -
| 3 o - 5
o[ A ] Ll [P o NI R
,,,,,, Kze”(t) ) 90 100 110 180 190 200 2107
! ]
o [ - e mmm el ] 0
dP, (1) o
dt | ' -
i
_g L L P N B B R | | L | L
50 100 50 60 70 80 90 150 160 170 180 190
t [M] t [M] t[M

FIG. 12. Effective curvaturéls" defined at the horizon via Eq_{37) (red dashed curve) and flimamentum(dP? /dt) evaluated at an
approximation of.# * with Eq. [33) (blue dotted and solid curves). These quastitincode, respectively, the information of the common
horizon deformation and the flux of momentum carried away bys3n the head-on collision of BHs with mass ratio 1/2. Noteganel (a),
the qualitative agreement between those curves, whictvalie to distinguish the momentum radiated before (blueedattirve) and after
(blue solid curve) the merge. Panel (b) and (c) comparesaime gjuantities for latter times, where one can still see tioel @greement.

tion to the obvious time delay between th&P? /dt)(t) and  found in AppendiXD.

K¢ (t) due to the finite (coordinate) speed of light, in fact,

the dependence of the two signals in coordinate tirisenot

the same and is stretched between the two screens. This effec 1. Acritical assessment of the correlation

is the result of the in-built gauge mapping between sectidns

#* and the horizori{ " defined by the spacetime slicing, but ~ Of course, it is reasonable to question if finding such a high

also of the physical blueshift (redshift) of signals at thedr  correlation is just a bias in our methodology. Certainlyr ou

(outer) boundaries in the BH spacetime. strategy of identification of maxima and minima in the sig-
Although approaches to disentangle the physical and gaugeals enhances the correlations when time-stretchingsssiee

contributions can be derived, for instance by introducinginvolved. However, it does not guarantee by itself the high

proper times of suitably defined observers, this goes beyon(positive) values found forM. More specifically, once a

the scope of this paper. Rather, we opt here for a mordrst couple of maxima (or minima) are identified in the two

straightforward approach in which only comparisons basegignals, the subsequent couples of maxima and minima con-

on sequences of (absolute values and signs of the) maxinsiructed from the data in each signal are automatically fixed

and minima in the signals:,, (t) andh.yt(t) are considered As a consequence, high correlations are possible only if the

significant, since the relative shapelof,, (t) andh..(t) can  sequence of signs in the extrema of the two signals is exactly

be subject to a time reparametrization. This associatipnss  the same. In addition to consideration above, one may also

sible when the quantities which are compared are scalars, srgue that the high correlation found is just the result ef th

that the values of maxima and minima are well-defined and/ery rapid decay of the signals, which makes the first couple

independent of coordinates. This is possible in the case aff maxima and minima play a dominant role in the estimate,

axisymmetry as it gives a privileged direction along which possibly shadowing the role of the smaller peaks appearing

to contract the effective-curvature vectdit®. In a more at later times. To address this point and weight equally all

generic configuration one would need to build an appropriatgarts of the signals, we model them as exponentially decay-

frame to produce scalars by contraction with tensorial tjuan ing oscillating functions, i.e.h (t) = efmnthy,,(¢) and

ties. Once the correspondence between maxima and mininig, () = e"o=t'hq, (¢). This is applied to the signals without

in the two signalsh;,, () andhoyt (1) is established, a map- the time correction provided by the mag,: = tout(tinn)

PiNg tout = tous(tinn) Can be easily constructed. With this finding

matching, the calculation of the correlation parameteegiv

typically valuesM > 0.9 for any chosen time interv@.g Mbinn =0.179£0.005,  Mow = 0.181 + 0'0065’3

More information about the mapping betwegp, andt;, is (53)

larger than unity (indicating that initially the coordieatime at.#+ runs
10 |nteresting information can also be gained by studying imemtetail the faster than the time &k 1), but then oscillates around unity at late times.
properties of the mapping,ut = tout (tinn ). More specifically, we have This is consistent with the fact that as stationarity is apphed, the evo-
found that the derivativeltous /dtiny iS NOt constant and starts as being  lution vectort® adapts to the timelike Killing vector.
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FIG. 13. Quantities ori{* (red dashed line) and” * (blue solid  FIG. 14. Normalized power spectrum &< ((2) (red dashed line)

line) as shown in Fig—12 but without an overall exponentidal in  and (dP. /dt)(Q2) (blue solid line) as measured & and .# *,

time. The close similarity in the signals is confirmed by teeMarge  respectively (cf. Figuré_13). Both spectra are dominatedvixy

correlation which isM = 0.87, obtained without a time mapping.  frequencies:Q** = 0.22 + 0.04 and Q" = 0.98 + 0.05 (red
dashed line) an@$** = 0.22 4 0.04 andQ$™* = 0.97 £ 0.04 (blue
solid line) which are linear combinations of the quasindrnraging

through a least-square fitting. The resulting functibfig () ~ Modes of the merged BH (cf. Talle I).

andhf(t) once the exponential decay has been subtracted

out

are shown in FigLI3. Once again it is apparent that .theat # 7, consistent with the “beating” behavior shown by the
two time series are very similar and indeed the matchin

computed even without introducing any time mapping isgtpho(;/\r/]eéi\slgﬁc;;am Fig.14. Similarly, the decay time scales ar

M(hE L RE ) = 0.87 and thus remarkably high.
The main reason behind the good correlation found also for
the undamped signals is that the next-to-leading-orden,ter
i.e., termA3N; and the corresponding= 3 and? = 4 cou- These frequencies and time scales match very well the
pling in Eq. [50), are much smaller than the leading-ordente real (w;') and imaginary(w;) parts of the fundamental
N2N3. Indeed, we have found that it is possible to express tgn = 0) quasi-normal-modes (QNM) eigenfrequencies of a
a very good approximatiok ¢ ~ AN, A3 and (dPB/dt) ~ Schwarzschild BHI[68]. A detailed comparison is presented
NoN3. This is confirmed by the corresponding power spectrajn Table[l, whose first six columns report the properties of
which are shown in Fid._14 and are dominated in both casethe signalshin, () and hou:(¢) in their constituent frequen-
by two frequenciesQ"® = 0.22 £ 0.04, Q5" = 0.98£0.05  cjes Q?L2 5 and Qé\;2 , defined in Eqs.[(34)E(35), and com-
for the signalhin,(t), and Q9" = 0.22 £ 0.04, Q3" = pare them with the corresponding real parts of the eigenfre-
0.97 £ 0.04 for the signaliou (). quencies of a Schwarzschild BHY , .. The close match in
These frequencies are closely related to the quasinormahe oscillatory part is accompanied’also by a very good cor-
modes of the merged BH, interfering to lead to a beating sigrespondence in the decaying part of the signal. Defining, in
nal. To see this, we model each functiéfh and NV, as an  fact, the overall decay time in terms of the imaginary pafts o
exponentially damped sinusoid, i.&/; ~ e="* tsin(Qt +  the QNM eigenfrequencies, i.e., Bfwcay = wi=2 + wf=>, it
) andAy ~ e—nﬁftsm(myt + ¢V). Then, under the ap- IS €asy to realize from the last three columns in Téble I, that

imationfe® ~ NN and(dPB /di) ~ it foll this decay time is indeed very close to the one associated to
proximationi™ ~ Nos and(d P/ dt) ~ NoNis it follows the signal at the two screens [cf. Equatidnd (55) (56)].

Kinn = Hﬁz + Hﬁ:& s Rout = ’iﬁQ + “é\i& (56)

5 Qinn _ (yinn 5 Qinn 4 Qinn This role of QNMs is not entirely surprising for a measure
o, =21 o¥N =2 "1 = (54) at.", butitis far less obvious to see it imprinted also for a
2 2 quantity measured & ™. This indicates that the bulk space-
atH*, whereas time dynamics responsible for the recoil physics is a retdyi
mild one, so thata QNM ringdown behavior dominates the dy-
Qv _ Qgut — Qout Qv Qg 4 Qout (55) namics of_ the d(_eformed single AH a_nd_ imprint_s the properties
=2 = T o5 =377 o of the radiated linear momentum. It is interesting that apur
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(quasi-)local study of the AH geometric properties perrags these configurations. We have tested this idea by consider-
to read the behavior of quantities which are intrinsicals d ing the data presented in Ref, [20] both for the kick/antikic
fined at infinity, thus confirming the main thesis in Ref. [1].  velocities and for the final spin of the merged BH. This con-
jecture about the predictability of the antikick in terms of
the slowness parameter is indeed supported by the example
2. Antikicks and the Slowness Parameter data collected in Fid.15. More specifically, the left pamel i
Fig.[I8 shows the correlation between the slowness parame-

As a concluding remark for this section, we make use of outel 2 = 7'/ as computed in EqL(b8) and the dimensionless
results, and, in particular, on the spectral and decayiogpr SPin of @ BHagn = Jin/Mg, produced, for example, in the
erties of our measures on the screens, to make contact witRerger of a binary system (expressions to estimate the QNM
the analysis carried out i [82]. More specifically, we caneigenfrequencies for rotating BHs can be found in a number

define a characteristic decay time= (2r)/ki""/ut and an ~ Of works which are collected in the revielv [68]). The middle
panel shows instead the good correlation between thewelati

to build our equivalent of thtslowness parameterP = 7'/ antikick velocity Av/vin = (Umax — vfin)/vin = vi/vin and

introduced in |[__3|2]. The specific case discussed above theg1e dg?n%nlgs; f"l[aldSp'.?has corgputed ff[?]m th? dattadtaken
yields 7 ~ 34.9M, T ~ 6.4M and thusP ~ 0.18. As de- oM ReL ] (indicated with error bars are the estimateel n

tailed in Ref. [32]. small antikicks should happen when themerical errors). Finally, the right panel combines the firgt

two timescales are comparable, thus corresponding to an 0%1_nd shows the searched correlation between the antikick ve-

cillation which is over-damped. This expectation is indeed pcity and the sIo_wn_ess parameter. It also S_hO_WS With a solid
confirmed by the recoil velocity shown in Fig.110, where theIIne an exponential fit, which suggests aYar?'Sh'”g ant!fomk
relative antikick is about- 30% and thus compatible with a slowness parametét ~ 1. Allin all, this figure confirms

the slowness parameter that we have associated to our proceaS!S()t.forltEhbe ;?Stetr?f blna“estlr? QLIJaSICII‘CU|aI‘ Orr?llgt thf[-}sug
[see also the discussion below on the application of Eg$. (57ges lon .] atthe smafer the slowness parametgets, -
and [58) in FigT5]. This qualitative agreement with the-phe the larger is the expected value of the antikick. Large anti-
nomenological approach discussed in Ref| [32] is very natu'-('CkS should then be expected fr < 1 [32]. Furthermore,

ral. While we here concentrate on modeling the local curva-it highlights that it is indeed possible to predict qualitaly

ture properties at the horizon, Ref. [32] concentrates @n th the antikick mef_e'y on the_bas_is ofthe initial propertiesre
spectral features of the signal at large distances. Since V\}%HS when the binary is still widely separated.
have demonstrated that the two are highly correlated, isdoe
not come as a surprise that the two approaches are compati-
ble. Looking at the local horizon’s properties has howekier t V. CONCLUSIONS
added value that it provides a precise framework in which to
predict not only the strength of the antikick, but also its di ~ We have demonstrated that qualitative aspects of the post-
rectionality. Furthermore, such an approach permits arint merger recoil dynamics at infinity can be understood in terms
pretation of BH dynamics in terms of viscous hydrodynamicsof the evolution of the geometry of the common horizon of
as we will discuss in detail in paper Il. In particular, we kha the resulting black hole. This extends to binary black-hole
show there that the horizon-viscous analogy naturallydead spacetimes the conclusions presented in Réf. [1] based on
a geometric prescription for an (instantaneous) slownass p Robinson-Trautman spacetimes. More importantly, we have
rameterP, in terms of timescales andT’ respectively related shown that suitably built quantities defined on inner anéout
to bulk and shear viscosities. world tubes (represented either by dynamical horizons or by
The logic developed above for the calculation of the slow-timelike boundaries) can act as test screens responditigto t
ness parameter can be brought a step further by assuming thegiacetime geometry in the bulk, thus opening the way to a
the final BH produced by the merger of a binary system incross-correlation approach to probe the dynamics of space-
quasicircular orbit can be described at the lowest ordemby atime.
oscillation and decay times The extension presented here is nontrivial and it involves
9 9 the C(_)ns_truction of a phenomenological v_eciﬁjff(t_) from
T=-———+x, (57) theRicci curvature scalaf on the dynamical-horizon sec-
Wy + Wy_3 tions, which then captures the global properties of the flux
of Bondi linear momentunid P2 /dt)(t) at infinity, namely,
(proportional to) the acceleration of the BH. At the sameetim
T  wyy+whs the proposed approach involves the development of a cross-
= (58)  correlation methodology which is able to compensate for the
in-built gauge character of the time evolution on the two sur
Using the semianalytic expressions derived for estimatieg faces. A proper mapping between the times on the two sur-
spin of the final BH, e.g. [[69—71], it is possible to predict faces is needed and its gauge nature highlights that the phys
the values ofr andT" for any binary whose initial spins and ical information encoded in the surface quantities is not in
masses are known, and thus predict qualitatively throRgh its local (arbitrary) time dependence, but rather in tiiebal
the strength of the antikick which will be produced in any of structure of successive maxima and minima.

inn/out

oscillation-characteristic tim& = 27 /4, , from which

T

)

| |
Wp—g T Wy—g

to which corresponds a slowness parameter defined as

P

T Wi, Twily
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TABLE I. The first six columns offer a comparison between theperties of the signalsinn (t) andhous (t) in their constituent frequencies
Q{}QQ’S defined in Eqs[(34)E(®5), with the corresponding real pafthe eigenfrequencies of a Schwarzschild Bd%‘tm. The last three
columns show instead a comparison between the damping times.. defined in Eq.[(56), with the corresponding decay tiRigcay
computed from the imaginary parts of the eigenfrequendiesll cases, the close match is remarkable and not at albabvior quantities
measured ¢ .

‘ MY, MY, Mwh, MY, MY, Muwl M Kinn M Kout M Kdecay

‘0.38 +0.04 0.37 £ 0.04 0.37367‘ 0.60 £ 0.04 0.59 £ 0.04 0.59944 0.181 £ 0.006 0.179 £ 0.005 0.18166 ‘

(a) (b) (c)
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FIG. 15. Predictability of the antikick in terms of the sloggs parameter and the antikick. The left panel shows thelation between
the slowness parametét = T'/7 as computed in EqL{58) and the dimensionless spin of aBHThe mid panel shows instead the good
correlation between the relative antikick velocityv /vin = vk/vin @nd the dimensionless final spin, using the data taken frofn [RE
(indicated with error bars are the estimated numericalrgrd-inally, the right panel combines the first two and shtivescorrelation between
the antikick velocity and the slowness parameter. In paldic the good exponential fitting shows the consistench wivanishing antikick
for a slowness parametét ~ 1, as discussed if [32].

By analyzing Robinson-Trautman spacetimes, Réf. [1] prothe orbital angular momentum, finding a very good agreement
posed that when a single horizon is formed during the mergewith the numerical data.
of two BHSs, the observed decelerations/accelerations @f th
newly formed BH can be understood in terms of the dissipa-
tion of an anisotropic distribution of the Ricci scalar carv ~ As afinal remark we note thatlooking at the horizon’s prop-
ture on the horizon. The results presented here confirm thigrties has the added value that it provides a precise frame-
picture, although through quantities which are suited to BHWork in which to predict not only the strength of the antikick
Spacetimes_ Being Computed on the horizon, these quantitié)Ut also its directionality. Furthermore, as we discussean d
reflect the properties of the BH and, in particular, its exgron ~ tail in paper I, our geometric (cross-correlation) franue
tially damped ringing. The interplay between oscillatiomda Presents a number of close connections with (and potential
decay timescales associated with this process, which are ifimplications on) the literature developing around the ue o
evitably imprinted in our geometric variables, explain e~ horizons to study the dynamics of BHs, as well as with the
qualitative features of the recoil dynamics, in particutae  interpretations of such dynamics in terms of a viscous hydro
antikick, in natural connection with the approach discddse ~dynamics analogy. Much of the machinery developed using
Ref. [32], where the antikick is explained in terms of thecspe dynamical trapping horizons as inner screens can be exdende
tral features of the signal at large distances. Because v haalso when a common horizon is not formed (as in the calcula-
shown that the latter is closely correlated with the sigrtal ations reported in Refl[31]). While in such cases the idegaifi
the horizon, we can adopt the same slowness parameter intrion of an appropriate hypersurface for the inner screerbean
duced in Ref[[32] to predict qualitatively the magnitudetef  considerably more difficult, once this is found its geoneetti

antikick from the merger of BH binaries with spin aligned to properties can be used along the lines of the cross-cdoelat
approach discussed here for dynamical horizons.
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Appendix A: Correlation and matching of time series and the expression for the autocorrelation of functibr(g)

The correlation function C(hy, ho;7) introduced in

Sec[TV Q provides information in the time domain about the oo
comparison of temporal serids (t) and hy(t). Its Fourier / |hi(t)|*dt = C(hi, hi; T = 0) . (A7)
transform defines theross-spectrudy(hq, ho; f) of hy and -

ho, providing the corresponding analysis in the frequency do-
main. It has the form
- . We then recover expression {52) far(hy, he) in terms of
C(h1, has f) = ha(f)h3(f), (A1) the correlation functio (hy, ha; 7).

where Fourier transform conventions are
hi(f) = / hi(t)e™ ™t | hi(t) = / hi(f)e” 2 Itdf .
Choosing a measures,, (| f|))~'df, a natural scalar product

between functiong, () and hy(t) (or hy(f) andhy(f)) is

; Appendix B: Mapping time series on the screens
introduced as

(h1,ha) = / %df (A3) As discussed in Sed_IVIC, a built-in gauge mapping be-
oo T tween sections of# ™ and the horizor{™ defined by the
In GW data analysis,, (| f|), thenoise power-spectral den- spacetime slicing leads to a stretching of the time cootdina
sity, is associated with the spectral sensitivity of the instru-between the two screens.
ment. In our case we have re priori knowledge about . . o
S,(|f]), and we chooss,,(f) = 1. The scalar produdt, -) A comparison based on sequences of maxima and minima

. L - = in the signalshi,,(t) and . (t) allows us to construct the
introduces the natural projection between(f) and ha(f). in the C o : .

: : . " mappingtout (tinn ), Which is here depicted in Figll6a. Also
Their normalized scalar product defines twerlap shown in Fid.Ibb is the derivative of this interpolatiorycial

- (h1, h2) to assess the relative rate of the considered coordinagstim
Olha, ho] = : (A4) In particular, it addresses the behavior discussed in fiietn
V/(h1,h1)(ha, ha) a0

Fixing one of the functions, saj; (¢), we can consider its

overlap with the function resulting by shifting (¢) in time Finally, FiglI6c presents the correlation numbkf be-
by a time lagr, i.e., ho(t + 7). In the frequency do- tWeen the two signals as a function of time intervals The
construction of the intervala is based on the sequences of
maxima and minima identified in the two signals. In this
way, we fix the final time in both series #&! = 96.8M
(., ha() aﬁndltggf‘l = 1194.4M and then we establish Windovxtsi =

_ _ 1, ha(7 thinal _ ginitial “starting from¢initial — 49207 and¢initial =
M(ha, hz) = max{Olha, ha (7))} = max (h1,h1)(ha, hy) ~ 140.4M. For the red curve, the correlation is evaltiated with-

out using the mapping,.; = tout (tinn ) t0 correct the stretch-

main this amounts to calculate the overlap betwegn) and
ha(f,7) = ha(f)e~ 77, Maximizing overr provides the
best matctestimator

oo 7 T % —i2w fr
— max J—oc M (F)h3(£)e af ) ing, while the black curve takes the effect into account.sThi
o |3 0 |3 B latter figure shows that the correction through the mapping
2 2
(LOO I (F)IPdf JZ5 ha ()] df) tout = tout(tinn) is crucial to disentangle coordinate from

(A5) real effects at early times.



20

(a)

(b)

200

180 — 2.5 — 0.8 - —
~ | t 1 i
= r 4

2 i [ ] i
160 - e 2 - 506 -
= 1 3 T 1 3 1
Q z F — © . .

5 R N [ ] < —— without mapping g

© 4 o = 4

— - L B o

§14O F - Y15 - S04 —— with mapping -

3 1 [ ] i

E i r 1 i
120 — — 1 — 02— —
100 e L o T B B 0 ! ! ! ! L]

50 80 20 30 40 50

©
]

50 80

FIG. 16. Mapping between the coordinate titneandt,.. measured at the inner/outer screens. The first panel shewsttrpolation of the
functiontous = tout(tin) constructed from the comparison between the sequence afmaand minima in the signalsin, (t) andhout (t).

The middle panel depicts the interpolation’s derivaiie, /dti,. In particular, it shows that initially the coordinate tirae.# * runs faster
than the time a#{* and than oscillates around unity at late times. This bemasioonsistent with the approach to stationarity. Finag
right panel presents the correlation numbetr as a function of time interval&. The red curve shows the correlation without the using the
mappingtout = tous(tin) t0 correct the time stretching between the signals on thestmeens, whereas the black curve takes the effect into
account and gived/ > 0.9. This correction is crucial to disentangle coordinate freal effects at early times.
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