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In a companion papet[1], we have presented a cross-caarlapproach to near-horizon physics in which
bulk dynamics is probed through the correlation of quassitiefined at inner and outer spacetime hypersurfaces
acting as test screens. More specifically, dynamical hnszwovide appropriate inner screens iB-a 1 setting
and, in this context, we have shown that an effective-cureatector measured at the common horizon produced
in a head-on collision merger can be correlated with the fluinear Bondi-momentum at null infinity. In this
paper we provide a more sound geometric basis to this pict&iest, we show that aigidity property of
dynamical horizons, namely foliation uniqueness, leads poeferred class of null tetrads and Weyl scalars on
these hypersurfaces. Second, we identify a heuristic tiwmzwslike function, depending only on the geometry
of spatial sections of the horizon. Fluxes constructed ftiois function offer refined geometric quantities to be
correlated with Bondi fluxes at infinity, as well as a contadhvthe discussion of quasilocal 4-momentum on
dynamical horizons. Third, we highlight the importance rafcking the internal horizon dual to the apparent
horizon in spatial 3-slices when integrating fluxes along ltlorizon. Finally, we discuss the link between the
dissipation of the nonstationary part of the horizon’s getsnwith the viscous-fluid analogy for black holes,
introducing a geometric prescription for a “slowness pagter! in black-hole recoil dynamics.

PACS numbers: 04.30.Db, 04.25.dg, 04.70.Bw, 97.60.Lf

I. INTRODUCTION

In Ref. [1] (paper | hereafter) eross-correlationmethod-
ology for studying near-horizon strong-field physics was ou

The adaptation of geometric structures and tools frgim
to BH horizons is at the basis of important geometric devel-
opments in BH studies, notably the quasilocal frameworks
of isolated and dynamical trapping horizohs[[3-5] (see also

lined. Spacetime dynamics was probed through the crosgefs. [6,[7]). In this spirit, the construction df¢ (v) on

correlation of timeseries;,, and h.; defined as geometric
guantities onnnerandouterhypersurfaces, respectively. The
latter are understood #sst screenwhose geometries respond
to the bulk dynamics, so that the (global) functional stuoet
of the constructed cross-correlations encodes some oéthe f
tures of the bulk geometry. This is in the spirit of reconstru
ing spacetime dynamics in dnverse-scatteringicture. In
the context of asymptotically flat black-hole (BH) spacetim
the BH event horizo” and future null infinity.# * provide
natural test hypersurfaces from a global perspective. Wewe

the horizon? partially mimics the functional structure of
the flux of Bondi linear momentum a¥ *. In particular,
(dPP /du)(u) can be expressed in terms of (the dipolar part
of) the square of the news functiokl on sections of# ™,
whereas the definition ak ¢ (v) involves the (dipolar part of
the) square of a functio® constructed from the Ricci scalar
2R on sections of{. However, the functiond/ and\ differ

in their spin-weight and, more importantly, they show aefiff
ent behavior in time: whereas (u) is an object well-defined

in terms of geometric quantities on time sectidhsc .,

when a3 + 1 approach is adopted for the numerical construc-nothing guarantees thiscal-in-time character of\'(v) [see

tion of the spacetime, dynamical trapping horizéhgrovide

Eqg. (4) below]. The latter is a crucial characteristic of the

more appropriate hypersurfaces to act as inner test s@teengiews function, so that/(v) cannot be considered as a valid

In the application of this correlation strategy to the stuwdy
BH post-merger recoil dynamics, an effective-curvature-ve
tor K¢%(v) was constructed [1] o as the quantityhiy,, to
be cross-correlated with,,;, where the latter is the flux of
Bondi linear momentunid P2 /du)(u) at.# * (here,u andv
denote, respectively, advanced and retarded Bjnes this

newslikefunction on#.

These structural differences suggest that, in spite ofiube s
cess of K¢ in capturing effectively (at the horizon) some
qualitative aspects of the flux of Bondi linear momentum (at
null infinity), a deeper geometric insight into the dynamics
of # can provide hints for aefinedcorrelation treatment. In

paper we explore some geometric structures underlying anghis context, the specific goals in this paper are: i) to fysti

extending the heuristic construction in [1] of this effeetio-
cal probe into BH recoil dynamics.

1n paper | future outer trapping horizons were denoted?y to dis-
tinguish them from past outer trapping horizo#t~ occurring in the
Robinson-Trautman model, extending the studylin [2].

2 Cross-correlation of quantities & and .# * requires the choice of a
gauge mapping between the advanced and retarded tinaesl v. This
time-stretching issue is discussed in paper I.

the role off(fff as aneffectivequantity to be correlated to
(dPPB/du), suggesting candidates offering a refined version;
i) to explore the introduction of a valid newslike function

‘H, only depending on the geometry of sectidhisc H; iii) to
establish a link between the cross-correlation approagtin
and other approaches to the study of the BH recoil based on
guasilocal momentum.

The paper is organized as follows. Secfidn Il introduces the
basic elements on the inner scré¢igeometry and revisits the
effective-curvature vector of paper I. Aiming at understan
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ing the dynamics of the latter, a geometric system governing
the evolution of the intrinsic curvature along the horiZgns
discussed, making apparent the key driving role of the Weyl
tensor. In SedJll some fundamental results on dynamical
horizons are discussed, in particularigidity structure en-
abling a preferred choice of null tetrad &#. Proper con-
tractions of the latter with the Weyl tensor lead in 9ed. IV to
newslike functions and associat®dndi-like fluxe®n# pro-
viding refined quantities on the horizon to be correlatechwit
Bondi fluxes at# *, as well as making contact with quasilo-
cal approaches to BH linear momentum. In S€k. V our ge-
ometric discussion is related to the viscous-fluid analofyy o
BH horizons, providing in particular a geometric presdopt
for the slowness parameteP in [8]. Conclusions are pre-
sented in Se€_VI. Finally a first appendix gathers the geomet
ric notions in the text, whereas a second appendix emplsasize
the physical relevance afiternal horizonswhen computing
fluxes alongH. We use a spacetime signatyre, +, +, +),
with abstract index notation (first letters, b, c..., in Latin al-
phabet) and Latin midalphabet indicésj, k..., for spacelike  FIG. 1. Worldtube?{ foliated by closed spacelike surfacgS;} as
vectors. We also employ the standard convention for the sunthe result of a3 + 1 spacelike foliation{>;}. The evolution vec-
mation over repeated indices. All the quantities are exggés tor h* (tangent toH and normal to{S; }) transports the slicé; to
in a system of units in which= G = 1. St+s:. The normal plane at each point 8f can be spanned by the
outgoing and ingoing null normal vectof§ and k£ or by n*, the
unit timelike normal to>;, ands®, the spacelike outgoing normal to

Il. GEOMETRIC EVOLUTION SYSTEM ON THE Sy and tangent t&; (cf. Appendixd) .
HORIZON: THE ROLE OF THE WEYL TENSOR

where the trac#®) = ©") e, referred to as thexpansion
alongh“, measures the infinitesimal evolution of e ele-

ment of area alon@{, whereas the traceleshearafl’g) con-

. . . . trols the deformations of the induced metric (see Eql (A6) in
Let us consider a BH spacetinié, o, ), with associated  pn0ndiyA). Heres,, can be identified with the projection on

Levi-Civita connectiorV,, endowed with & + 1 spacelike 4/ ot the | je derivativel;, [see Eq.[(AR) and the remark af-

follat!on {2?}' Lgt us consider grmnerhypersurfac@-[, to be ter Eq. [A9)]. Before reviewing the effective-curvaturecter

later identified with the BH horizon, such that the inter®tt  eff ot s discuss the time parametrizatiortof

of the slicesz; with the world-tubeH defines the foliation of We recall that jumps of apparent horizons (AHs) are generic
H by closed spacelike surfacgs; }. We consider an evolu- in 3 + 1 evolutions of BH spacetimes. The dynamical trap-

: A J
:Ic?;]-t\;enccgonrgrmﬂlo{:)gtﬁé glri](?ergg}et[ﬁ:':jt ;Sn égitrt\ﬁﬁ?rsltiigtgemping horizon framework offers a spacetime insight into this
: _ behavior by understanding the jumps as corresponding to
onto the sliceS,5;. The normal plane at each point &f marginally trapped sections of a (single) hypersurfacelven
can be spanned in terms of thatgoingnull vector/* and the in spacetime, but multiply foliated by spatial hypersugam
ingoing vector k®, _chosen to satisfyk, =-L Directions_ the3 & 1 foIi’ation (s} [10-114]. In the particular case of
of £ a_nd K are f|>_<ed, though a rescaling freedom _rer_namsbinary BH mergers this picture predicts, after the moment of
(see FidlL). In partl_cular, and without loss of generalitpur its first appearance, the splitting of the common AH into two
context, we can write[9] horizons: a growingexternalcommon horizon and a shrink-
he = ¢ — Ck°, (1)  inginternal common horizon [1Z, 14]. It is standard to track
the evolution of the external common horizon, the proper AH,
but to regard the internal common horizon as physically-irre
evant. In AppendikB we stress however the relevance of the
internal horizon in the context of the calculation of physic
fluxes into the black-hole singularity.
In Fig.[2 we illustrate this picture in a simplified (spher-

A. Theinner screenH

so thath®h, = 2C. Therefore:h® is, respectively, spacelike
if C >0, nullif C' =0, and timelike ifC < 0.

Regarding the intrinsic geometry &, the induced metric
is denoted byy,;, its Levi-Civita connection byD, and the
corresponding Ricci curvature scalar By. The area form is

2 _ 1 2 ;

€= ﬁd% A dz .ar?d_we. will denotg the area measure aSicaIIy symmetric) collapse scenario that retains the v

dA = \/qd”z. The infinitesimal evolution of the intrinsic ge- taatres of the discussion. On one side, the relevant outer

ometry along#, i.e., the evolution of the md(g)ced geometlry gereen boundary (namely, null infinity? +) is parametrized

qap @longh*, defines theleformation tenso®,,," [cf. Equa- by the retarded time, something explicitly employed in the

tion (A3) in AppendiA] expression of the flux of Bondi momentum in Egs. (33) and

1 1 (34) of paper I. On the other side, from tBet 1 perspective,

@(h) =25 _ (n) _o(h) 2 . .

ab = 5O%hfab = Tgp + 57" "dab (2)  the moment, of first appearance of the (common) horizon
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(i.e., generically not tangent t8,) and tangent to the 3-slice
¥ that intersectd{ at S, (i.e., S, = H N X;). Then, the
components T [¢](v) is expressed Bs

R0 - (€50 (V) aa, @

817
wheres; is the spacelike normal t8, and tangent t&;, and

N@w) = / ZR(V)d + Ny, (4)
Vo
where?R is the Ricci curvature scalar di§,, ¢.;) and,, is
an initial function to be fixed. As commented above, in spite
of the formal similarity with the news functioW (v) at .+
[cf. Equation (34) in paper I), definitioR}(4] does not guaesn
the local-in-time character of/(v) since it is expressed in
terms of a time integral on the past history.

In order to study the dynamics df, we consider the
evolution of the Ricci scalar curvatut® along the world-tube
‘H . In terms of the elements introduced above, the evolution
of the Ricci scalar curvaturd alongh® has the form

FIG. 2.  Carter-Penrose diagram (corresponding, for sicitgli 2 _ __p(h) 2 2mya2mb (1) 2x o(h)
to a generic spherically symmetric collapse) illustratithg time On'R=—0"" "R +2°D" D0y —“Af ’ ®)
parametrization of the outer and inner screens. The outendo \yhere2A — ¢°*2D,2D,, denotes the Laplacian & . Expres-
ar%/ given by‘ﬁ+ s p(;operly para|1metrized téy thz retarded time i 13) s a fundamental one in our work and it applieary
whereas an advanced timeuns along inner boundaries, in particu- . .

lar the dynamical horizof(. Given a3+1 foliation {X, }, ¢. denotes g)ll—|pseE:Urgggz{vzﬁlé?ﬂt{e?sbt);lfle?\szg f#éfi%ﬁétﬁgt:\?émlrori-

the timet at which the horizon first appears. For> t¢., X slices . . ! . L.
intersect multiply the hypersurfadé, giving rise to internal and ex- 20N or as the dynamical horizon associated with the folmtio

ternal horizons. On the contrary, the advanced coording@t®vides {Et}'
a good parametrization ¢ from an initialv > vo.

C. Geometry evolution on BH horizons

corresponds to the coordinate timet which the3 + 1 fo-

liation {3, } firstly intersects the dynamical horizdd. For We briefly recall the notions of BH horizon relevant here
t > t., 3 slices intersect twice (multiply, in the generic case) and refer to AppendiX A for a systematic presentation of the
the hypersurfacé{ giving rise to the external and internal notation. First, the event horizon (EHj is the boundary
common horizons (cfH in Fig.[2). Therefore, the time func- of the spacetime region from which no signal can be sent to
tiont is not a good parameter for the whole dynamical horizon# T, i.e., the region inM not contained in the causal past
7. An appropriate parametrization of this hypersurfacés  J (£ 1) of #+. The EH is a null hypersurface, character-
given in terms of an advanced time, suctvaparametrizing ized asé’ = 9J (4 *) N M. Second, a dynamical hori-
past null infinity.# —. More precisely, (for a spacelike world- zon (DH) or (dynamicaljuture outer trapping horizof is a
tube portion ofH) we can label sections 6{ by an advanced quasilocal model for the BH horizon based on the notion of a
time v starting from an initial valuey, corresponding to the world-tube of AHs. More specifically, a future outer trapgin
first v = const null hypersurface hitting the spacetime singu- horizon?{ is a hypersurface that can be foliated by marginally
larity, i.e., H = U,>,, Sv- (outer) trapped surfaceS;, i.e., H = (J,cp St With outgo-

B ing expansiord') = 0 on S;, satisfying: i) afuture con-
dition #*) < 0, and ii) anouter conditions,0®) < 0. In

the dynamical regime, i.e., when matter and/or radiatiossr
the horizon (namely whe#6®) # 0), the outer condition is
equivalent to the condition th&{ is spacelikel_[_1|ﬂ. There-

In paper | the effective-curvature vectdf;" was intro-  fore, for dynamical trapping horizons we hage> 0 in Eq.
duced using the parametrization &f by the time function ) [cf. discussion after Eq_{A12)].

t associated with the spacetiriet- 1 slicing. In particular,
K (t) was defined only on the external part of the horizon

> initi pfeff
H,fort > te. .We can now eXte_nd the definition _ﬁl o 3 For avoiding the introduction of lapse functions related different
the WhOlQ horlgorﬂ{ (more pfec'sebh toa Spa<?e|'k_e world- parametrizations of{, we postpone the fixing of the coefficient to Jed V.
tube portion of it) by making use of its parametrization bg th  we note that a global constant factor is irrelevant for cramselations.
advanced timey adapted to the + 1 slicing of #. Given 4 This property actually substitutes the outer conditiorhia DH characteri-
a sectionS, C 7, we consider a vectof’ transverse to it zation [4]15] of quasilocal horizons.

B. Effective-curvature vector K¢
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For both EHs and DHs, an important area theorem holdsator¢* satisfies a pregeodesic equatiSi .¢* = (9 ¢* [see
ohA = ¢ 0WdA > 0. Inthe case of an EH, Hawking's area Eq. [AJ) for the expression of the nonaffinity paramet€t].
theoremES] guarantees the growth of the area, whereahoosing an affine reparametrization such #as geodesic,
in the case of a DH, the positivity 0, A = — §¢ COMdA  je x® = 0, the evolution equations TG, ga,, o'* and
[cf. Equation[AT1] is guaranteed by its spacelike charactep(n) ¢jose the evolution system “

(C > 0) together with the future conditioff®) < 0.
We make now contact with EG.](5) and interpret the ele- 50°R = —0 2R 4+ 22D**Db ") —2A9() (6)

ments that determine the dynamics*&f The growth of the © | po

=2 7
area of a BH horizon guarantees the (average) positivity of Ocdab Ufb + 0" )
0("). This offers a qualitative understanding of the dynami- 5000 = —=(0)2 — U%)U(é)“b — 8Tl (8)
cal decay ofR: the first term in the right-hand side drives an 2

exponential-like decay of the Ricci scalar curvature. More S0l = U,E?U(E)quab — g% Clepaltf . 9)
precisely, nonequilibrium deformations of the Ricci scala

curvature’R in BH horizons decay exponentially as long as ?)rr]r%z;inolgagggggglOtgsc?(r)ieprtehsecns?/ifé;?ea?;l%/hreerpn?ilt?g:gterm
he horizon grows in area. R rding the ellipti rator . . . )
the horizon grows in area. Regarding the elliptic ope ato%?béaéb in the focusing equation and®,q?,Ci.ral'¢? in

acting on the shear and the expansion [second and third tert o tidal equation. Using a null tetrad®. ka. ma. mo
in the right hand side of EJ.X(5)] they provide dissipativerte (see Apper?diﬂ) .they cagr]1 be expressecfi in témén;f)Ricci
smoothing the evolution ofR. Indeed, in Sed_V we will and Weyl scalars: 877, (%" — Ruf*f® — 2By, and

review a viscosity interpretation ﬁ(’_ﬂ and gflb), in partic- ¢ 4% Clopal t! = Woigm,+Womamy,. The complex Weyl
qlar associating Wlth. them respective decay and oscifiatio scalar®, and the Ricci scalab,, drive the evolution of the
timescales of the horizon geometry. geometric systeni{6)5(9) on the horizon. Being determined
in terms of the bulk dynamicsl, relates to the near-horizon
dynamical tidal fields and incoming gravitational radiatio
whereasb, accounts for the matter fields), fields and® g
) ) act asexternal forceproviding (modulo initial conditions) all

A further understanding of Ed.J(5) requires a control of thethe relevant dynamical information for systelm (€}—(9)%n
dynamics of the shearg;), of the expansiod@™ and of the In the DH case, although the evolution system is more
induced metrigy,, the latter controlling the elliptic operators complex, the qualitative conclusions reached here remain u
2D2Db and?A. Therefore, we need evolution equations de-changed. More specifically, the differential systenfogov-
terminingdy, gap, 5,00 andghgfl’;); erning the evolution ofR is also driven by external forces

i) 61,qas: definition of the deformation tenscFhe evolution ~ 9IVen by a particular combination of Weyl and Ricci scdlars

O (h) ) . In the present cross-correlation approach, these dynamica
of gy I dictated by, andf'™ [cf. Equation(2)). considerations strongly suppdrt as a natural building block

) 5,00 focusing or Raychadhuri-like equatiofihe evo-  in the constructidhof the quantityhi,, (v) atH, to be corre-
lution of 6(*) involves the Ricci tensof,, i.e., the “trace  |ated in vacuum talP /du at.# . This is hardly surprising,
part” of the spacetime Riemann tens®f;.q, thus introduc-  given the dual nature of, and¥, on inner and outer bound-
ing the stress-energy tenshy, through Einstein equations.  aries, respectively.

i) 5hgl(1’g): tidal equation The evolution Ofgé’;) is driven Particularly relevant are the following remarks. First, in

by the Weyl tenso€@,.4, i.e., the traceless part of the space-the presence of matter, the scadag, plays a role formally
time Riemann tensor, thus involving dynamical gravitation analogous to that ofy. Therefore, in the general case, it

degrees of freedom but not directly the Einstein equations. Makes sense to consides, on an equal footing a#,, in the
) construction ofu;,, (v). Second, EqL{6) is completely driven
The structural feature that we want to underline about thesgy the rest of the system, without back-reacting on it. For

equations is shared by evolution systems on EHs and DHgpis reason, althougl¥, (and®y,) encodes the information

although the explicit form of the equations differin botlsea.  jetermining the dynamics on the horizon, at the same time the

More specifically, whireas for EHs the evolution equations,y|ytion of2R is sensitive to all relevant dynamical degrees

for 2R, g5, 0 ando'?’ form a “closed” evolution system, of freedom, providing amveragedesponse. This justifies the

in the DH case additional geometric objects (requiringfart  crucial role of?R in the construction of the effectiva ¢ in

evolution equations) are brought about through the evaiuti paper|.

equationssy, qqs, 0,0 and 5hgg’g>. Moreover, an explicit A serious drawback for the use &f; and®qg in the con-

dependence on the functi@n related to the choice &f + 1 struction of a quantitys;,,,(v) at H is their dependence on

slicing as discussed later [cf. Equati@nl(13)], is involiethe  the rescaling freedom of the null normél by an arbitrary

DH case. For these reasons, and for simplicity, in the rest ofunction onS. We address this point in the following section.

this subsection we restrict our discussion to the case otgn E

indicating that the main qualitative conclusion also hdtus

DHs, whose details will be addressed elsewhere. 51n a DH, the leading term in the external driving force is iadegiven by
The EH& is a null hypersurface generated by the evolution o, but corrections proportional t6' also appear.

vectorh?, a null vector in this caséi® = ¢¢. The null gener-  ° Constructed as in Eq€1(3) arid (4) but substitulifigoy Wo.

1. Complete evolution system drivifg



FIG. 3. Worldtubest; (blue) andH (red), respectively, associ-
ated with two differenB + 1 slicing {3;, } and{%, } and providing
evolutions from a given marginally trapped surfaSgin an initial
Cauchy hypersurfacg,. They illustrate the nonunique evolution of
AHs into DHs. The foliation{S:, } (resp. {S:,} ) by marginally
trapped surfaces is defined by the intersection${efwith {3, }
(resp. H2 and{X;,}). Note that, from the DH foliation unique-

ness Result [19], surfacesS;, = H1 N X, are not (in general)
marginally trapped surfaces.

Ill.  FUNDAMENTAL RESULTS ON DYNAMICAL

HORIZONS

The introduction of a preferred null tetrad on the horizon

requires some kind of rigid structure. We argue here that DHs
provide such a structure. We first review two fundamental

geometric results about DHs:

a) Result 1 (DH foliation uniquenesiS]: Given a DHHA,
the foliation{S, } by marginally trapped surfaces is unique.

b) Result 2 (DH existencd2d,[21]: Given astrictly stably
outermostmarginally trapped surfac§, in a Cauchy hyper-
surfaceX, for each3 + 1 spacetime foliatiod ¥, } containing
Y there exists a unique DH{ containingS, and sliced by
marginally trapped surfacgss; } such thatS; C ;.

These results have the following important implications:
i) The evolution vectoh® is completely fixed on a DKup

to time reparametrization). By Result 1 any other evolution
vectorh’® does not transport marginally trapped surfaces into= o

marginally trapped surfaces.

i) The evolution of an AH into a DH is nonuniquéet
us consider an initial ARSy; C Xy and two different3 + 1
slicings{X;, } and{X,,}, compatible with>},. From Result
2 there exist DHH; = (J,, &, andHsy = {J,, Si,, with
Sy, = HiN%, andS,, = He N X, marginally trapped
surfaces. Let us consider now the sectiong{gfby {X, },
i.e.,S;, = HiNy,, sothatd, = J,, S;,. Inthe generic
case, slicinggs;,} and {S;, } of H, are different (deform
{X:,} if needed). Therefore, from Result &/, cannot be
marginally trapped surfaces. Reasoning by contradictian,
then conclude the#{; and?H- are different hypersurfaces in
M, as illustrated in Fifl3.

5

The two results above establish a fundamental link between
DHs and the3 + 1 approach here adopted. We denote (cf. also
AppendixA) the unit timelike normal to slices; by n* and
the spacelike (outgoing) normal t§ and tangent ta:; by
s® (see Fid.ll). We denote hy the lapse associated to the
spacetime slicing function, i.e.,n, = —NV,t. Given a
marginal trapped surfac§, in an initial slice>, and given
a lapse functionV, let us consider the (only) DR given by
Result 2. Then the unique evolution veckdron associated
with Result 1 can be written up to a time-dependent resdaling
as

h® = Nn® + bs® | (20)

whereb is a function onS; to be determined in terms &f and

C [see Eq.[(IB) below]. Certainly such a decomposition of an
evolution vector compatible with a giveh+ 1 slicing {X;},

in the sensé&“V,t = 1, is valid for any hypersurface but, in
the case of a DH and due to Result 1, the evolution véctor
determined by Eq[(10) has an intrinsic meaning (up to time
reparametrization, which is irrelevant in a cross-cotiela
approach) as an object finot requiring 83+ 1 foliation. On

the other hand, Eq.{1) provides the expression of vécton
terms of the null normals. More specifically, EQl (1) linkgth
scaling of/* and k® to that of h* by imposingh® — (% as
the DH is driven to stationarity@ — 0 < 6,00 — 0).
Writing the null normals at{ as¢* = (f/2)(n* + s*) and

k* = (n* — s%)/ f, for some functionf, expressiong{1) and
(I1Q) for h® lead to

_ N+b 1

2 N+b
where the subinde¥ denotes the explicit link of{ to a3 +1
slicing. In order to determing, we evaluate the norm df*

and note that the functio@' in Eq. (1) is expressed in terms
of N andb as

ty (n® +5%) , kY = (n® —s%), (11)

_ 1 2 2
C= 5 (b* = N?) . (12)
On the other hand, for a given lap3& the trapping horizon
5,0 = 0 condition translates into an elliptic equation for

[cf. Equation [[AT2)]
—2AC +2902DeC — C | -2DQ0 + QOO0 %QR

) _(gyab

o O + 87T .

(13)

Therefore, for a given DHH associated with & + 1 slic-
ing with lapseN, Egs. [IB) and{12) fix the value &f Pre-
scription [11) provides then preferred null normals on aBH
compatible with the foliation defined hy. Completed with
the complex null vectom® on S;, we propose

(€%, ki, m®,m*) , (14)

" This applies, strictly, to the external part of the horizoiscdssed in
Sec[ITA. For the internal part one must reverse the evalutigth respect
to that defined by th8 + 1 foliation: h* = —Nn® + bs®. The following
discussion goes then through.
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as a preferred null tetrad (up to time reparametrizationqon quantitiesk; andj(/g) on H. In particular, the news func-

DH. To keep the notation compact, hereafter we will denoteion NV (u) is an object well-defined in terms of geometric
the preferred%, and k% simply as¢* andk® and omit the quantities on section§, C ¢, that can be expressed as
symbol N from all quantities evaluated in this tetrad. The a time integral [cf. Eq. (34) in paper I] due to the key relatio
tetrad [I#) then leads to a notion of preferred Weyl (andiRicc 9, = ¥, holding for Bondi coordinate systems.#t*. On

scalars on the horizoH. In particular, the contrary, the quantit}/\”’ defined by time integration of
: U is not an object defined in terms of the geometry of a sec-
_ (a byc,d 0
Vo = Ceq Lamm", (15 tion s, (ustifying the use of a “tilde”). Such a local-in-time
oo = lRab ropb (16) beha_vior is a crucial property to be satisfied_ _by any validsew
2 function. Therefore, one would expect additional term%to

In summary: we have introduced preferred null normals on gWith vanishing counterparts af *), contributing iV to
DH # by: i) linking the normalization of” to that ofh® by ~ build an appropriate newslike function 6t
requiringh® — (¢ in stationarity; and ii) fixing the normaliza- ~ In the absence of a sound geometric news formalistion
tion of K (up to a time-dependent function) by the foliation we proceed heuristically by modifyin/gféf) so thatitacquires
unigueness result on DHs (Result 1). The latter isrthil a local-in-time character. Such a property would be guaran-
structureneeded to fix a preferred null tetrad 6. In the  teed if the integrand in definitio (1L.8) could be expressed as
particular case of constructirld in an initial value problem a total derivative in time of some quantity defined on secion
approach (Result 2 on DHs), the free time-dependent fumctioS,. The scalailq in Eq. [I8) does not satisfy this property.
is fixed by the lapséV of the given global foliatio{ %, }. However, with this guideline, inspection &f (9) suggestseo
of the terms to be added tb, [system [6)-L(P) applies to the
EH case] so that they integrate in time to a quantityn

IV. NEWS-LIKE FUNCTIONS AND BONDI-LIKE FLUXES namely the shear. Considering first, as an intermediate step
ON A DYNAMICAL HORIZON the EH case and using a tensorial rather a complex noffation
let us introduce a newslike tenqr/\/g))ab whose time vari-
A. News-like functions: vacuum case ation is

(0 1 ¢ Vi cd
In Sec[T we have identified the Weyl scali as the ob- (N3 )as = 7 (q o0"Cresal t! — o' Qab) , (19)
ject that encodes (in vacuum and for= 0) the relevant geo-
metric information on the BH horizon understood as an innethat is. such thai é@))ab _ —1/\/5(540(? (the global fac-

screen. Then in SeE ]Il we have introduced a preferred scal- . . T .
ing for ¥y on DHs. With these elements we can now introduce 2" 1//2is required for the correct coefficient in the leading-

the following vectorial quantity of ordc_er contr_lbu_tlor))._ ‘Upon time integration in I_Ed:[18) and
setting vanishing initial values at early times, this cledeads

: 1 i6,) O 0] o
REJ) = g ¢ () W) ad, 1) )
Sy (Né,é))ab _ 7E0—¢(z€)) ) (20)
with
v If we write
NO () = / Wo(v' ), (18) Lo
vo (Nézl))ab = %/ [qcaqdbclcfdflff—
where we make use of an advanced timparametrizing/{ (e; O sed
(cf. SecIA and FigR) and adapted to the- 1 slicing atH 2(Ng )eaN ) Qab} dv',  (21)
(namely, we choosk®*V,v = 2 to match the general notation .
in paper I). and substitutéj\/é, ))ab recursively in the right hand side, we

The quantity’; could be used as a refined versionf6f  can express the newslike functioh’")),,; in terms of¥, so
for the correlation withd P /du at .# . However, whereas that the lowest-order term is indeed given by expres$io (18
K¢% is explicitly understood as aeffectivequantity and, con- This identification, in the EH case, of a plausible newslike
sequently, one can relax the requirement onNheonstructed tensor as the shear along the evolution vector suggestslthe f
out of 2R in (@) to behave mathematically as a news function,Jowing specific proposal for the newslike tensor for DHs
the situation is different fok’; in (I7): the geometric dual na-

1
ture of U, and¥, would call for a newslike function character N;Zﬂ = - Eafj;) (22)
for N3 in (I8).

Whereas expressions for the flux of Bondi momentum and———
the news function at” * [cf. Equations (33) and (34) in paper
[] are valid under the (strong) conditions enforced by asymp 8 we write complex numbers &@sx 2 traceless symmetric matrices.
totic simplicity at null infinity and in a given Bondi frame, ° Note that we remove now the “tilded” notation to emphasigenigwslike
no geometric structure supports the “a priori” introduatiaf local-in-time character.



This proposal has a tentative character. Once we have identhave an instantaneous meaning. However, once the newslike

fied the basics, we postpone a systematic study to a forthcomensorV,” has been introduced iBL{26), formal fluxes can be

ing work. constructed by integration of the squared of these newseMor
specifically, we can introduce the formal fluxes&n

. . ) ()
B. News-like functions: matter fields dE "

dv

1
)= o f{ NGON ™ abgy (28)
As discussed in SeClll, in systefd (€)~(9) the Ricci scalar

(H)
d( plays a role analogous to that wf,. From this perspec- u(v) S (€%s4) (N;;f)/\/(m“”) dA,
tive, in the matter case, it is reasonable to define dsih (18) dv 8m Js,
» where their formal notation as total time derivatives is nmtea
NO () = O‘_m/ Doo(v') dv', (23)  to make explicit their local-in-time nature. The purpose of
2 o quantitiesdE(H)/dv and (dP(H)[g]/dv) is to provide im-
such thatk; in () is rewritten proved quantities &kl for the cross-correlation approach. In

particular, (de) [€]/dv) provides a refined version of the ef-
~ 1 i ~.(¢ 2 ~.(¢ 2 eff ; B
Kw) = —— ¢ (€'s:) UNé’)(U)‘ n (Né )(U)) ] dA fective K¢ in paper |, to be correlated withi P} /du)(u) at
8 Z*_In this context,K; in Eq. (I7) has played the role of an
o (24)  intermediate stage in our line of arguments.
The parameteiv,, is introduced to account for possible dif- ¢ course, we can introduce formal quantitlE%”) and

ferent relative contributions o¥, and @, (distinct choices H) . . . .

for a, are possible, depending on the part|cular quantlty top on#, by integrating expressions i0{28) alohg How-

b lated a7 +). However, also the tunctio® is af- ever, in the absence of a physical conservation argument or
€ correlate ' ' P a geometric motivation, referring to them as (Bondi- “rliEf

fected by the same issues discussed above\/tiﬁ}, namely  ergies and momentum would be just a matter of defi

it lacks a local-in-time behavior. As in the vacuum case, weThus, we rather interpret them simply as well-defined instan
proceed first by looking at EHs. We then compléig with  taneous quantities leading ultimately to a timesetigs(v).

the terms in Eq[{8), so thai[éa (v) = —(am/2)5/39(f>_ That Itis illustrative to expand the squared of the new$1d (28) as

is 1 a m
) N N = S oo™ 4 S (pM)2] - (29)
NE0w) = % (et + L0 40900
2 2 to be inserted in the expression folE ' /dv and

(H) . . .
o that/\/g) — —(amm/2)0). This matter newslikéunction (dP " [£]/dv). The relative weight of the different terms as

b ivalent| dint ial f foll we depart fro_m equilibrium can be made explicit t_>y express-
can be equivalently expressed in tensorial form as follows ing the evolution vector ab® — ¢ — Cke [cf. Equation 1)

W) = =22 O g, . (25)  Wwith assopiatedré’;) = oW Cofl’f,)_and o = —Cco)
NG [cf. Equation[[AT1)]. We can then write
As in vacuum, the passage from EHs to DHs is accom- o0 g 1T () 50 (g) (k)ab
plished by using the natural evolution vectot alongH for Nay N ) [ —2Co,
the expansion. Then, combining the tensorial fornd (25) with o ( (k) (ke | Om (k)\2
([22), we can write a single newslike tensor as +C (Jab a + 7(9 ) )} -(30)

A 1 (h) m (k) ) On a DH, terms proportional ta,, only enter at a quadr_atic

ab = 2 (Uab 5 qab) : (26)  orderinC. Two values ofv,, are of particular interest. First,
the casev,, = 0, corresponding to an analysis of pure gravi-

Interestingly, ifa.,, = 1 the complete news tensor acquires atational dynamics. Second, the casg = 1 where [cf. [27)]

clear geometric meaning as the deformation tensor atdng (H)

i.e., as the time variation of the induced metric dE j{ NW)NW)abdA _ B 7{ @(h)@(h)abdA
o0 1w 1 dv T 8r ab 167 Js, ab
Ny =———7=06,," = ——=qab- (27)
SERYE RS Vo e 2<qab> A, (31)

that admits a suggestive interpretation as a Newtokiiagtic

C. Bondi-like fluxes on3{ energyterm of the intrinsic horizon geometry.

The motivation for introducing<¢ in paper | andk; in
E_q' m) [Or' .rr)ore generall)l,(i in Eq. m)] 1S thfelconStruc' 10 For instance, the leading-order contribution from mattethe BH energy
tion of quantities or to be correlated to quantities &€+, and momentum should come from the integration of the apfatepcom-
namely the flux of Bondi linear momentum. We have been ponent of the stress-energy tensy,, an element absent il {28) where
careful not to refer to them as to “fluxes,” since they do not matter contributions only enter through terms quadratijp.



D. Relation to quasilocal approaches to horizon momentum
and application to recoil dynamics

As emphasized in the previous section, the essential pu
pose ode(H)/dv and (dP"[¢]/dv) in @8) is to provide

|
f‘;v

dg"
dv

b4 %
us

a

1 (H)
)= 55 . NN

a(lg)a(h)abdA =

8

geometrically sound proposals by, (v) at H. Having said
this, it is worthwhile to compare the resulting expressjdos
specific values ofv,,, with DH physical fluxes derived in the
literature. This provides an internal consistency teshefline
bf thought followed fromik ¢ to Egs. [28). In particular, for
ay = 0 we obtain

1

() _(e)ab
167 Js, 707

i

a

— 200((1?0(@“1’ + CQU(S]Z)U(k)ab dA .
(32)

Expression(32) allows us to draw analogies with the energwear equilibrium, i.e., foC' — 0, we haveafl’g)g(h)ab ~ C
flux proposed in the DH geometric analysis of Refs/[4, 22].on DHs [cf. Equationg[AT4)] so that the integrands in expres

In particular, the leading term in the integrand of this egr
sion, o) is directly linked [cf. Equation (3.27) i ][4]]

to the term identified in[[23, 24] as the flux ofansverse
gravitational propagating degrees of freedmrhe DH en-
ergy flux also includes bngitudinalpart [23/24] depending
on QYQ®° absent in quantities in EJ_{28). In this sense,
dEN /dv provides a quantity;,, (v) accounting only for the
transverse part of gravitational degrees of freedﬂr@@ﬁ
at # and therefore particularly suited for cross-correlation
with (dP2 /du)(u), which corresponds to (purely transverse)
gravitational radiation at? *.

Motivated now by the resemblance bf132) with the flux of a
physical quantity, we can consider a heuristic notioBonhdi-
like 4-momentum flux through{. Considering the (timelike)

unit normal7® to A [cf. (A10) and [AI%)]

T 1
- (£% 4 Ck%) = ——(bn® + Ns%),
T~ Vac )= e )
(33

we can introduce the component of a 4-momentum flu
(dPT /dv) along a generic 4-vectof’, as

,f_ll

dP7n] 1 . ) 4 ) g
= °r. @) dA
dv 8m %gu (n°7e) (Nab N )
__1 cay (o) (h)eb
=iz §, 07) (ol e ™) aa, (34)

that has formally the expression of the flux oBandi-like4-
momentum. The corresponding fluxeriergyassociated with
an Eulerian observer® is

( )aa,
(35)

dE™ dP[n]
dv (v) dv

Where% = /1 + N2/2C. Analogously, the flux of linear

momentum fo® tangent tox; would be

1
167

e

o)

dPT[g] 1 N : (h) (h)ab
= (€ A
d’l} 167T S, /20 (6 Sl) (Uab a ) d (36)

11 We note thatfg afl?a(‘)abdA was used in Ref[ [25] as a practical dimen-

sionless parameter to monitor horizons approaching siatity. Here they
would correspond to a vanishing flow of transverse radiation

sions [35) and(36) ar@(\/C), therefore regular and vanish-
ing in this limit. ConsideringdP7[£]/dv) as an estimate of
the flux of gravitational linear momentlﬁlthrough}[, the
integrated quantity?” would provide aheuristicprescription
for a quasilocal DH linear momentum, a sort Béndklike
counterpart of the heuristidDM-like linear momentum in-
troduced for DHs in Ref[[28], by applying the ADM expres-
sion for the linear momentum at spatial infinity to the DH
sectionS;

1

B

Pl =5 [ (- Knestaa. @)

In this sense, the cross-correlation methodology we pmpos

here and in paper I, can be formally compared with the

quasilocal momentum approaches in Reffs] [28, 29] to the

study of the recoil velocity in binary BHs mergers, showing

the complementarity among these lines of research.
However, attempting to derive in our context a rigorous no-

Jion of quasilocal momentum oi would require the devel-

opment of a systematic news-functidreameworkon DHSs, in
particular considering the possibility of longitudinalagita-
tional terms as in the DH energy flux (cf. Refs.|[30-32] for
important insights in this topic). Such a discussion is lmelyo
our present heuristic treatment, and we stick to our apgproac
of considering the constructed local fluxesHras quantities
encoding information about (transverse) propagatingitgav
tional degrees of freedom to be cross-correlated to the flux o
Bondi momentum at? ™.

V. LINK TO THE HORIZON VISCOUS-FLUID PICTURE

The basic idea proposed in Ref. [2] is that certain qualita-
tive aspects of the late-time BH recoil dynamics, and, ir par
ticular, the antikick, can be understood in terms of theigdass
tion of the anisotropic distribution of curvature on theizon.

12 A related alternative prescription for a DH linear momentilum would be
given by angular integration of the appropriate componentise effective
gravitational-radiation energy-tensor inJ[24].
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This picture in which the BH recoils as a result of the emis-properties of a 2-dimensional viscous fluid. A quasilocal ve
sion of anisotropic gravitational radiation in responseato  sion of some of its aspects, applying for dynamical trapping
anisotropic curvature distribution suggests that theration  horizons, has been developedlinl[42-45].

of the moving BH with its environment inducevmscouddis- In the fluid analogy of the membrane paradigm, dissipation
sipation of the gravitational dynamics. The cross-cotiete  in BH dynamics is accounted for in terms of the shear and bulk
approach to near-horizon dynamics discussed in paper | andscosities of the fluid. The viscosity coefficients are itlen
complemented here offers a realization of the idea proposefied in the dissipative terms appearing in the momentum and
in [2], expressing it in more geometrical terms. Indeed, theenergy balance equations for the 2-dimensional fluid. These
analysis in Se¢._1V has led us to the identification of the sheaequations are obtained from the projection of the appropria
0-((1];) and of the expansioﬁ(h), interpreted there in terms of components of the Einstein equations on the horizon’s world
newslike functions a#{, as the relevant objects in tracking the tube, namely evolution equations @’ andQ.”. Foran EH
geometry evolution. This identification permits to casturat these equations are [42]

rally the viscous-fluid picture into a more sound basis, sinc 1 ,

6" ando") have indeed an interpretation in terms of bulk 3,0 — k(9" = 759“) — oW _8nT, 0

and shear viscosities. Such dissipative features candgiiea ©

appreciated explicitly in Eq[I5), but acquire a larger basi 500 1o Q) —2p. <H(€) + 9_) —2p.o®O°
the context of the membrane paradigm that we review below. ~ * “ 2

+81Teq g%, . (38)

The first one [i.e., the Raychaudhuri Ef] (8] not assuming a
A. The BH horizon viscous-fluid analogy affine geodesic parametrization, so that) # 0) is inter-
preted as an energy dissipation equation. In particulagra
Hawking and Hartle[[34=35] introduced the notionifi  face energy densiig identified ag = —0" /8. The second
viscositywhen studying the response of the event horizorevolution equation for the normal forg.” provides a mo-
to external perturbations. This leads to a viscous-fluid-ana mentum conservation equation for the fluid, a Navier-Stokes
ogy for the treatment of the physics of the EH, fully devel- like equation (referred to as Damour-Navier-Stokes equidi
oped by Damour [36, 37] and by Thorne, Price and Macdononce a momenturn, for the 2-dimensional fluid is identified
ald [39], in the so-callethembrane paradign(see also asw, = —fo)/(&r) [note thatﬂff) is associated with a den-
[4d, [41]). In this approach, the physical properties of thesity of angular momentum; cf. Equatidn_{A8)]. Dividing Egs.
BH are discussed in terms of mechanical and electromagnet{@8) by —8= and applying these identifications we obtain

) €+9(€)€ ’i(e) o(l) 1 (9(5))2 + () J(E)Cd +T gagb (39)
=—\ 5= - T o e a )
‘ 8 167 ed \ " ’
(0) (£) 0]
Sema +0O0my = 2D, (2= ) 42 [ Z2 ) 2D, (=) — ¢¢, Toat® . (40)
8 8 167
[
Writing the null evolution vector ag® = 9, + V?, for  —1/(16w), a shear viscosity coefficiept= 1/(167), an ex-
some (velocity) vectorV* tangent toS;, one can write ternal energy production ratg,;/“¢® and external force den-
0) = D,V + 8In,/q and 20((1‘2 = (2D, Vy + 2DyV,) — sity fo, = —q¢°,T.al® . See alsol[46] for a criticism of this

09qa, + $0:q. Then one can identify a fluid pressure interpretation. o _ _ _
= (9 /(87), a (negative) bulk viscosity coefficiert — The analogue equations in dynamical trapping horizons are
' obtained from the equatiordg #” and(ShQ,(f). The latter can

be written as[[43-45]
|
. (h))2
(5h + 9<h>) o) = — M) 4 oM 5D @ +2D°(2D,C — 2090 + 87T,k — 0Ws,C ,  (41)
1 .
(5h + 9<h>) Qf) = 2D ™ D07 — 22D + 87" Tyer® — 0D, C . (42)

with ") = —k,hbV,¢* [see Eq.[[AD)]. Then, by introducing  BH surface energy density= —6(") /(87) = 6" /(87),
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keeping the definition fofr, and introducing théeat@, = a complete interpretation of these equations)
= [C’fo) - %QDGC’} , we can write for DHs (seé [44, 145] for
|

(h) 1 (r)ab (k)
L =—_ _[E N gy o L ()2 (n [ apb _2mapn 27
one +0\Me ( o ) o\ 4 Ton 0") +o,, ( o ) +Taw7h DQ,, o 0nC
(h) (1) (h) (k)
Sprta + 00 = —20, () w2pe [ 2 ) 2p, (220 Z g ey S2p 0 (43)
8 8 167 8

We can now justify the viscosity interpretation 8f) and  averaging over horizon sections we can build instantaneous

o) by remarking that from the equations abog€?) repre-  timescalesi at any coordinate timeas
sents the expansion of the fluid in the bulk viscosity termnitjwi

positive bulk viscosity coefficient = 1/(16x)]. Similarly, % = %?{ (€is)0MdA (45)
: - T
afl’;) corresponds to the shear strain tensor abﬁ/(&r) to ) ) St \
the shear stress tensor. Note tha} /(87) ands'" are not TE = 27{ (€ls:) (ag’g>a<h>a ) dA (46)
s

proportional in the strict dynamical cas€, # 0, and there-
fore one cannot define a shear viscosity coefficie(in other where¢; is the unit vector in the instantaneous direction of

WOI‘FiS, a DHiis not a Newtonian fluid). . motion of the BH at timgt. The term(&}s;) in the defini-
Finally let us consider the observer given by the (pmp'tions [5) - [@6) is needed for giving a timescale associated
erly normalized) timelike nqrmal tG{_and Iet_ us d_efine the  yith a change in linear momentum [if not, we would be deal-
4-m0mentur11)1 current density associated with this observeri'ng with a timescale for a change in energy, ET1(28)]. In othe
Pa = —labT" Then we note that the Componeﬂtsmfar?. words, it is needed to account for the dissipation and oscil-
fixed by Egs.[(4B) togetherwnf; the trapp|£1gahor|zon defining|ation of anisotropies in the geometry rather than for spher
constraint Eq_.III]3). Indeeqbal_z - 7.Tab7,; h correseo?ds cally symmetric growths. This is consistent with the begtin
to the energy balance equation, while,q”, = —The7°¢’, frequency behavior found in the timeseries developed fer th
gives the momentum, conservation equation, and7" = paaq.0on collision of two BHs (cf. Eq. (58) in paper I). Note

b oo : S ) o "
—Tupr’7® is a linear combination, using® = 2/ — h“, of that E . . -

ol ‘ ; ) gs. [(4b)E(46) provide geometric prescriptions foe th
thg energyédlssmanon equation and thbe trapping horizoA CO jngtantaneous timescales at the merger of a binary system,
dition (5,6*) = 0) depending of;7°¢°. Given the funda- 5, open problem pointed out ihl [8]. Combining EJs] (44)
mental role of the latter in the geometric properties of thé, D 2 (h) _(h)ab
in particular in the derivation of an area law under the fatur @nd (45)(4b), and denotirig'™|* = 7, o', we get

fst (§§si)9(h)dz4

conditiong®) < 0, this suggests the possibility of using the

componenp,® to define a balance equation for an appro- P(t) = . (47)
priate entropy density. This point echoes the discussica of {A § (fis')|0(h)|2dA:| 3
hydrodynamic entropy current discussed in the context of a SpAto

fluid-gravity duality [47£511]. As a consistency check we can verify for DHs that using

Egs. [A11) and[{AT4) and in situations close to stationarity
(i.e., C — 0), the following scaling hold¥™ ~ ¢ and
o™ |2 ~ C, so thatP remains well-defined in this limit.

. N . . i i For an alternative and more sound proposalfpimproving
The viscosity interpretation outlined in the previous sub-f ther the behavior whe@' —s 0. see Eq.AT6).
section allows us now to make contact with glewness pa-

rameter P introduced in[[B] and discussed in paper I in the
context of BH head-on collisions. We recall that the parame- VI. CONCLUSIONS
ter P is constructed in terms of two dynamical timescales: a
decay timescale and an oscillation time scalg

B. Aviscous “slowness parameter”

The analysis of spacetime dynamics is a very hard task in
p_ T (44) the absence of some rigid structure, such as symmetries or a
=

In our fluid analogy, the bulk viscosity terfi”) controls the

dynam":al decay, whereas th_e Shear viscosity tei}b)] ISTE- 13 These are not the only possibility to defin@ndT’, and thereforeP, from
sponsible for the (shape) oscillations of the geometry.eGiv  viscosity scales. All variants should give though the samaitative esti-

their physical dimension® ] = [c\"] = [Length]~!, mates; see EJ.(A16).
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preferred background geometry. However, this is the generirecoil can be explained in terms of a generic behavior con-

situation in the strong-field regime described by genefalre trolled by the relative values of a decay and an oscillatiowet

tivity. In this context, (complementangffectiveapproaches scales. The viscous picture meets the rationalklin [2] and of

providing insight into the qualitative aspects of the siolug  fers an understanding of the relevant dynamical time scales

and suggesting avenues for their quantitative modelingfre from the (trace and traceless parts in the) evolution of tiré h

much value. In this spirit, in paper | and here, we have diszon intrinsic geometry, in particular, providirigstantaneous

cussed a cross-correlation approach to near-horizon dynandynamical time scales at the merger and a geometric prescrip

ics. Other interesting schemes, such as those developed tiadn [cf. Equation[(4l7) and also Edq. (AlL8)] for the slowness

Caltech, that define and exploit new curvature-visualati paramete = 7'/7 introduced inl[8].

tools [52/58], share some aspects of this methodological ap As a final remark we note that while the material presented

proach. here places the arguments madelin [2] and in paper | on a
In particular, we have argued that, in the setting of amuch more robust geometrical basis, much of our treatment is

3+ 1 approach to the BH spacetime construction, the foliatiorstill heuristic and based on intuition. More work is needed f

uniqueness of dynamical horizons provides a rigid strectur the development of a fully systematic framework and thig wil

that confers a preferred character to these hypersurfaces Be the subject of our future research.

probes of the BH geometry. Employed as inner screens in the

cross-correlatiorapproach, this DH foliation uniqueness per-

mits to introduce the preferred normalizatignl(11) of thél nu ACKNOWLEDGMENTS
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in paper | to the identification of the sheagl), associated

with the DH evolution vectoh®, as being proportional to a

geometric DH newslike functioN;:) in Eq. (22) [see also Appendix A: A geometric brief

the role of6™, in the more genera\,” in Eq. (28)]. On

the one hand, this identification provides a (refined) gedmet ~ We bring together in this Appendix the different geometric

flux quantity (dP,  /dv) on DH sections to be correlated to Objects and structures that have been introduced in thedext

the flux of Bondi linear momenturPB /du) at .#+ (these the spacetimeM, g.;) with Levi-Civita connectiorV,.

DH fluxes also share features with quasilocal linear momen-

tum treatments in the literature). On the other hand, given

the role ofo") and#(" in driving the Ricci scalafR along 1. Geometry of sectionsS;

#H [namely Eq. [(5) and systerhl(€)}(9)], the present analysis

justifies the use ok ¢ (¢) in paper | as an effective local esti- Normal plane taS. Given a spacelike closed (compact with-

mator atH of dynamical aspects af . out boundary) 2-surfacg in M and a poinp € S, the nor-
The cross-correlation analysis has also produced two immal plane toS, T3-S, can be spanned by (future-oriented)

portant by-products. First, we advocate the physical eriee null vectors/® and £ (defined by the intersection between

of tracking the internal horizon i + 1 BH evolutions. This 7S and the null cone ap). We choose a normalization

follows from the consideration of the time integration ofds k. = —1. Directions(® andk® are uniquely determined,

along the horizon and its splittin§{B4) into internal haniz ~ but anormalization-boostreedom remainst’ = f/¢, k'* =

and external horizon integrals (cf. Appenflik B). Such espre f~'k“.

sion is fixed up to an early-times integration constant, conlntrinsic geometry oi. The induced metric o8 is given by

trolled by dynamics previous to the formation of the (com-

mon) DH (and possibly vanishing in many situations of inter- qab = Gab + kalp + Loy - (A1)

est). Second and most importantly, from the perspective of a

viscous-horizon analogy we have identified a dynamical deYVe denote the Levi-Civita connection associated withas

cay timescale- associated with bulk viscosity and an oscilla- “Da. The area form or§ is given by = /gdz' A da?,

tion timescalel” associated with the shear viscosity [cf. Equa-i.€., %., = k(%% 4.5, and we use the area measure notation

tions. [4%)4(4b) and also Eq§._(A16)]. This is particulagy  dA = ,/qd’x.

evant in the context of BH recoil dynamics, where the anal-Extrinsic geometry of. First, given a vectop® orthogonal

ysis in @] shows that the qualitative features of the lateet  to S, we denote the derivative &tof a tensotX %y, 4
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tangent taS alongv®, as 2. Evolution on the horizonH
O XMy by = (A2) Given a DH#, it has a unique foliatiofS; } by marginally
q*e - q‘lncnqdlb1 . .qdmmevXcl'”C"dlmdm , trapped surfaces. This fixes, uptime reparametrization, the

evolution vectorh® alongH. This is characterized as being
whereL,, denote the Lie derivative along (some extension of)tangent to#{ and orthogonal ta5;, and Lie-transportings;

Ve, Then, thedeformation tenso@((;l})) a|0ng a vectop?® nor- 0nt08t+§t: (Shf = 1. We write h* and adual vector7® or-

mal toS thogonal to# in terms of the null normals as
o . he = (% — CkS | 79 =%+ Ck°. (A10)
V) — € d — —
Oup =1"a0"Veva = 26”(1‘1’” (A3) Thenh®h, = —7%7, = 2C. The expansiod) and shear

. Co ag’g> are written as
encodes the deformation of the intrinsic geometry alofig

More generally, theecond fundamental tensisrdefined as 6 =9 — o) = —co™)
(h) _ () (k)
, , , , o =0, —Coy . (A11)
¢ = a0, Vaat, = k0%) + ol . (A%

The DH is characterized b§t*) = 0 and§,0) = 0. Using
(ATIQ) and the properties of thig operator, the latter condition
is expressed as

—2AC 4 2002D°C — €60 = —5,01 |, (A12)

an elliptic equation or®. Under theouter condition in[1[ G,

5x0) < 0, a maximum principle can be applied so that

C > 0, with C = 0 ifand only if 6,0Y) = 0 (stationary case).
Therefore, a (future outer) trapping horizéhis fully parti-

1 1 tioned in purely stationary and purely dynamical sectidns.
—0u0\/4 af;lj) = ef;;) — 20Wqy, . other words, sections ¢ reactas a wholg growing in size

Vi 2 (A6) everywhere as soon as some energy crosses the horizon some-

Int i the extrinsi i in (M where. This nonlocal elliptic behavior is inherited frometh
.n ormation on the extrinsic geor?g ry Q_ﬁ’ Gab) IN (M, gap) defining trapping horizon condition Eq._(A12). Substitgtin
is completed by theormal form(2,,’, defined as

We can expres@f;{)) in terms of its trace and traceless parts

a

v v 1 v
O = o) + 50" dan - (A5)

whered®) and af;;) denote, respectively, the expansion and
shear along®

000 = = (00" — sx 000" (A13)
OO = —geq? Vb, . (A7) o
5,0 = —2DeQ) + QOO _ 5 R+ 8nTukte"
In particular, given an axial Killing vectat® onS, an angular
momentumJ[¢] (coinciding with the Komar angular momen-
tum if »* can be extended to a Killing vector in the neighbor-

into (A12), we recover Eq[{13) in the text. In the spherigall
symmetric case({ = const), and using the expression for

e . .
hood ofS) can be defined as 5,6“) in (A13) into (A12), we get
) _(eyab apb
1 " OO + 87T b4
Jo) = /S Q¢ dA . (A8) C= 560 : (A14)

This quantity is well-defined for any divergence-free axial

vectorg®. Finally, given a vector® e T+S we define[[48] 3. 3+1 perspective on the horizory

K = _k 0OV O (A9) Given a3 -+ 1 foliation of spa_lce_time_{zt} defined by &ime
functiont, we denote the unit timelike normal ©, by n*

and the lapse function by, i.e.,n, = —NV,t. The induced
metric onY; is denoted by, i-€.,Yap = Gap + nanp With
Levi-Civita connectionD,. The extrinsic curvature af; in
Mis Kop = —7¢,Venp. We consider a horizo#, such that
the spacetime foliatiodX;} induces a foliation{S;} of H

by marginal trapped surfaces. From Result 1 in §et. Il this
foliation is unique. Let us denote the normalSptangent to

Remark ors,,0“). In (A2) we have introduced, in terms of
the Lie derivative on tensorial objects. However, the exalu
tions of expressions such &s9¥) is more delicate, sincg*)

is not a scalar quantity o, but rather a quasilocal object de-
pending onS. In the general casé,,0") (with v a function
on S) depends on the deformation induced®by ~, so that

8,00 £ ~6,0). This is the reason for the special notation ; ; >
S,. Properties,, 5,0 = ad,0 + 05,0 (a,b € R), ¥, by s%. Vectorsn® ands® span also the normal plane .

and the Leibnitz rule, (160) = (5,700 + 5,6 stil From the conditiord,t = 1 we can writeh® andr* in (A10)

hold. See for instance Ref§. [15] 20| 54] for a discussion of>
this derivative operator. h® = Nn®+bs® |, 7 =bn*+ Ns®, (A15)



13

for some functiorb on S;, expressed in terms @f andC' in {0% k* m*, m*}
(AI0), as2C = (b+ N)(b— N).

Vo = C%.; LamPlem?, Uy =C% , Lakbmke,
Uy =C%, , LamPlok, Uy = C%, makPmek?,
4. Animproved geometric prescription for the slowness Uy = Oy LamPmek?.
parameter (A19)
Ricci scalars are then defined as
. In. Egs. [45) -EZB) we have mtro)duced(gecay anq oscilla- Bog = — LR 00, - 7%Rabkamb7
tion instantaneous timescales frcﬂﬁﬁ.andaab , respectively, @1y = —1Ry, (7K + momb) | ®gy = —LRmamb,
identified as newslike functions & in Sec[TV and respon- By, = —Rp09mP, Doy = _iRabkakb,
sible for bulk and shear viscosities 60 (cf. Sec.[Y). This By — —ER Eam? B — —ER —a—b
. . . 12 — 5 4lab m-, 20 — 2 abTl 1",
is not the only possibility. From the bulk and shear visgosit g~ _ 1p  pamd A=L1pR
: ) 10 = —3dtapt™m-, - 241
terms in Eq.[(411) we define (A20)
1 1 ) Appendix B: Relevance of the 3+1 inner common horizon
(t)2 = Z% (§¢si) (’i(h)a(h)) dA
-
1 1 S In this appendix we emphasize the role of the inner hori-

S = _% (€s;) <Jgf;)a(r)ab) dA, (A16)  zon presentirg + 1 slicin_gs qf BH spf_iceti_mes, and discussed

St in Sec[I[A, when considering the time integration of fluxes
along the DH history. This is of specific relevance to the dis-
cussion made in SEC.TVID, but it also applies to more general
contexts.

wherex (") can be expressed, in3a+ 1 decomposition, as

kM = Ns*DyN — bs®s® Koy, + 0p1n (M) . (AL7) Given a flux density;%2-(Q, v) through® of a physical
2 quantityQ(v), we can write
Then, the slowness paramefer= T'/7 in Eq. (43) results Q) = Ov) +/ (j{ sign(C) dQ (Q,v')dA) d’
1 vo S, dAd’U
is;) (kMOM)) dA Y
p = [ s Gis0 (£207) . (ag) = Q) + [ Fetar, ®1)
fs,, G (J((lb)J(T)a ) dA vo

_ o _ _wher@d Fo(v) = §, sign(C) 4452 (v')dA. This requires a
Note that, neglect_mg (;Ierlvatlve and hlgh-orger hterms iNgood parametrization ¢ by the (advanced) coordinateas
EQ. @J)bnear stationarity(( — 0), we getrs™0") ~ o) a5 an initial value)(vo). Finding such an initial value
oMM so thatP ~ 1 consistently with the expected ab- is in general nontrivial and this is precisely the motivatio
sence ofantikickin this limit (cf. [8]). consider in this section the evaluation of the fluxes alorg th
whole spacetime history 61, though from &+-1 perspective.
Given the3 + 1 slicing {3;}, we can split the integration
5. Weyl and Ricci scalars along the DH into an external and an internal horizon parts,
as discussed in SEc. Il A. Denoting by the advanced time
associated with the momentof first 3 + 1 appearance of the
tetrad {£%, k%, (e1)%, (e2)*}, where (e;)* are orthonormal horizon,# is separated into th_e inner horizéh,,; labeled by
vectors tangent taS;. Defining the complex null vector V0 < v < v and the outer horizo,, labeled byv. < v <
me = %[(61)“ + i(e2)?], the Weyl scalars are defined as o0 H = Hint U Hext d&tévogvgvc SU) U (chgvsoo SU)-
the components of the Weyl tens6¥, , in the null tetrad We can then rewrite E 1) as

Let us complete null vectoré® and £ in T+S; to a

Q) = Q(vy) —|—/ Fe(")dv' = Q(vo) —|—/ C FE(v")dv' —|—/ FE (' )dv' (B2)
2v.—vg v
= Q(vo) + / F(i}“(ch — ") dv" + / St () dv' (B3)

c

14 The signsign(C), +1 for spacelike and-1 for timelike sectors ofH,
corrects the possibility of integrating twice (null) fluxdsough?#, when
timelike parts occur in the world-tube of the trapping horiz4. Note

thatsign(C') appears under the integral since a secfarcan be partially
timelike and partially spacelike, i.e. the evolution vedid can be timelike
or spacelike in differemt parts o,,.
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whereF#* and F& denote, respectively, the flux 6f along  correctly parametrizes the evolution of both the infr,
the internal and external horizons. Note that in the secondnd outerH.,; horizons separatelyH = Hint U Hext =

term in (B3) we have inverted the integration limits in order (| | . S) U (Uysy, 8. Considering the splitting in
to have an expression which is ready to be translated for a

integration int. . T

The coordinatey is not usually adopted in standasd+- ﬁzrli(; 2% az;gihn;i%ﬁg?&g?ﬁg&%ﬁbﬁn the standard external
1 numerical constructions of spacetimes. Because of this, P part.
we employ the time defining the slicing{>;}. Although

g. EEZ), the use of in the flux integration is perfectly valid

the ¢ function is not a good parameter on the whafg it From Eq. [B3) we write
|
00 ot
At =Qo+ [ R+ [ P
te te
t t
= Qo+ / FRE(¢dt + / FE(t)dt' + Res(t) (B4)
tC tC
|
whereQ) is a constant and the errBies(t) Res(t) — 0 ast — oo, so that the evaluation af(¢) by
- ignoringRes(¢) in Eq. (B4) improves as we advance in time
Res(t) = / FE(t)dt', (B5) t(cf. Figure[2). Of course, this approach requires a good nu-
t merical tracking of the inner horizon, something potemial

ghallenging from a numerical point of view (see[55] for a

must be taken into account, since we cannot integrate up . .
related discussion).

t — oo during the3 + 1 evolution. This error satisfies
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