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ABSTRACT
We derive an analytic phenomenological expression that predicts the final mass of the black-hole remnant

resulting from the merger of a generic binary system of black holes on quasi-circular orbits. Besides recovering
the correct test-particle limit for extreme mass-ratio binaries, our formula reproduces well the results of all the
numerical-relativity simulations published so far, both when applied at separations of a few gravitational radii,
and when applied at separations of tens of thousands of gravitational radii. These validations make our formula
a useful tool in a variety of contexts ranging from gravitational-wave physics to cosmology. As representative
examples, we first illustrate how it can be used to decrease the phase error of the effective-one-body waveforms
during the ringdown phase. Second, we show that, when combined with the recently computed self-force
correction to the binding energy of nonspinning black-hole binaries, it provides an estimate of the energy
emitted during the merger and ringdown. Finally, we use it to calculate the energy radiated in gravitational
waves by massive black-hole binaries as a function of redshift, using different models for the seeds of the
black-hole population.
Subject headings: black-hole physics — relativity — gravitational waves — galaxies

1. INTRODUCTION

Black-hole (BH) mergers play a central role in
gravitational-wave (GW) astrophysics, because they are
expected to be among the main sources for existing and
future detectors. More specifically, the LIGO/Virgo detec-
tors (Abbott et al. 2009; Acernese et al. 2008) are expected
to detect mergers of stellar-mass BHs happening within
several hundred Mpc, when operating in their advanced
configurations. Similarly, future space-based detectors such
as LISA (Amaro-Seoane et al. 2012) or DECIGO (Kawamura
et al. 2011) will detect mergers of massive BHs (MBHs) up
to redshifts as high as z ∼ 10 or beyond. Even intermediate-
mass BHs (IMBHs), provided they exist, will be within reach
of GW detectors, e.g. IMBH-MBH binaries will be detectable
by LISA or DECIGO, while IMBH-IMBH binaries will be
detectable with DECIGO or with the planned ground-based
Einstein Telescope (Punturo et al. 2012; Sathyaprakash et al.
2012).

Given their relevance for GW astrophysics, it is not sur-
prising that BH binaries have received widespread attention
over the past few years. Because a detailed understanding
of the dynamics of these systems is crucial in order to pre-
dict accurately the gravitational waveforms, which, in turn,
is necessary to detect the signal and extract information on
the physical parameters of the binaries, numerical simulations
have been performed by a number of groups for a variety of
mass ratios, BH spin magnitudes and orientations [see Pfeiffer
(2012) for a recent review].

However, even today, numerical-relativity simulations are
computationally very expensive and not able to cover the full
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seven-dimensional space of parameters of quasi-circular BH
binaries. Fortunately, phenomenological models have been
very successful at reproducing many aspects of the dynamics
of BH binaries as revealed by the numerical simulations. For
instance, hybrid “phenomenological waveforms” (Ajith et al.
2008; Santamarı́a et al. 2010), i.e., templates that represent
phenomenological combinations of Post-Newtonian (PN) and
numerical-relativity (NR) waveforms, can reproduce with
high precision the NR waveforms for a wide range of binary
parameters. Similar results are achieved by the effective-one-
body (EOB) model, which attempts to reproduce not only the
gravitational waveforms, but also the full dynamics of BH bi-
naries during the inspiral, merger and ringdown phases, by
resumming the PN dynamics (Buonanno & Damour 1999;
Damour et al. 2009), and more recently the self-force dynam-
ics (Barausse et al. 2012).

Other aspects of the dynamics of BH binaries have been
phenomenologically understood by using combinations of
PN theory, symmetry arguments, as well as hints from the
test-particle limit and fits to numerical simulations. For in-
stance, the final spin magnitude of the BH remnant can be
predicted by a number of phenomenological formulas (Rez-
zolla et al. 2008a,b; Tichy & Marronetti 2008; Buonanno et
al. 2008; Kesden 2008; Rezzolla et al. 2008c; Barausse &
Rezzolla 2009), starting from the configuration of the binary
either at small separations r . 10M , or at large separa-
tions2 r ∼ 104M . These formulas also predict the orientation

2 For MBHs, the latter are roughly the separations at which the dynamics
starts being dominated by GW emission, and represent therefore the separa-
tions at which these phenomenological formulas should work in order to be
useful in cosmological contexts.
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of the final spin with good accuracy when applied to small-
separation binaries, while the formula of Barausse & Rezzolla
(2009) is also accurate when the binary has a large separation,
e.g. r ∼ 104M , in a large portion of the parameter space (Ba-
rausse & Rezzolla 2009; Kesden et al. 2010). Similar phe-
nomenological formulas have also been proposed for the re-
coil imparted to the final BH remnant from the anisotropic
emission of GWs (Herrmann et al. 2007b; Koppitz et al. 2007;
Rezzolla et al. 2008b; Campanelli et al. 2007a; Gonzalez et
al. 2007; Campanelli et al. 2007b; Lousto & Zlochower 2009,
2011; Baker et al. 2007, 2008a; van Meter et al. 2010). Be-
cause most of the anisotropic GW emission takes place as a
result of the strongly nonlinear merger dynamics, these recoil
formulas are not predictive, as they depend on quantities that
can only be derived with full NR simulations, but they are still
useful in the statistical studies usually performed in a cosmo-
logical context (Barausse 2012; Lousto et al. 2010b, 2012).

The dependence of the final mass of the BH remnant on
the binary’s initial parameters has also been investigated sys-
tematically in the literature (Tichy & Marronetti 2008; Boyle
& Kesden 2008; Reisswig et al. 2009; Kesden 2008; Lousto
et al. 2010a)3, but the knowledge of this dependence is far
less detailed. For instance, the formula of Tichy & Marronetti
(2008) [who built upon previous work by Boyle & Kesden
(2008)] is calibrated to reproduce NR results for comparable-
mass binaries, but does not have the correct test-particle limit
and is therefore inaccurate for binaries with small mass ratios.
The formula of Kesden (2008), on the contrary, has the correct
test-particle limit, but does not reproduce accurately the NR
results for comparable-mass binaries. Finally, the formula of
Lousto et al. (2010a) depends, for generic binary configura-
tions, on quantities that can only be calculated using full NR
simulations, and is therefore only useful in statistical studies.

We here introduce a new phenomenological formula for the
final mass of the BH remnant (Section 2), which, by construc-
tion, reproduces both the test-particle limit and the regime of
binaries with comparable masses and aligned or antialigned
spins, which has been extensively investigated by NR calcu-
lations. In Section 3 we show that this novel formula repro-
duces accurately all of the available NR data (even for generic
spin orientations and mass ratios), both when applied to small-
and large-separation binary configurations. Furthermore, in
Section 4, we consider three different areas where our for-
mula can be useful: (i) we show that it can help reduce the
phase error of the EOB waveforms during the ringdown; (ii)
we combine it with the results of Le Tiec et al. (2012) for the
self-force correction to the binding energy of nonspinning BH
binaries and derive an estimate for the energy emitted during
the merger and ringdown by nonspinning binaries; (iii) us-
ing a semi-analytical galaxy-formation model to follow the
coevolution of MBHs and their host galaxies, we use our for-
mula to predict the energy emitted in GWs by MBH binaries
as a function of redshift, and show that these predictions are
strongly dependent on the model for the seeds of the MBH
population at high redshifts. Our final conclusions are drawn
in Section 5.

Throughout this paper, geometrized units G = c = 1 are
used.

2. THE DEPENDENCE OF THE FINAL MASS ON THE SPINS AND
THE MASS RATIO

3 An initial expression for the radiated energy was also suggested by Buo-
nanno et al. (2007a), but was restricted to nonspinning binaries and based on
early NR calculations.

When deriving a simple algebraic formula that expresses,
with a given precision, the mass/energy radiated by a binary
system of BHs, two regimes are particularly well-understood.
On the analytic side, in fact, the test-particle limit yields pre-
dictions that are well-known and simple to derive. On the
numerical side, the simulations of binaries with equal-masses
and spins aligned or antialigned with the orbital angular mo-
mentum are comparatively simpler to study, and have been
explored extensively over the last few years. Hence, it is nat-
ural that any attempt to derive an improved expression for the
radiated energy should try and match both of these regimes.
This is indeed what our formula will be built to do.

Let us therefore start by considering the test-particle limit
and, in particular, a Kerr spacetime with massm1 and spin pa-
rameter a ≡ S1/m

2
1, and a particle (or small BH) with mass

m2 on a equatorial circular orbit with radius r � m1
4. To

first approximation (i.e., for mass ratios q ≡ m2/m1 � 1),
the particle will inspiral towards the BH under the effect of
GW emission, moving slowly (“adiabatically”) through a se-
quence of equatorial circular orbits (Kennefick & Ori 1996)
until it reaches the innermost stable circular orbit (ISCO),
where it starts plunging, eventually crossing the horizon. The
energy Erad emitted by the particle during the inspiral from
r � m1 to the moment it merges with the central BH can be
written as

Erad

M
= [1− Ẽeq

ISCO
(a)] ν + o(ν) , (1)

Ẽeq
ISCO

(a) =

√
1− 2

3r̃eq
ISCO

(a)
, (2)

r̃eq
ISCO

(a) = 3 + Z2 − sign(a)
√

(3− Z1)(3 + Z1 + 2Z2) ,
(3)

Z1 = 1 + (1− a2)1/3
[
(1 + a)1/3 + (1− a)1/3

]
,

(4)

Z2 =
√

3a2 + Z2
1 . (5)

Here, M ≡ m1 + m2 is the total mass, ν ≡ m1m2/M
2 is

the symmetric mass ratio, ẼISCO and r̃ISCO are respectively
the energy per unit mass at the ISCO and the ISCO radius
in units of m1 (Bardeen et al. 1972), while the remainder,
o(ν), contains the higher-order corrections to the radiated en-
ergy5. These corrections account, for instance, for the conser-
vative self-force effects, which affect the ISCO position and
energy (Barack & Sago 2009; Le Tiec et al. 2012), but also
for the deviations from adiabaticity, which arise because of
the finiteness of the mass m2 and which blur the sharp transi-
tion between inspiral and plunge (Buonanno & Damour 2000;
Ori & Thorne 2000; Kesden 2011), and, more in general, for
the energy emitted during the plunge and merger (Berti et al.
2007; Buonanno et al. 2007a,b).

If the particle is initially on an inclined (i.e., non-equatorial)
circular orbit, GW emission will still cause it to adiabatically
inspiral through a sequence of circular orbits (Kennefick &
Ori 1996). Also, the inclination of these orbits relative to the

4 Without loss of generality, we can assume that the particle moves on a
prograde orbit (i.e. in the positive-φ direction), and let the spin of the Kerr
BH point up (a > 0) or down (a < 0).

5 We here use the Landau symbol o, so that f = o(g) indicates that
f/g → 0 when g → 0. Similarly, we will also use the Landau symbol
O, where instead f = O(g) indicates that f/g → const when g → 0.
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equatorial plane, which can be defined as (Hughes 2001) 6

cos(ι) ≡ Lz√
Q+ L2

z

, (6)

with Q and Lz being respectively the Carter constant and
the azimuthal angular momentum, will remain approximately
constant during the inspiral (Hughes 2001; Barausse et al.
2007). As in the equatorial case, the particle plunges when
it reaches the ISCO corresponding to its inclination ι. Un-
like in the equatorial case, though, the radius of the ISCO as a
function of a and ι can only be found numerically. An analyt-
ical expression, however, can be derived if one considers only
the spin-orbit coupling of the particle to the Kerr BH, i.e., if
one considers small spins a� 1. In that case, in fact, one can
explicitly check [using, for instance, equations (4)–(5) of Ba-
rausse et al. (2007)] that the ISCO location and energy depend
only on the combination a cos(ι), so that at O(a)2, the gen-
eralization of expressions (1)–(5) to inclined orbits is given
by

Erad

M
= [1− Ẽ

ISCO
(a, ι)] ν + o(ν) , (7)

Ẽ
ISCO

(a, ι) ≈

√
1− 2

3r̃
ISCO

(a, ι)
, (8)

r̃ISCO(a, ι) ≈ r̃eq
ISCO

(a cos(ι)) , (9)

where r̃eq
ISCO

is given by (3). Expressions (7)–(9) reduce to
equations (1)–(5) in the case of equatorial orbits (ι = 0) and
are therefore exact in that limit, with the exception of the
higher-order terms in ν.

As mentioned above, another case in which we know ac-
curately the total energy emitted in GWs is given by binaries
of BHs with equal masses and spins aligned or antialigned
with the orbital angular momentum. Reisswig et al. (2009),
for instance, showed that the energy emitted by these bina-
ries during their inspiral (from infinite separation), merger and
ringdown can be well described by a polynomial fit

Erad

M
= p0 + p1(a1 + a2) + p2(a1 + a2)2 , (10)

where a1 and a2 are the projections of the spin parameters
along the direction L̂ of the orbital angular momentum (ai
is therefore respectively positive/negative when the spin is
aligned/antialigned with L̂), and where the fitting coefficients
were found to be (Reisswig et al. 2009) p0 = 0.04826, p1 =
0.01559 and p2 = 0.00485, with uncertainties on the order of
∼ 5% (Reisswig et al. 2009). We recall that the coefficient
p0 can be interpreted as the nonspinning orbital contribution
to the energy loss (which is the largest one and ∼ 50% of the
largest possible mass loss, which happens for a1 = a2 = 1),
p1 can instead be interpreted as the spin-orbit contribution
(which is . 30% of the largest possible loss), while p2 can be
associated to the spin-spin contribution (which is . 20% of
the largest possible loss). Although the fit proposed by Reis-
swig et al. (2009) predicts a (shallow) minimum for the ra-
diated energy Erad at (a1 + a2)/2 ∼ −0.8, this minimum
is (very likely) just an artifact of the fit due to the scarce data
available at that time (Reisswig et al. 2009). Having now more
data to analyze, we can enforce the monotonicity of Erad as a

6 As in the equatorial case, we can consider only prograde orbits (0 ≤ ι ≤
π/2) and allow a to be either positive or negative.

FIG. 1.— Top panel: Radiated energy, Erad/M , as a function of the to-
tal spin of the system along the orbital angular momentum, |a1| cosβ +
|a2| cos γ, for all published NR simulations with q = 1, both with
aligned/antialigned spins (in red) and for misaligned spins (in blue). Shown
instead with a black solid line is the prediction of expression (14) with the
coefficients fitted from aligned/antialigned binaries. Bottom panels: resid-
uals of the NR data from the fitting expression and the corresponding error
relative to Erad/M .

function of a1 +a2 by assuming p2 = p1/4, which constrains
the minimum of Erad to be at (a1 + a2)/2 = −1. Interest-
ingly, a fitting expression of the type

Erad

M
= p0 + p1(a1 + a2) +

p1

4
(a1 + a2)2 , (11)

provides an estimate of the radiated energy which is as accu-
rate as the one obtained with (10). Indeed, with fitting param-
eters

p0 = 0.04827±0.00039 , p1 = 0.01707±0.00032 , (12)

this expression reproduces all of the available NR data7 for
the energy emitted by equal-mass binaries with aligned or an-
tialigned spins, to within ∼ 0.005M (except for almost maxi-
mal spins, see below). Such an accuracy is comparable to the
typical accuracy of the data themselves, so we can conclude
that expressions (11)–(12) summarize our complete knowl-
edge of the GW emission from this class of binaries to date.

We note, however, that higher-order terms in the spins may
be needed in equation (11) to reproduce the data for nearly
extremal spins. In fact, the maximum value for the radiated
energy predicted by our fit, i.e., 9.95% of the total mass of
the binary at infinite separation when a1 = a2 = 1, is signif-
icantly less than the 10.95% found by Lovelace et al. (2012)
for a1 = a2 ≈ 0.97. Such a large value for Erad is some-
what off the general trend shown by the other NR data for
large aligned spins. However, it is clear that higher-order spin

7 The NR data considered is relative to the following references listed in
alphabetical order: Baker et al. (2008b); Berti et al. (2007, 2008); Campanelli
et al. (2006); Chu et al. (2009); Chu (2012); Hannam et al. (2008, 2010);
Kelly et al. (2011); Lovelace et al. (2011, 2012); Marronetti et al. (2008);
Pollney et al. (2007); Pollney & Reisswig (2011); Reisswig et al. (2009).
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terms may have to be added if more numerical data for high-
spin configurations becomes available and confirm this result.

Using therefore the knowledge of the radiated en-
ergy from the test-particle limit and from the equal-mass
aligned/antialigned configurations, we derive an expression
valid for generic binaries. As a first step, let us note that the
PN binding energy of an equal-mass binary of spinning BHs
depends on the spins, at 1.5 PN order, i.e., at leading order in
the spins (Barker & O’Connell 1975), only through the com-
bination

L̂ · (S1 + S2)

M2
=
|a1| cosβ + |a2| cos γ

4
, (13)

where |a1| and |a2| are the spin magnitudes, and β, γ are the
angles between the orbital angular momentum unit vector L̂
and the spins of the first and second BH, respectively. We can
therefore attempt to extend expression (11) to generic equal-
mass binaries simply by replacing a1 + a2 with |a1| cosβ +
|a2| cos γ, i.e.,

Erad

M
= p0 + p1(|a1| cosβ + |a2| cos γ)

+
p1

4
(|a1| cosβ + |a2| cos γ)2 . (14)

As a check of this ansatz, in the top panel of Fig. 1 we have
plotted the radiated energy, Erad/M , as a function of the to-
tal spin along the orbital angular momentum, |a1| cosβ +
|a2| cos γ, for all published NR simulations with q = 1,
both with aligned/antialigned spins (in red; see footnote 7)
and with misaligned spins (in blue8). Also, we show with
a black solid line the prediction of expression (14) with the
coefficients fitted from aligned/antialigned binaries [equation
(12)]. In the bottom panels we show instead the residuals of
the NR data from the same curve and the corresponding errors
relative to Erad/M . Clearly, while future simulations that
are more accurate or describe more involved configurations
may present deviations from our simple ansatz, all published
simulations for equal-mass binaries are in reasonable agree-
ment with equation (14), with residuals of . 1% and errors
of . 10% relative to the radiated mass. Note that these errors
are comparable with the intrinsic scatter of the different NR
data.

Because in the test-particle limit the angle β becomes the
angle between the spin S1 of the Kerr BH and the orbital
angular momentum of the particle, thus coinciding with the
angle ι defined in (6), it is natural to rewrite equations (7)–(9)
as

Erad

M
= [1− Ẽ

ISCO
(ã)] ν + o(ν) , (15)

Ẽ
ISCO

(ã) =

√
1− 2

3r̃eq
ISCO

(ã)
, (16)

where we have defined

ã ≡ L̂ · (S1 + S2)

M2
=
|a1| cosβ + q2|a2| cos γ

(1 + q)2
. (17)

If we now assume that the higher-order term o(ν) in equation
(15) is quadratic in ν, we can determine it by imposing that

8 The NR data for equal-mass misaligned binaries are relative to the
following references listed in alphabetical order: Herrmann et al. (2007a);
Lousto et al. (2012); Tichy & Marronetti (2007, 2008).

we recover the equal-mass expression (14) for q = 1, thus
obtaining the final expression

Erad

M
=[1− Ẽ

ISCO
(ã)] ν

+ 4 ν2[4p0 + 16p1ã(ã+ 1) + Ẽ
ISCO

(ã)− 1] ,
(18)

where Ẽ
ISCO

(ã) is given by (16). By construction, there-
fore, expression (18) has the correct behavior both in the test-
particle limit and for equal-mass binaries. Also, we stress that
the fitting coefficients [given by (12)] are obtained using only
a subset of the NR data (i.e., those for equal-mass binaries
with aligned/antialigned spins).

3. COMPARISON TO DATA: BINARIES AT SMALL AND LARGE
SEPARATIONS

In order to test the accuracy of expression (18), we used the
data of 186 numerical simulations of inspiralling and merg-
ing BH binaries9, which have reported the ratio Mf/M ≡
1− Erad/M between the final mass of the BH remnant, Mf ,
and the mass M = m1 + m2 of the binary at infinite separa-
tion. In cases where this ratio was not reported explicitly, we
have reconstructed it from the energy radiated during the nu-
merical simulation using PN expressions. More specifically,
we calculate the radiated energy as

Erad = E
NR

rad + |E
3PN

bind(Ω0)| , (19)

where E
3PN

bind(Ω) is the 3PN binding energy as function of
the orbital frequency Ω (Buonanno et al. 2003b), and Ω0 is
the initial orbital frequency of the simulation (either reported
explicitly or, when unavailable, reconstructed from the ini-
tial puncture data). In addition, in those cases where the
simulation results are normalized in terms of the Arnowitt-
Deser-Misner mass MADM, we approximate it as MADM =

M − |E3PN

bind(Ω0)|.
For each binary, we apply our expression (18) to the ini-

tial configuration of the numerical simulation (where the bi-
nary typically has a “ small separation” r . 10M ). How-
ever, in order to check whether our expression predicts the
final mass correctly also for widely separated binaries, we
have also integrated the initial binary back to a “large sepa-
ration” r = 2 × 104M using the quasi-circular PN evolu-
tion equations of Buonanno et al. (2003b) (which are accu-
rate through 3.5PN order for the adiabatic evolution of the
orbital frequency, and through 2PN order for the dynamics of
the spins). For massive BHs, this is roughly the separation at
which the dynamics starts being dominated by GW emission,
and is therefore the separation at which our expression (18)
ought to work if we want it to be useful in cosmological con-
texts [cf. Barausse & Rezzolla (2009) and the discussion in
Barausse (2012)].

The results of these comparisons are summarized in Fig. 2,
which shows the difference between the data and our expres-
sion, both for small (left panel) and large separations (right

9 The data is relative to the following references listed in alphabetical or-
der Baker et al. (2008b); Berti et al. (2008, 2007); Buchman et al. (2012);
Campanelli et al. (2006, 2009); Chu et al. (2009); Chu (2012); Gonzalez et
al. (2009); Hannam et al. (2008, 2010); Herrmann et al. (2007a); Kelly et
al. (2011); Lousto & Zlochower (2009); Lousto et al. (2012); Lovelace et al.
(2011, 2012); Marronetti et al. (2008); Nakano et al. (2011); Pollney et al.
(2007); Pollney & Reisswig (2011); Reisswig et al. (2009); Tichy & Mar-
ronetti (2007, 2008).
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FIG. 2.— Residuals for the fitting formula at small and large separations as a function of a dummy index representing the binaries in our dataset. Binaries
with spins aligned/antialigned with the orbital angular momentum are plotted in red, while binaries with misaligned spins are shown in blue. Cyan and violet
lines represent the 1σ and 2σ errors (estimated a posteriori) of the data with spins aligned/antialigned with the orbital angular momentum. The first 50 points
correspond to the simulations performed after 2010.

panel) as a function of a dummy index representing the or-
dering of the binaries in our dataset. As can be seen the re-
sults at small and large separations are almost indistinguish-
able. This does not come as a surprise, because the projection
of the total spin on the direction of the angular momentum
[equation (13)] is approximately conserved during the inspi-
ral, in most of the parameter space of quasi-circular binaries
(see discussion in Barausse & Rezzolla (2009) for more de-
tails). Binaries with spins aligned/antialigned with the orbital
angular momentum are plotted in red, while binaries with mis-
aligned spins are shown in blue. Also shown are cyan and vi-
olet lines representing the 1σ and 2σ errors of the data with
spins aligned/antialigned with the orbital angular momentum,
as obtained a posteriori by comparing them to the fit (11) (cf.
Fig. 1). Also, the first 50 points correspond to the simula-
tions performed after 2010, while others correspond to the
simulations performed in 2006-2009. Although the quality
of numerical simulations improved substantially in last few
years, the “old” data give residuals comparable to the “new”
ones. Furthermore, the residuals for the binaries with spins
aligned/antialigned with the orbital angular momentum ap-
pear to be comparable with those for the binaries with mis-
aligned spins.

We stress that while our expression is in reasonable agree-
ment with all the published data, both at large and small sep-
arations, there are still large gaps in the parameter space of
BH binaries that prevent us from testing our approach more
thoroughly. This is best seen in Fig. 3, where we plot the fi-
nal mass of the remnant for all the published data for binaries
with a1 cosβ = a2 cos γ (blue circles), as well as the predic-
tions of our expression when applied to the “small-separation”
initial data of the simulations (meshed surface). Clearly, spin-
ning binaries with unequal mass ratios are essentially absent,
and simulations for such binaries will provide a very signifi-
cant check of our expression (18). Nevertheless, the simple
functional dependence shown by the available data, whose

behaviour can be well captured with low-order polynomials
(with the possible exception, as we already stressed, of almost
maximally spinning configurations), is quite remarkable.

The graphical representation of the data in Fig. 3 also al-
lows to reinforce a remark already made by Reisswig et al.
(2009), namely, that the largest radiated energy, Erad(a =
1)/M = 9.95%, is lost by binaries with equal-mass and max-
imally spinning BHs with spins aligned with the orbital an-
gular momentum. Hence, BH binaries on quasi-circular or-
bits are among the most efficient sources of energy in the
Universe. Note, however, that equal-mass binaries are not
always the systems that lose the largest amount of energy.
Indeed, unequal-mass systems with sufficiently large spins
aligned with the angular momentum can lead to emissions
larger than those from equal-mass binaries but with large an-
tialigned spins. For instance, a binary with ν = 0.15 and
a1 = a2 = 1 will radiate more than a binary with ν = 0.25
and a1 = −a2.

Notwithstanding the limited coverage of the parameter
space, we can note that our approach substantially improves
upon earlier formulas for the final mass. For instance, Tichy
& Marronetti (2008) [building on the work of Boyle & Kes-
den (2008)] suggested a formula linear in the symmetric mass
ratio ν, but the coefficients needed to fit NR results are such
that the test-particle limit (1)–(9) is not recovered. As men-
tioned earlier, because we recover the test-particle limit ex-
actly, our expression reproduces the published data more ac-
curately, especially for small mass-ratio configurations (cf.
the discussion on the effective-one-body model in the next
section). Another example is given by the formula of Lousto
et al. (2010a), which has the correct test-particle limit but de-
pends, for generic configurations, on parameters that describe
the binary’s plunge and merger and which can only be cal-
culated with numerical simulations. Our algebraic formula,
instead, allows one to calculate the final mass with reasonable
accuracy, using only information on the initial binary config-
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FIG. 3.— Mass of the final BH, Mf ≡ M − Erad, and corresponding
fit for all the published binaries with a1 cosβ = a2 cos γ. Note the simple
functional dependence of the Erad, whose behaviour can be well captured
with low-order polynomials.

uration, at any separation.

4. APPLICATIONS OF THE NEW FORMULA

In the following Sections we discuss three different exam-
ples of how our new expression for the energy radiated during
the inspiral, merger and ringdown of two BHs can be used in
contexts that range from GW physics to cosmology.

4.1. Merger-ringdown energy
We can combine our expression (18) for the total radiated

energy with the recent results of Le Tiec et al. (2012) for the
binding energy of a binary of nonspinning BHs at next-to-
leading order in the mass ratio, and obtain an expression for
the energy emitted in the merger and ringdown phases of non-
spinning BH binaries. More specifically, for these binaries
Le Tiec et al. (2012) found the total energy (i.e., the binary’s
mass M at infinite separation, plus the binding energy) to be

E(x) = M

[
1 +

(
1− 2x√
1− 3x

− 1

)
ν + ν2ESF(x)

]
+O(ν)3

(20)
where x ≡ (M Ω)2/3 and Ω is the orbital frequency. The
self-force contribution reads

ESF(x) =
zSF(x)

2
−xz

′
SF(x)

3
−1+

√
1− 3x+

x(7− 24x)

6(1− 3x)3/2
,

(21)
where zSF is given by the fitting function

zSF(x) =
2x (1 + a1x+ a2x

2)

1 + a3x+ a4x2 + a5x3
, (22)

which is accurate to within 10−5 with a1 = −2.18522,
a2 = 1.05185, a3 = −2.43395, a4 = 0.400665, and
a5 = −5.9991, and where we use a prime to denote deriva-
tives with respect to x. The minimum of E(x) marks the lo-
cation of the ISCO [see Le Tiec et al. (2012); Buonanno et al.
(2003a)] and lies at

x
ISCO

=
1

6

(
1 +

2

3
ν CΩ

)
+O(ν2) , (23)

with CΩ = 1.2510(2). Replacing x
ISCO

in equation (20), one
obtains that the energy emitted during the inspiral is

Erad,insp

M
= 1− E(x

ISCO
)

M

=

(
1− 2

√
2

3

)
ν + 0.037763 ν2 +O(ν)3

' 0.057191 ν + 0.037763 ν2 +O(ν)3 . (24)

Expressing now the total radiated energy as the sum of the
one lost during the inspiral and the one lost during the plunge-
merger and ringdown, i.e.,

Erad = Erad,insp + Erad,merger−rd , (25)

and using equation (18), we obtain an expression for the en-
ergy radiated during the plunge-merger and ringdown of non-
spinning BH binaries:

Erad,merger−rd

M
≈ 0.506 ν2 . (26)

For equal-mass binaries, this energy is almost twice the en-
ergy lost during the whole inspiral. In expression (26) we have
neglected terms of order O(ν)3, so in principle this equation
may not hold for comparable-mass binaries. However, the
binding energy (20) has been found by Le Tiec et al. (2012)
to be in very good agreement with NR results for comparable
masses, and we therefore expect the same to hold for expres-
sion (26). Indeed, Berti et al. (2007) have estimated that the
energy emitted by equal- and unequal-mass nonspinning BH
binaries after the 3PN ISCO is given by

Erad,merger−rd

M
≈ 0.421 ν2 . (27)

Even more strikingly, Berti et al. (2007); Nagar et al. (2007);
Bernuzzi & Nagar (2010) showed that the energy emitted by
a particle in a Schwarzschild spacetime during its plunge-
merger is given by

Eplunge

M
≈ 0.47 ν2 , (28)

in reasonable agreement with (27) and (26). As a result, at
least in the nonspinning case, one can reproduce the radiated
energy predicted by our final expression (18) for comparable-
mass binaries, simply by summing the energy emitted by a
particle during the inspiral [equation (24)] and during the
plunge-merger [equation (28)].

This confirms previous work showing that perturbative re-
sults, when expressed in terms of the symmetric mass ratio
ν, are in good agreement with NR results, even for compara-
ble masses [see Detweiler & Szedenits (1979); Anninos et al.
(1995); Berti et al. (2007) for the GW fluxes, Le Tiec et al.
(2011) for the periastron precession, and Le Tiec et al. (2012)
for the binding energy].

4.2. Tuning of the effective-one-body model
We recall that the EOB (Buonanno & Damour 1999) is a

phenomenological model aiming at describing the dynamics
and waveforms of BH binaries, during the inspiral, merger
and ringdown phases, combining information from PN theory,
perturbative calculations and NR. While developed initially
for nonspinning BHs (Buonanno & Damour 1999; Damour
et al. 2000; Barausse et al. 2012), the model has been more
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recently generalized to spinning ones (Damour 2001; Damour
et al. 2008; Barausse & Buonanno 2010, 2011; Nagar 2011).

To accurately describe the ringdown phase, the EOB needs
expressions predicting the final mass and spin. For non-
spinning BHs, these could be estimated self-consistently
within the EOB along the lines of Damour & Nagar (2007).
However, a generalization of this approach to spinning BHs,
especially if precessing, is not straightforward. Moreover, be-
cause the final BH’s mass and spin are used to calculate the
frequencies and decay times of the quasi-normal modes, even
small inaccuracies in the prediction of the remnant’s mass and
spin introduce considerable phase errors in the EOB wave-
forms. For instance, the EOB model of Taracchini et al.
(2012) was compared to NR waveforms for nonspinning BHs
with mass ratio q = 1/6, using the formula of Tichy & Mar-
ronetti (2008) to calculate the final mass. Because that for-
mula does not have the correct test-particle limit [e.g. for non-
spinning BHs, it predictsErad/M = 0.194 ν+O(ν)2 instead
of Erad/M = 0.057 ν + O(ν)2], the EOB waveforms were
accumulating a phase difference of ∼ 0.2 rad from the NR
ones during the ringdown. With our new formula, this phase
difference during the ringdown decreases impressively to less
than 0.05 rad (Taracchini 2012, private communication).

4.3. GW emission by MBHs
According to our present understanding of galaxy forma-

tion, most galactic nuclei should host a massive BH, with
mass up to 1010M�. Information on the masses and spins
of these BHs can be extracted from present electromagnetic
observations (see e.g. Li et al. (2012) for recent constraints),
but much more accurate data will be provided by future space-
based GW detectors such as LISA or DECIGO, or terrestrial
ones such as the Einstein Telescope. These detectors will
be able to observe the mergers of MBHs, which take place
when their host galaxies coalesce. Semi-analytical galaxy-
formation models, such as e.g. that of Barausse (2012), have
been employed to understand the MBH merger history and
therefore the event rates for these detectors, suggesting hun-
dreds of events per year for DECIGO, from a few to hundreds
of events per year for LISA, and up to a few tens of events per
year for the Einstein Telescope. A detector-independent diag-
nostics of the importance of massive BH mergers, however, is
given by the energy radiated in GWs by massive BH binaries,
per unit comoving volume and as a function of cosmic time.
We have calculated this quantity using the galaxy-formation
model of Barausse (2012), our new expression (18), and two
competing models for the seeds of the massive BHs at high
redshift – namely a “light-seed” scenario in which the seeds
have mass Mseed ∼ 100M� at z = 15 − 20, and a “heavy-
seed” model in which the seeds form a z ∼ 15 with mass
Mseed ∼ 105M� (see Barausse (2012) and references therein
for more details).

The results for this quantity are shown in Fig. 4. Clearly,
the heavy-seed scenario predicts much stronger GW emission
at redshifts z & 3, which is not surprising since mergers hap-
pen initially between BHs with masses ∼ Mseed, and the ra-
diated energy scales with the total mass of the BH binaries.
At z ∼ 0, instead, the two models yield very similar results,
because both reproduce the observed local massive BH mass
function (Barausse 2012). Given the significantly different
yields in the GW emission expected from these two scenar-
ios of galaxy formation, future space-borne and terrestrial in-
terferometers would provide important and unambiguous in-
formation on the BH population at early redshifts [see also

FIG. 4.— The energy emitted by massive BH mergers per unit redshift and
unit comoving volume, as a function of redshift. The two lines refer either
to the “light-seed” scenario (red solid curve) or to the “heavy-seed” scenario
(blue dashed line).

Sesana et al. (2009, 2011); Gair et al. (2009, 2011)].
Finally, we note that by integrating the results of Fig. 4, we

find that the total energy density in GWs from massive BH bi-
naries at z = 0 is ρGW,mergers ≈ 7.4× 102M�/Mpc3 in the
light-seed scenario and ρGW,mergers ≈ 1.8× 104M�/Mpc3

in the heavy-seed scenario, corresponding to a cosmologi-
cal density parameter ΩGW,mergers ≡ ρGW,mergers/ρcrit ≈
5.4×10−9 (light-seed scenario) or ΩGW,mergers ≈ 1.3×10−7

(heavy-seed scenario).

5. CONCLUSIONS

We have presented a novel algebraic formula to measure
the energy radiated by coalescing binary systems of BHs with
generic spin magnitudes and orientations and arbitrary mass
ratios. Our expression uses information on the binary con-
figuration at an arbitrary separation and reproduces correctly
the two regimes in which the radiated energy is known best,
namely, the test-particle limit (which is known analytically)
and the comparable-mass case (which has been extensively
investigated with NR simulations over the last few years). Be-
cause it smoothly interpolates these two regimes, we expect
our formula to work reasonably well also for intermediate
mass ratios. Indeed, we have verified that it reproduces the
results of all the NR simulations published so far in the litera-
ture, including those with unequal masses, to within an error
which is comparable to the typical errors of the simulations.
In addition, we have checked that our formula works equally
well when applied to binaries starting at small separations
(i.e., r . 10M ) and at large separations (i.e., r ∼ 104M ),
thus opening up the possibility of using our expression also in
cosmological contexts.

The algebraic nature of our expression makes it a useful
tool in a variety of contexts that range from GW physics to
cosmology. As representative examples we have discussed
three different applications, namely: (i) we have shown that,
when combined with the results of Le Tiec et al. (2012) for the
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self-force correction to the binding energy of nonspinning BH
binaries, the new formula provides an estimate for the energy
emitted during the merger and ringdown, and that this esti-
mate confirms the conjecture that the results of perturbative
calculations may be successfully extrapolated to comparable-
mass binaries when expressed in terms of the symmetric mass
ratio ν; (ii) we have shown that the new formula can help re-
duce the phase error of the EOB waveforms during the ring-
down; (iii) using a semi-analytical galaxy-formation model to
follow the coevolution of MBHs and their host galaxies, we
have used our formula to predict the energy emitted in GWs
by MBH binaries as a function of redshift, and found that
these predictions strongly depend on the scenario adopted for
the MBH seeds at high redshifts, thus making GW emission a
powerful cosmological diagnostic.

Additional uses of the new formula can be easily consid-
ered and a particularly relevant one is the impact of the mass
loss on the accretion disk surrounding the MBH binary. The
dynamics of the disk, in fact, can change considerably as a
result of the very rapid change in the gravitational mass of the
system, with the formation of large shocks, which are poten-
tially detectable via their electromagnetic emission (O’Neill
et al. 2009; Rossi et al. 2010; Zanotti et al. 2010).

As a final remark we note that because our approach ex-
ploits knowledge derived from NR simulations, the accuracy
of the final-mass formula can be improved as additional and
more precise NR simulations, especially with highly-spinning
BHs, become available.

We thank C. Lousto for useful advice on how to extract the
initial orbital frequency from the puncture data, E. Berti and
U. Sperhake for providing the initial orbital frequency of the
simulations of Berti et al. (2007) and Berti et al. (2008) re-
spectively, H. P. Pfeiffer for providing the data for the final
mass of the simulations of Buchman et al. (2012) before their
paper appeared on the preprint archive, and T. Chu for pro-
viding the final mass of an unpublished simulation used in
Taracchini et al. (2012) and presented in his PhD thesis (Chu
2012). Special thanks go to E. Berti for several useful dis-
cussions, to A. Buonanno for suggesting the relevance of this
problem for the EOB, and to A. Taracchini for confirming that
our formula significantly improves the EOB phase error for
small mass ratios. E.B. acknowledges support from a CITA
National Fellowship at the University of Guelph. This work
was supported in part by the DFG grant SFB/Transregio 7.
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