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Abstract. With the aim of determining the statistical properties of relativistic tur-
bulence and unveiling novel and non-classical features, wepresent the results of di-
rect numerical simulations of driven turbulence in an ultrarelativistic hot plasma using
high-order numerical schemes. We study the statistical properties of flows with average
Mach number ranging from∼ 0.4 to∼ 1.7 and with average Lorentz factors up to∼ 1.7.
We find that flow quantities, such as the energy density or the local Lorentz factor, show
large spatial variance even in the subsonic case as compressibility is enhanced by rela-
tivistic effects. The velocity field is highly intermittent, but its power-spectrum is found
to be in good agreement with the predictions of the classicaltheory of Kolmogorov.

1. Introduction

Turbulence is an ubiquitous phenomenon in nature as it playsa fundamental role in
shaping the dynamics of systems ranging from the mixture of air and oil in a car en-
gine, up to the rarefied hot plasma composing the intergalactic medium. Relativistic
hydrodynamics is a fundamental ingredient in the modeling of a number of systems
characterized by high Lorentz-factor flows, strong gravityor relativistic temperatures.
Examples include the early Universe, relativistic jets, gamma-ray-bursts (GRBs), rela-
tivistic heavy-ion collisions and core-collapse supernovae (Font 2008).

Despite the importance of relativistic hydrodynamics and the reasonable expecta-
tion that turbulence is likely to play an important role in many of the systems mentioned
above, extremely little is known about turbulence in a relativistic regime. For this rea-
son, the study of relativistic turbulence may be of fundamental importance to develop a
quantitative description of many astrophysical systems. To this aim, we have performed
a series of high-order direct numerical simulations of driven relativistic turbulence of a
hot plasma.

2. Model and method

We consider an idealized model of an ultrarelativistic fluidwith four-velocity uµ =
W(1, vi), whereW ≡ (1 − vivi)−1/2 is the Lorentz factor andvi is the three-velocity in
units wherec = 1. The fluid is modeled as perfect and described by the stress-energy
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Figure 1. Left panel:average Lorentz factor as a function of time for the different
models considered. Note that a quasi-stationary state is reached beforet ∼ 10 for all
values of the driving force.Right panel:logarithm of the Lorentz factor on the (y, z)
plane at the final time of modelD. Note the large spatial variations of the Lorentz
factor with front-like structures. The time-averaged PDFsare shown in the lower left
corner for the different models considered.

tensor
Tµν = (ρ + p)uµuν + p gµν , (1)

whereρ is the (local-rest-frame) energy density,p is the pressure,uµ the four-velocity,
andgµν is the spacetime metric, which we take to be the Minkowski one. We evolve
the equations describing conservation of energy and momentum in the presence of an
externally imposed Minkowskian forceFµ, i.e.

∇νT
µν
= Fµ, (2)

where the forcing term is written asFµ = F̃(0, f i ). More specifically, the spatial part of
the force,f i, is a zero-average, solenoidal, random, vector field with a spectral distribu-
tion which has compact support in the low wavenumber part of the Fourier spectrum.
Moreover, f i , is kept fixed during the evolution and it is the same for all the models,
while F̃ is either a constant or a simple function of time (see Radice &Rezzolla (2012)
for details).

The set of relativistic-hydrodynamic equations is closed by the equation of state
(EOS) p = 1

3ρ, thus modelling a hot, optically-thick, radiation-pressure dominated
plasma, such as the electron-positron plasma in a GRB fireball or the matter in the
radiation-dominated era of the early Universe. The EOS usedcan be thought as the rel-
ativistic equivalent of the classical isothermal EOS in that the sound speed is a constant,
i.e. c2

s = 1/3. At the same time, an ultrarelativistic fluid is fundamentally different from
a classical isothermal fluid. For instance, its “inertia” isentirely determined by the tem-
perature and the notion of rest-mass density is lost since the latter is minute (or zero
for a pure photon gas) when compared with the internal one. For these reasons, there is
no direct classical counterpart of an ultrarelativistic fluid and a relativistic description
is needed even for small velocities.

We solve the equations of relativistic hydrodynamics in a 3Dperiodic domain us-
ing the high-resolution shock capturing scheme described in (Radice & Rezzolla 2012).
In particular, ours is a flux-vector-splitting scheme (Toro1999), using the fifth-order
MP5 reconstruction (Suresh & Huynh 1997), in local characteristic variables (Hawke
2001), with a linearized flux-split algorithm with entropy and carbuncle fix
(Radice & Rezzolla 2012).
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3. Basic flow properties

Our analysis is based on the study of four different models, which we label asA, B, C
andD, and which differ for the initial amplitude of the driving factor F̃ = 1, 2, 5 for
modelsA–C, and F̃(t) = 10+ 1

2t for the extreme modelD. Each model was evolved
using three different uniform resolutions of 1283, 2563 and 5123 grid-zones over the
same unit lengthscale. As a result, modelA is subsonic, modelB is transonic and
modelsC andD are instead supersonic. The spatial and time-averaged relativistic Mach
numbers〈vW〉/(csWs) are 0.362, 0.543, 1.003 and 1.759 for our modelsA, B, C andD,
while the average Lorentz factors are 1.038, 1.085, 1.278 and 1.732 respectively

The initial conditions are simple: a constant energy density and a zero-velocity
field. The forcing term, which is enabled at timet = 0, quickly accelerates the fluid,
which becomes turbulent. By the time when we start to sample the data,i.e. at t = 10
(light-)crossing times, turbulence is fully developed andthe flow has reached a station-
ary state. The evolution is then carried out up to timet = 40, thus providing data for
15, equally-spaced timeslices over 30 crossing times. As a representative indicator of
the dynamics of the system, we show in the left panel of Fig. 1 the time evolution of
the average Lorentz factor for the different models considered. Note that the Lorentz
factor grows very rapidly during the first few crossing timesand then settles to a quasi-
stationary evolution. Furthermore, the average grows nonlinearly with the increase of
the driving term, going from〈W〉 ≃ 1.04 for the subsonic modelA, up to〈W〉 ≃ 1.73
for the most supersonic modelD.

The probability distribution functions (PDFs) of the Lorentz factor are shown in
the right panel of Fig. 1 for the different models. Clearly, as the forcing is increased,
the distribution widens, reaching Lorentz factors as largeas W ≃ 40 (i.e. to speeds
v ≃ 0.9997). Even in the most “classical” caseA, the flow shows patches of fluid
moving at ultrarelativistic speeds. Also shown in Fig. 1 is the logarithm of the Lorentz
factor on the (y, z) plane and att = 40 for modelD, highlighting the large spatial
variations ofW and the formation of front-like structures.

4. Universality

As customary in studies of turbulence, we have analyzed the power spectrum of the
velocity field

Ev(k) ≡
1
2

∫

|k|=k
|v̂(k)|2 dk , (3)

wherek is a wavenumber three-vector and

v̂(k) ≡
∫

V
v(x)e−2πik·x dx , (4)

with V being the three-volume of our computational domain. A number of recent stud-
ies have analyzed the scaling of the velocity power spectrumin the inertial range, that
is, in the range in wavenumbers between the lengthscale of the problem and the scale
at which dissipation dominates. More specifically, Inoue etal. (2011) has reported evi-
dences of a Kolmogorovk−5/3 scaling in a freely-decaying MHD turbulence, but has not
provided a systematic convergence study of the spectrum. Evidences for ak−5/3 scal-
ing were also found by Zhang et al. (2009), in the case of the kinetic-energy spectrum,
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Figure 2. Power spectra of the velocity field. Different lines refer to the three
resolutions used and to the different values of the driving force. The spectra are
scaled assuming ak−5/3 law.

which coincides with the velocity power-spectrum in the incompressible case. Finally,
Zrake & MacFadyen (2012) has performed a significantly more systematic study for
driven, transonic, MHD turbulence, but obtained only a verysmall (if any) coverage of
the inertial range.

The time-averaged velocity power spectra computed from oursimulations are
shown in Fig. 2. Different lines refer to the three differentresolutions used, 1283 (dash-
dotted), 2563 (dashed) and 5123 (solid lines), and to the different values of the driving
force. To highlight the presence and extension of the inertial range, the spectra are
scaled assuming ak−5/3 law, with curves at different resolutions shifted of a factor two
or four, and nicely overlapping with the high-resolution one in the dissipation region.
Overall, Fig. 2 convincingly demonstrates the good statistical convergence of our code
and gives a strong support to the idea that thekeyprediction of the Kolmogorov model
(K41) (Kolmogorov 1991) carries over to the relativistic case. Indeed, not only does the
velocity spectrum for our subsonic modelA shows a region, of about a decade in length,
where thek−5/3 scaling holds, but this continues to be the case even as we increase the
forcing and enter the regime of relativistic supersonic turbulence with modelD. In this
transition, the velocity spectrum in the inertial range, the range of lengthscales where
the flow is scale-invariant, is simply “shifted upwards” in aself-similar way, with a
progressive flattening of the bottleneck region, the bump inthe spectrum due to the
non-linear dissipation introduced by our numerical scheme. Steeper scalings, such as
the Burger one,k−2, are also clearly incompatible with our data.

All in all, this is one of our main results: the velocity powerspectrum in the inertial
range isuniversal, that is, insensitive to relativistic effects, at least in the subsonic and
mildly supersonic cases. Note that this doesnot mean that relativistic effects are absent
or can be neglected when modelling relativistic turbulent flows.
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Figure 3. Structure function exponents as computed using the ESS technique for
different models. Also shown in the Figure are the analytic predictions from two
classical intermittency models: the She and Leveque (SL) (She & Leveque 1994)
and the Boldyrev (Boldyrev 2002) models.

5. Intermittency

Not all of the information about relativistic turbulent flows is contained in the velocity
power spectrum. Particularly important in a relativistic context is the intermittency of
the velocity field, that is, the local appearance of anomalous, short-lived flow features,
which we have studied by looking at the parallel-structure functions of orderp

S‖p(r) ≡
〈

|δrv|
p〉, δrv =

[

v(x + r) − v(x)
]

·
r
r

(5)

wherer is a vector of lengthr and the average is over space and time.

The scaling exponents of the parallel structure functions,i.e. ζ‖p s.t. S‖p(r) ∼ rζ
‖
p,

have been computed up top = 10 using the extended-self-similarity (ESS) technique
(Benzi et al. 1993) and are summarized in Figure 3. The errorsare estimated by com-
puting the exponents without the ESS or using only the data atthe final time. We also
show the values as computed using the classical K41 theory, as well as using the esti-
mates by She and Leveque (SL) (She & Leveque 1994) for incompressible turbulence,
i.e. ζ‖p =

p
9 + 2 − 2(2

3)p/3, and those by Boldyrev (Boldyrev 2002) for Kolmogorov-

Burgers supersonic turbulence,i.e. ζ‖p =
p
9 + 1− (1

3)p/3.
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Not surprisingly, as the flow becomes supersonic, the high-order exponents tend
to flatten out and be compatible with the Boldyrev scaling, asthe most singular veloc-
ity structures become two-dimensional shock waves.ζ‖2, instead, is compatible with
the She-Leveque model even in the supersonic case. This is consistent with the ob-
served scaling of the velocity power spectrum, which presents only small intermit-
tency corrections to thek−5/3 scaling. Previous classical studies of weakly compress-
ible (Benzi et al. 2008) and supersonic turbulence (Porter et al. 2002) found the scaling
exponents to be in very good agreement with the ones of the incompressible case and
to be well described by the SL model. This is very different from what we observe
even in our subsonic modelA, in which the exponents are significantly flatter than in
the SL model, suggesting a stronger intermittency correction. This deviation is another
important result of our simulations.

6. Conclusions

Using a series of high-order direct numerical simulations of driven relativistic turbu-
lence in a hot plasma, we have explored the statistical properties of relativistic turbulent
flows with average Mach numbers ranging from 0.4 to 1.7 and average Lorentz factors
up to 1.7. We have found that relativistic effects enhance significantly the intermittency
of the flow and affect the high-order statistics of the velocity field. Nevertheless, the
low-order statistics appear to be universal,i.e. independent from the Lorentz factor, and
in good agreement with the classical Kolmogorov theory.
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