arxiv:1209.2936v2 [astro-ph.HE] 4 Mar 2013

DRAFT VERSIONMARCH 5, 2013
Preprint typeset usingTgX style emulateapj v. 5/2/11

UNIVERSALITY AND INTERMITTENCY IN RELATIVISTIC TURBULENT FLOWS OF A HOT PLASMA

DAVID RADICE
Max-Planck-Institut fir Gravitationsphysik, Albert Eiein Institut, Potsdam, Germany

LUCIANO REZZOLLA

Max-Planck-Institut fir Gravitationsphysik, Albert &iein Institut, Potsdam, Germany and
Department of Physics and Astronomy, Louisiana State Wsiilye Baton Rouge, USA

Draft version March 5, 2013

Abstract

With the aim of determining the statistical properties datwistic turbulence and unveiling novel and non-
classical features, we present the results of direct nualsimulations of driven turbulence in an ultrarelativis-
tic hot plasma using high-order numerical schemes. We deltatistical properties of flows with average
Mach number ranging from- 0.4 to ~ 1.7 and with average Lorentz factors up4o1.7. We find that flow
quantities, such as the energy density or the local Loreattof, show large spatial variance even in the sub-
sonic case as compressibility is enhanced by relativiffiécts. The velocity field is highly intermittent, but its
power-spectrum is found to be in good agreement with theigtieds of the classical theory of Kolmogorov.
Overall, our results indicate that relativistic effectg able to significantly enhance the intermittency of the
flow and affect the high-order statistics of the velocitydielhile leaving unchanged the low-order statistics,
which instead appear to be universal and in good agreemémtivé classical Kolmogorov theory. To the best
of our knowledge, these are the most accurate simulatiodswan relativistic turbulence to date.

Subject headings: Turbulence, Methods: Numerical

1. INTRODUCTION We consider an idealized model of an ultrarelativistic fluid

Turbulence is an ubiquitous phenomenon in nature as itWith four-velocity v = W(l,v"), where W = (1 —

plays a fundamental role in shaping the dynamics of sys-viv')~*/? is the Lorentz factor and’ is the three-velocity
tems ranging from the mixture of air and oil in a car en- in units wherec = 1. The fluid is modeled as perfect and
gine, up to the rarefied hot plasma composing the intergalact described by the stress-energy tensor

medium. Relativistic hydrodynamics is a fundamental ingre T = (p+pluyu, + (1)
dientin the modeling of a number of systems characterized by pv = PPty TP v s
high Lorentz-factor flows, strong gravity or relativistierh- wherep is the (local-rest-frame) energy densityis the pres-
peratures. Examples include the early Universe, relditivis ~ sure, v, the four-velocity, andy,,,, is the spacetime metric,
jets, gamma-ray-bursts (GRBs), relativistic heavy-ioflico  which we take to be the Minkowski one. We evolve the
sions and core-collapse supernovae (Font 2008). equations describing conservation of energy and momentum

Despite the importance of relativistic hydrodynamics and in the presence of an externally imposed Minkowskian force
the reasonable expectation that turbulence is likely ty pla F*,i.e. V,T* = F*, where the forcing term is written as
an important role in many of the systems mentioned above, fpn — F(0, f%). More specifically, the spatial part of the
extremely little is known about turbulence in a relatiisti - force i s a zero-average, solenoidal, random, vector field
regime. For this reason, the study of relativistic turben it a’spectral distribution which has compact support i th
may be of fundamental importance to develop a quantitative|q,y wayenumber part of the Fourier spectrum. Moreoyér,
description of many astrophysical systems. Furthermage th s ept fixed during the evolution and it is the same for all the
comparative study of classical and relativistic turbukecan models. whileE is either a constant or a simole function of
be useful also for a better understanding of classical turbu time (sée below for details) P
lence. For instance, the study by C 2005) of relativistic The time component of fhe forcing termi®, is set to be
Iﬁ(recgl_gserﬁ ;l?;]t:aurlt?ang?]’c?rrl:ﬂowje:\l;[u%l:rTecﬁ églgh&é'éng;\\'gﬁrrﬁp orZ€ro, so that the driving force is able to accelerate fluid el-
tant insights in the understanding of strong-Ava'énictIuH fements W|thour: chﬁng_mg their totalll energy I(m the Eu_leggn
lence. In particular, it provided a first important confirioat tirglzngf) .a’\(I:(())tglitwgaietrrlr? llasa?;nncﬁﬁgt?hae %fefggt“ﬁ (ter?etz tv(\)/(;[rlfljl one
of the model by Goldreich & Sridhar (1995), whose predic- on the system by the driving force. On the other hand, we
tion of a—5/3 slope for the energy spectrum has been recently impose a minimum value for the energy density in the local-
conﬁrmed%als)gﬁ%l mggi%%ﬁ%f%gg gg ’Oixestfframe,omin. This choice is motivated essentially by nu-

. . ' : o - : o merical reasons (the very large Lorentz factor produced can
high-order direct numerical simulations of driven reltic lead to unphysical point-wise values gfand has the effect
turbulence of a hot plasma. of slowly heating up the fluid. Furthermore, this floor does no
affect the momentum of the fluid and only the temperature is
increased. From a physical point of view, our approach mim-
ics the fact that in the low-density regions, the constitaerf
david.radice@aei.mpg.fe the plasma are easily accelerated to very high Lorentzfacto

2. MODEL AND METHOD
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Figurel. Left panel: average Lorentz factor as a function of time for the différmodels considered. Note that a quasi-stationary stagached before ~ 10
for all values of the driving forceRight panel: logarithm of the Lorentz factor on thig), z) plane at the final time of mod&). Note the large spatial variations
of the Lorentz factor with front-like structures. The timageraged PDFs are shown in the lower left corner for the iiffemodels considered.

hence emitting bremsstrahlung radiation heating up the sur 1.732 respectively
rounding regions. The net effect is that energy is subtchcte  The initial conditions are simple: a constant energy dgnsit
from the driving force and converted into thermal energy of and a zero-velocity field. The forcing term, which is enabled
the fluid, heating it up. In general,;, is chosento be two or-  at timet = 0, quickly accelerates the fluid, which becomes
ders of magnitude smaller than the initial energy density, b turbulent. By the time when we start to sample the dagaat
we have verified that the results presented here are ins@nsit ¢ = 10 (light-)crossing times, turbulence is fully developed
to the specific value chosen fpy,;,, by performing simula-  and the flow has reached a stationary state. The evolution
tions where the floor value is changed by up to two orders of is then carried out up to time = 40, thus providing data
magnitude without significant differences. for 15, equally-spaced timeslices o3 crossing times. As
The set of relativistic-hydrodynamic equations is closgd b a representative indicator of the dynamics of the system, we
the equation of state (EO9) = %p, thus modelling a hot, ~ show in the left panel of Fi.l 1 the time evolution of the aver-
optically-thick, radiation-pressure dominated plasm&hsas age Lorentz factor for the different models considered.eNot
the electron-positron plasma in a GRB fireball or the matteri that the Lorentz factor grows very rapidly during the first/fe
the radiation-dominated era of the early Universe. The EQScrossing times and then settles to a quasi-stationary &wnlu
used can be thought as the relativistic equivalent of the-cla Furthermore, the average grows nonlinearly with the insgea
sical isothermal EOS in that the sound speed is a constantpf the driving term, going from{i¥") ~ 1.04 for the subsonic
i.e. 2 = 1/3. At the same time, an ultrarelativistic fluid is modelA, up to(W) ~ 1.73 for the most supersonic model
fundamentally different from a classical isothermal fluahr Flow quantities such as the energy density, the Mach num-
instance, its “inertia” is entirely determined by the temgpe  ber or the Lorentz factor show large spatial variance, even
ture and the notion of rest-mass density is lost since tierlat in our subsonic model. Similar deviations from the aver-
is minute (or zero for a pure photon gas) when compared with age mass density, have been reported also in classicaltturbu
the internal one. For these reasons, there is no direct claslent flows of weakly compressible fluids (Benzi etlal. 2008),
sical counterpart of an ultrarelativistic fluid and a retastic where it was noticed that compressible effects, leadinbéo t
description is needed even for small velocities. formation of front-like structures in the density and eplyo
We solve the equations of relativistic hydrodynamics in a fields, cannot be neglected even at low Mach numbers. In the
3D periodic domain using the high-resolution shock captur- same way, relativistic effects in the kinematics of the fluid
ing scheme described ih_(Radice & Rezz6lla 2012). In par- such those due to nonlinear couplings via the Lorentz fac-
ticular, ours is a flux-vector-splitting sche hQQQ) tor (Rezzolla & Zanotti 2002), have to be taken into account
using the fifth-order MP5 reconstruction (Suresh & Hlynh even when the average Lorentz factor is small. The proba-
[1997), in local characteristic variablés (Hawke 2001)hwit bility distribution functions (PDFs) of the Lorentz factare
a linearized flux-split ali orithm with entropy and carbumcl shown in the right panel of Fig.] 1 for the different models.

fix (Radice & Rezzolla 2012). Clearly, as the forcing is increased, the distribution wisle
reaching Lorentz factors as large B5 ~ 40 (i.e. to speeds
3. BASIC FLOW PROPERTIES v ~ 0.9997). Even in the most “classical” cagg the flow

o vsis is based on the study of four diff t mod- shows patches of fluid moving at ultrarelativistic speedsoA

I urhanr? ys'? 'g Iase on S stu 2; Oh.oﬁrd.f_'f erfen r:no shown in Fig[l is the logarithm of the Lorentz factor on the
els, which we label a8, B, C andD, an v7v ich cliffer for the (y, 2) plane and at = 40 for modelD, highlighting the large
initial amplitude of the driving factor” = 1,2,5 formod-  gpatia| variations ofV’ and the formation of front-like struc-
elsA-C, andF(t) = 10 + %t for the extreme moddD. Each tures.
model was evolved using three different uniform resoluion
of 1283, 2562 and5123 grid-zones over the same unit length- 4. UNIVERSALITY
scale. As a result, moddlis subsonic, modeB is transonic
and model<C andD are instead supersonic. The spatial an
time-averaged relativistic Mach numbergiV')/(c,Ws) are
0.362, 0.543, 1.003 and1.759 for our modelsA, B, CandD, 1
while the average Lorentz factors dr®38, 1.085, 1.278 and E,(k) = 5 / |o(k)|* dk , 2

k| =k

d As customary in studies of turbulence, we have analyzed
the power spectrum of the velocity field
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Figure 2. Power spectra of the velocity field. Different lines refettie three Figure 3. Compensated, third-order, parallel structure functiompated for

resolutions used and to the different values of the drivingd. The spectra  the different models as functions of A. Note the very good match with the
inaka5/3 . .
are scaled assumingka 5/ law. cIasswaLS‘g ~ 7 behaviour.

wherek is a wavenumber three-vector and clearly incompatible with our data.
_ These results have been confirmed in a preliminary study
v(k) = / v(x)e 2R g 3) where we pushed our resolution for model D, the most ex-
1% treme one, td 0243.

with V being the three-volume of our computational domain.  Allin all, this is one of our main results: the velocity power
A number of recent studies have analyzed the scaling of theSPectrum in the inertial range isiiversal, that is, insensitive
velocity power spectrum in the inertial range, that is, ie th to relativistic effects, at least in the subsonic and mikilper-
range in wavenumbers between the lengthscale of the probSonic cases. Note that this dows mean that the Kolmogorov
lem and the scale at which dissipation dominates. More theory is directly applicable to relativistic flows. We poaut
specifically, Tnoue et al[ (2011) has reported evidences of athat the velocity power spectrumnst equal to the kinetic en-
Kolmogorovk—>/3 scaling in a freely-decaying MHD turbu- €79y density in Fourier space, as in the classical inconspres
lence, but has not provided a systematic convergence stud)wle case. This is because of the corrections to the exressi

of the spectrum. Evidences for/a5/3 scaling were also of the kinetic energy due to the fluid compressibility (which
f P : . g were is not zero) and the Lorentz factor (we recall that the reisti
ound byt Zhang et dilll (.2009),.|n the case of the kinetic-eyierg tic kinetic energy isT’ = pW (W — 1) ~ 1% + O(vb)).
spectrum, which coincides with the veloCity power-spauiru o i veason. the interpretation of the velocity powescsp
in the incompressible case. Finally, Zrake & MacFadyen

2012) has performed a significantly more systematic stud trum requires great care. Finally we note that already in the
f : P . 9 y yste Y Newtonian turbulence the velocity power-spectrum is known
or driven, transonic, MHD turbulence, but obtained only a

very small (if any) coverage of the inertial range. to have large deviations from the /> scalings for highly
T)r/1e time(-averyzgged velgcity power spectragcomputed from Supersonic flows. In particular Kritsuk et &. (2007) repart
our simulations are shown in Figl 2. Different lines refer to SPectra with scaling close to the Burgers one. Similar devi-
the three different resolutions use®s? (dash-dotted)2563 ations could also manifest themselves in the relativistigec
(dashed) and123 (solid lines), and to the different values of for higher values of the Mach number, but these regimes are
the driving force. To highlight the presence and extension o Currently not-accessible by our code.
the inertial range, the spectra are scaled assuming & law, 5. INTERMITTENCY
with curves at different resolutions shifted of a factor tao
four, and nicely overlapping with the high-resolution one i
the dissipation region. Clearly, simulations at highewohes
tions would be needed to have power-spectra which are mor
accurate and with larger inertial ranges, but overall, Bg.
convincingly demonstrates the good statistical converger
our code and gives a strong support to the idea th re-

Not all of the information about relativistic turbulent flew
is contained in the velocity power spectrum. Particulamhy i
ortant in a relativistic context is the intermittency oéthe-
ocity field, that is, the local appearance of anomalousttsho
lived flow features, which we have studied by looking at the
parallel-structure functions of order

diction of the Kolmogorov model (K41) (Kolmogol 91) o — » B _ T
carries over to the relativistic case. Indeed, not only dhes Sp(r) = (|6r0f), drv = [v(@ +7) —v(@)] , 4)

velocity spectrum fqr our subsonic qulelsh.owssa3reg|on, wherer is a vector of length- and the average is over space
of about a decade in length, compatible witka®/3 scal-  gnd time.

ing, but this continues to be the case even as we increase the Figure 3 reports the compensated, third-order, parallel
forcing and enter the regime of relativistic supersonidtur ’ '

lence with modeD. In this transition, the velocity spectrum id ina. Within the inertial lassical
in the inertial range, the range of lengthscales where the flo 9"d SPacing. Within the inertial range, classical incoegys-

is scale-invariant, is simply “shifted upwards” in a sehgar ible turbule_nce has a; precjse predictio_n: the K_olmogdrﬁ')f
way, with a progressive flattening of the bottleneck regtha,  1aw, for which((4,v)") = Ser, wheree is the kinetic-energy

bump in the spectrum due to the non-linear dissipation intro dissipation rate. This translates inﬂ# ~ er. As shown in
duced by our numerical scheme. Steeper or shallower scalthe figure, the structure functions are somewhat noisy all sma
ings, such as the Burgers orie,?, or ak~*/? one, are also  scales, but are consistent with the classical predictiar av

structure function,SzL', as functions of-/A, whereA is the



N e LA e e s with the ones of the incompressible case and to be well de-
10° E 3 scribed by the SL model. This is very different from what
n 3 we observe even in our subsonic modein which the expo-
107t 3 nents are significantly flatter than in the SL model, suggegsti
102E ; a stronger intermittency correction. This deviation is tueo
F, - 3 important result of our simulations.
E 10 3E & One non-classical source of intermittency is the genuinely
104 E E_ relativistic constraint that the velocity field cannot beuSa
- 3 sian as the PDFs must have compact suppditih 1). This
10°E E is shown by the behaviour of the PDFs«af and plotted as
10-6 E ] solid lines in the shaded area of Hig). 4. Clearly, as the Ltaren
= 3 factor increases, the PDFs become flatter and, as a conse-
1077 . guence, the velocity field shows larger deviations from Gaus

sianity (dashed lines). Stated differently, relativisticbu-
lence is significantly more intermittent than its classmaln-
Figure 4. PDFs of the velocity,, for the different models considered (solid  terpart.
lines). As the forcing is increased, the PDFs flatten, whilastrained to
be in(—1,1) (shaded area). Increasingly large deviations from Ganigia 6. CONCLUSIONS
(dashed lines) appear in the relativistic regime. . . . . . . .
Using a series of high-order direct numerical simulations
of driven relativistic turbulence in a hot plasma, we have ex
plored the statistical properties of relativistic turbnidlows
with average Mach numbers ranging frém to 1.7 and aver-
wide range of lengthscales, with linear fits showing deviagi ~ age Lorentz factors up tb.7. We have found that relativistic
of ~ 5%, and an increase @fwith the driving force. effects enhance significantly the intermittency of the flowl a
Although even in the classical compressible caseditie affect the high-order statistics of the velocity field. Ndte-

law is not strictly valid, we can use it to obtain a rough es- less, the low-order statistics appear to be universalinde-
timate of the turbulent velocity dissipation ra pendent from the Lorentz factor, and in good agreement with

2002). We find that, as measured fror.! or directly from  the classical Kolmogorov theory. - .
{(6,v)3), grows linearly with the Lorentz factor, in contrast .. In the future we plan to pursue a more systematic investiga-

o ' . - U tion of the properties of relativistic turbulent flows at hay
with the classical theory, where it is known to be indepen- resolution
dent of the Reynolds number. This is consistent with the '
observations that in a relativistic regime the turbuleribee
ity shows an exponential decay in time (Zrake & MacFadyen We thank M.A. Aloy, P. Cerda-Duran, A. MacFadyen, M.
[2011;[Inoue etal. 2011), as opposed to the power-law decayObergaulinger and J. Zrake for discussions. The calculatio
seen in classical compressible and incompressible tutbale ~ were performed on the clusters at the AEI and on the Super-
An explanation for this behaviour might be that, since the in MUC cluster at the LRZ. Partial support comes from the DFG
ertia of the fluid grows linearly with the Lorentz factor, an i grant SFB/Transregio 7 and by “CompStar”, a Research Net-
creasingly large rate of energy injection is needed to lwadan Wworking Programme of the ESF.
the kinetic energy losses when the average Lorentz factor is
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Table 1l

Scaling exponents of the parallel structure functions asteh using the ESS technique and analytical predictions ffe K41, SL and Burgers models.

Model ! 2 ; } : ; 7 : % o
K41 0.33 0.67 1 1.33 1.67 2 2.33 2.67 3 3.33
SL 0.36 0.70 1 1.28 1.54 1.78 2.00 2.21 2.41 2.59
Burgers 0.41 0.74 1 1.21 1.39 1.56 1.70 1.84 1.96 2.08
A512 0.37 £0.01 0.70£0.02 1+£0.02 1.27£0.03 1.514+0.02 1.724+0.03 1.89+0.04 2.04+£0.04 2.17£0.03 2.27+0.02
B512 0.36 £0.01  0.704+0.03 1+£0.04 1.27+0.05 1.50+0.07 1.70£0.08 1.86+0.12 1.99+0.16 2.10£0.21 2.18+0.26
C512 0.37+£0.01 0.704+0.02 1+£0.03 1.26+0.04 1.48+0.05 1.68+£0.07 1.844+0.09 1.98+0.11 2.09+£0.13 2.19+0.16
D512 0.38 +£0.005 0.71+£0.01 14+0.03 1.25+0.03 1.46+0.05 1.64+0.07 1.79+£0.09 1.924+0.11 2.04+0.14 2.14+0.16

1 Note however that Kritsuk et al. (2007) also find significagtidtions in

CQ from one, which we do not observe.



