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Abstract

Quantum matter in quantum space-time is discussed using general properties of
energy-conservation laws. As a rather radical conclusion, it is found that standard
methods of differential geometry and quantum field theory on curved space-time are
inapplicable in canonical quantum gravity, even at the level of effective equations.

1 Introduction

Energy conservation is the most important general statement about matter, classical and
quantum. Its fundamental role is strengthened by its relation to space-time symmetries.
As expressed by Hamiltonian equations in classical physics or, even more directly, by the
operator relationships ~̂p = −i~~∇ and Ê = i~∂/∂t of quantum mechanics, momentum
generates spatial shifts and energy generates time translations. When local densities are
used as energy and momentum expressions in field theory, they are related to local coor-
dinate transformations in space-time instead of rigid global shifts. Energy conservation
is therefore closely related to general covariance, the underlying symmetry principle of
space-time.

Matter fields are quantized in quantum field theory, in which operators take the form of
energy and momentum densities and are still conserved. The close relation between energy-
momentum and space-time symmetries suggests that quantum corrections in the former
might affect even the form of general covariance and therefore the structure of space-time.
This expectation is not borne out in quantum field theory on curved space-time because
of the conservation law: for operators, it takes the same form as for classical densities,
with covariant derivatives acting on the dependence of quantum fields on (classical) coor-
dinates. In quantum gravity, however, space-time is quantized and the classical notions of
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differentiable manifolds and coordinates may lose their meaning or become inapplicable.
Reversing the preceding argument, it is then conceivable that not only space-time structure
but also the corresponding form of energy conservation changes.

Quantum gravity is still being constructed and complicated to use. The link between
space-time and energy-momentum of matter then offers the possibility of easier insights
using matter alone, but on a background endowed with expected features of quantum space-
time. In this article, we begin with existing results about deformed covariance principles
in canonical quantum gravity, inserted in the energy conservation law, and aim to draw
conclusions about possible structures of differential geometry in quantum space-time. One
could expect that the covariant derivative prominent in conservation laws on curved space-
time would have to be modified for quantum-gravity effects. Such an implication would
be of interest for an intuitive understanding of the underlying quantum geometry, for
instance in terms of possible relationships with non-commutative [1, 2] or fractional [3]
models.1 Moreover, a direct modification of the conservation law of matter would be of
great interest for cosmological perturbation theory, whose equations in terms of gauge-
invariant quantities can be derived from the behavior of stress-energy without reference to
the more complicated Einstein equation [6].2

To embark on these investigations, in the main body of this article we review canonical
gravity in terms of transformations between different families of observers in space-time
and rewrite the usual covariant conservation law in canonical terms. These details will
show how space-time symmetries play a key role for the validity of energy conservation,
and how possible deformations of symmetries by quantum effects could change conservation
laws. Our conclusion is rather radical: It is not possible to modify the conservation law
by mere coefficients of derivative and connection terms in its space-time form; rather,
some quantum theories of gravity indicate that the usual space-time tensor calculus breaks
down even at the level of effective theories, while canonical methods remain consistent. The
latter appear to be more fundamental than action principles, providing concrete evidence
for a long-standing claim by Dirac [7]. Moreover, standard techniques of quantum field
theory on curved space-time cannot be used because they are closely tied to conventional
conservation laws.

2 Energy conservation

In Minkowski space-time, energy conservation can compactly be written as

∂µT
µ
ν = 0 (1)

with the stress-energy tensor Tµν containing the energy density as its time-time component,
momentum density and energy flux as the mixed time-space components, and spatial stress
and pressure in its spatial part. Stokes’ theorem, applied to (1) integrated over a region

1For additional consequences of deformed general covariance, see [4, 5].
2We thank Gianluca Calcagni for stressing this.
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in space-time, then shows that the change of energy in spatial cross-sections equals the
energy flux through timelike boundaries.

The relation to space-time symmetries becomes apparent when one extends the conser-
vation law to matter in curved space-time, with metric tensor gµν . Lorentz transformations
of Minkowski space-time are replaced by local coordinate transformations, invariance under
which implies the conservation law

∇µT
µ
ν = ∂µT

µ
ν + Γµ

µρT
ρ
ν − Γρ

µνT
µ
ρ = 0 (2)

with a covariant derivative instead of the partial one. The link between energy-momentum
and the space-time metric also appears in the equation

Tµν =
−2

√

| det g|
δSmatter

δgµν
(3)

with the matter action Smatter.
In general relativity, the metric encodes the gravitational field, and it is quantized in

quantum gravity. One could worry that quantum corrections in the metric might modify or
even violate energy conservation. As one may expect for such basic laws, however, they are
protected by general principles that do not refer to details of the form of matter. The link
between energy conservation and space-time symmetries ensures that any theory, classical
or quantum, that is independent of choices of coordinates gives rise to energy conservation.
The independence of choices of coordinates is not just a key feature of classical general
relativity but also an important consistency requirement for quantum gravity. Systems of
coordinates are, after all, mere choices to set up mathematical descriptions, which cannot
affect physical predictions. Quantum gravity must enjoy the same degree of invariance,
or it is not consistent as a physical theory. Even though it is complicated to ensure this
invariance or anomaly-freedom, posing perhaps the main obstacle to a successful completion
of quantum gravity, the generality of the requirement allows us to use it for conclusions
about energy conservation.

3 Canonical gravity

Canonical gravity provides powerful methods to analyze space-time structure. Its quan-
tum branch, canonical quantum gravity, has given rise to the most detailed results about
possible quantum corrections and deformations in covariance laws. It provides the main
ingredients of quantum space-time structure we will use in this article. To this end, we
first recall crucial features of the canonical theory worked out starting with [7, 9]; for a
detailed treatment see [8].

In canonical gravity, one describes covariant space-time as seen by families of observers
who have undertaken different synchronizations of their clocks. For each family, there is
a notion of the observers’ proper time which, as the set of all points taking a given fixed
value, determines spatial cross-sections in space-time. A single cross-section amounts to
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space at an instance of time according to the family of observers used, but a different
family with its own synchronization will see different cross-sections of space-time as space.
Canonical gravity provides laws to transform between the viewpoints of different families,
as local generalizations of Lorentz transformations in Minkowski space-time.

A given family of observers moves in space-time along worldlines with 4-velocity equal
to the future-pointing unit normal uµ = nµ of spatial cross-sections according to its proper
time. In each cross-section, distances are measured with a spatial metric tensor hab or line
element ds2 = habdx

adxb in spatial coordinates xa, a = 1, 2, 3. The space-time metric is

gµν = hµν − nµnν (4)

(where hµν = 0 if µ or ν is zero). The unit-normal term simply adds the time component
to the inverse spatial metric.

A second family of observers sees time change not along nµ but along a different timelike
vector field tµ. We can always relate the two notions of time direction by tµ = Nnµ +Nµ

with a (lapse) function N and a spatial (shift) vector Nµ tangent to the first set of spatial
cross-sections (nµN

µ = 0). If tµ is normalized as a timelike vector field,

tµ
√

−||t||2
=

nµ +Nµ/N
√

1− | ~N/N |2
,

a comparison with 4-velocities uµ = (1 − |~V |)−1/2(1, ~V ) in special relativity allows one to

identify ~N/N as the 3-velocity of the second family of observers with respect to the first.
The previous equation for the metric, (4), with nµ expressed in terms of tµ, then provides

the line element in ADM form [9]

ds2 = −N2dt2 + hab(dx
a +Nadt)(dxb +N bdt) (5)

for coordinates such that tµ∂µt = 1 and tµ∂µx
a = 0. In metric components,

g00 = −N2 + habN
aN b , g0a = habN

b , gab = hab . (6)

For the inverse metric, we have components

g00 = − 1

N2
, g0a =

Na

N2
, gab = hab − NaN b

N2
. (7)

Moreover, det g = −N det h.

3.1 Stress-energy components

Different families of observers assign different values as the energy-momentum components
of matter they measure. Our first family, moving along the normal to its spatial cross-
sections and often called “Euclidean observers,” measures the energy density

ρE =
1√
det h

δHmatter[N ]

δN
(8)
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(the matter energy or Hamiltonian divided by the local volume), the energy current

JE
a =

1√
det h

δDmatter[N
a]

δNa
(9)

with the momentum term Dmatter of matter, and the spatial stress

SE
ab = − 2

N
√
det h

δHmatter[N ]

δhab
, (10)

measuring how the matter energy reacts to spatial deformations that change the metric.
The trace of the spatial-stress tensor is proportional to the pressure

PE = − 1

N

δHmatter[N ]

δ
√
det h

, (11)

the negative change of energy relative to the change of local volume.
In terms of the space-time stress-energy tensor Tµν , we identify (8)–(10) as projections

with respect to the unit normal and a spatial frame sµa of spacelike unit vectors with
nµs

µ
a = 0:

ρE = nµnνTµν , JE
a = nµsνaTµν , SE

ab = sµas
ν
bTµν . (12)

(These relationships also follow when one compares Einstein’s equation with the canonical
equations of motion of [9].)

A second, generic family of observers assigns energy-momentum components according
to the time direction tµ, for instance

ρ = T00 = tµtνTµν (13)

as the time component (or energy density measured by the new family of observers). The
relation between ρE and ρ can be obtained from ρE = nµnνTµν together with the relation
between nµ and tµ. For instance,

ρ = tµtνTµν = N2nµnνTµν + 2NnµNνTµν +NµNνTµν

= N2ρE + 2NNaJE
a +NaN bSE

ab .

Energy-momentum components therefore mix when the family of observers is changed, just
like local Lorentz transformations that change the energy-momentum tensor.

We have expressed energy-momentum components as derivatives of the Hamiltonian
and momentum terms of matter by canonical metric components N , Na and hab. Equa-
tion (3) expresses the full energy-momentum tensor in terms of metric derivatives of the
action. As one would expect, these formulas are related. By Legendre transform, canonical
expressions appear in the action

Smatter =

∫

d4x
(

φ̇Ip
I −NHmatter −NaDmatter

a

)

, (14)
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collecting all (not necessarily scalar) field components in φI with momenta pI . As written
in this equation, the total matter Hamiltonian is usually split in four components

Hmatter[N,Na] =

∫

d3x
(

NHmatter +NaDmatter
a

)

(15)

(integrated over a spatial cross-section) with four generators of shifts in space-time, Hmatter

in the time direction and Dmatter
a in spatial ones. Accordingly, Hmatter is the most important

part for evolution, but for a given tµ or N and Na, the actual evolution generator H [N,Na]
is a linear combination of all four components H and Da. As we will see in the next
subsection, the expressions of these components must match delicately in order to ensure
covariance, or independence of one’s choice of time. Quantum corrections in space-time
evolution generators must therefore be handled with extreme care. The same is true for
stress-energy components derived from them.

We derive stress-energy components in terms of derivatives of the Hamiltonian by start-
ing with the action

δSmatter = −1

2

∫

d4x
√

− det gTµνδg
µν

= −1

2

∫

d4xN
√
det h

(

T00δg
00 + Ta0δg

a0 + T0bδg
0b + Tabδg

ab
)

(16)

varied by the metric [10]. Inverse-metric variations are related to variations of canonical
metric components by

δg00 =
2δN

N3

δg0a =
δNa

N2
− 2NaδN

N3
(17)

δgab = δhab − 1

N2

(

NaδN b +N bδNa − 2NaN b

N
δN

)

.

From

δSmatter = −
∫

d4x
√
det h

(

δN

N2

(

T00 − 2NaTa0 +NaN bTab

)

(18)

+
δNa

N

(

Ta0 −N bTab

)

+
N

2
δhabTab

)

we read off δSmatter/δN , δSmatter/δN
a and δSmatter/δh

ab as linear combinations of stress-
energy components. The inverted equations

T00 = − N√
det h

(

N
δSmatter

δN
+ 2Na δSmatter

δNa
+ 2

NaN b

N2

δSmatter

δhab

)

(19)

T0a = − N√
det h

(

δSmatter

δNa
+ 2

N b

N2

δSmatter

δhab

)

(20)

Tab = − 2

N
√
det h

δSmatter

δhab
(21)
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show how energy-momentum terms follow from canonical metric derivatives, expressing (3)
in terms of canonical metric components. Since Smatter in (14) does not depend on time
derivatives of the metric, we can use δSmatter/δg

ab = −δHmatter/δg
ab to obtain derivatives of

the Hamiltonian.3 As the final step in relating these different forms of energy-momentum
components, we switch from tµ to the normal. For instance,

Tµνn
µnν =

1

N2
(T00 − 2T0aN

a + TabN
aN b) = − 1√

det h

δSmatter

δN
= ρE (22)

agrees with our previous formula for ρE.

3.2 Space-time symmetries

The derivatives by N and Na in (8) and (9) are by canonical metric components, or equiv-
alently by components of a space-time vector field tµ with respect to the normal nµ and
the spatial cross-sections. They provide the energy and momentum densities, and there-
fore exhibit the relation between energy-momentum and space-time deformations. The
same types of derivatives, applied to terms in the gravitational Einstein–Hilbert action,
show how space-time and its metric change under deformations. If we change both matter
fields and the space-time metric according to some coordinate transformation, no observ-
ables change — there simply is no reference with respect to which one could determine the
change. These combined transformations must therefore be symmetries of any physical the-
ory, corresponding to general covariance. The generators of these transformations are the
derivatives of the total action, obtained by adding gravitational and matter contributions,
by N and Na. We call the corresponding terms in the action

Htotal[N,Na] = −
∫

d3x

(

N
δStotal

δN
+Na δStotal

δNa

)

. (23)

Since they implement (coordinate) invariance of the complete system, their values must
be zero for all N and Na when field equations are obeyed; they function as constraints.
There is an exact balance between gravitational and matter energy and momentum.

3This equation is somewhat subtle because it combines 4-dimensional variations of space-time fields
with 3-dimensional ones of spatial fields, and it may not be obvious that standard relations for Leg-
endre transforms apply. Strictly speaking, we should write δ/δgab(t, x) when we vary the action, and
δ/δgab(x) when we vary the Hamiltonian. Both functional derivatives are local expressions, so that
there is no inconsistency in the equation. For the same reason, φ̇I in (14) must be considered in-
dependent of the metric when the action is varied, while the canonical φ̇I = {φI , Hmatter[N,Na]}
usually depends on the metric. (For instance, φ̇ = Npφ/

√
deth for a scalar field.) Differentiating

Smatter[φ, g] =
∫

dt
(

∫

d3x pI [φ, g]φ̇I −Hmatter[π[φ, g], φ, g]
)

with respect to g(t, x), one treats φI and

g as the independent variables (with any derivatives, e.g. φ̇I , being functionally dependent on φI and g),
as opposed to φI , p

I , g (all assuming the gravitational momentum does not appear). To arrive at expres-
sions for δSmatter[φ, g]/δg(t, x) in terms of δHmatter[φ, p, g]/δg(x) thus requires use of the functional chain
rule when considering Hmatter[p[φ, g], φ, g]; it is immediate to see that its use neatly cancels derivatives of
pI [φ, g]φ̇I , leaving only −δHmatter[p, φ, g]/δg(x).
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Before equations of motion are solved for observables, we are dealing with coordinate-
dependent tensorial objects in space-time. They transform non-trivially under coordinate
changes or space-time deformations, which are generated by the functionals Htotal[N,Na]
depending on four components of a space-time vector field. The algebra of these defor-
mations follows from Poisson brackets {Htotal[N,Na], Htotal[M,Ma]}, computed by using
a momentum pab of hab related to ḣab, the derivative of hab along tµ. A long calculation,
first completed by Dirac [7] and interpreted geometrically in [11], shows that

{Dtotal[M
a], Dtotal[N

a]} = −Dtotal[N
b∂bM

a −M b∂bN
a] (24)

{Htotal[M ], Dtotal[N
a]} = −Htotal[N

b∂bM ] (25)

{Htotal[M ], Htotal[N ]} = Dtotal[h
ab(M∂bN −N∂bM)] (26)

whereHtotal[N,Na] = Htotal[N ]+Dtotal[N
a] according to (23). This hypersurface-deformation

algebra encodes the classical structure of space-time: any theory with gauge transforma-
tions obeying (24)–(26) is generally covariant with the classical space-time structure, and
vice versa [7]. (As we will discuss in more detail below, some but not all of these relations
are obeyed seperately by matter terms, not just by the total constraints — at least in the
absence of curvature coupling which we will assume for simplicity.)

In canonical quantum gravity, one first turns the spatial metric hab and its momentum
into operators, which are then used to construct operators for Htotal[N ] and Dtotal[N

a].
Instead of Poisson brackets one then computes commutators. These calculations are com-
plicated and remain incomplete, but currently there is a broad set of mutually consistent
results [12, 13, 14, 15, 16, 17, 18, 19, 20, 21], obtained with different methods and in various
models of loop quantum gravity,4 that show quantum corrections in the algebra, especially
(26). Instead of (26), one then has

{Htotal[M ], Htotal[N ]} = Dtotal[βh
ab(M∂bN −N∂bM)] (27)

with a phase-space function β, while (24) and (25) remain unchanged. Quantum space-time
obeys different symmetries than classical space-time, but the same number of generators
is realized: no local symmetries are broken and the theory is anomaly-free. (It remains
unclear whether the full theory of loop quantum gravity can be anomaly-free, but there is
encouraging evidence from the diverse set of models mentioned.)

A theory invariant under hypersurface deformations must be generally covariant, show-
ing the symmetry related to energy-momentum. Quantum corrections in the deformation
algebra, such as (27), must then be reflected in the energy-conservation law. To uncover
implications of quantum space-time for energy conservation, we first derive the classical
relation between (26) and (2).

4 Energy conservation in canonical terms

We rewrite the covariant conservation law (2) in terms of canonical variables, making use
of some of our expressions for energy-momentum in terms of metric derivatives. We focus

4Similar deformations have been found using non-local matter effects [22].
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in our main calculations on the time component of the law, ∇µT
µ
0 = 0.

4.1 Connection terms

The connection terms look especially interesting because quantum corrections in the con-
servation law could directly lead to quantum corrections of differential geometry. However,
both connection terms in (2) turn out to be very generic.

The general

Γρ
µν =

1

2
gρσ

(

∂gσµ
∂xν

+
∂gσν
∂xµ

− ∂gµν
∂xσ

)

(28)

reduces to simpler versions with the form of indices required for∇µT
µ
ν = ∂µT

µ
ν+Γµ

µρT
ρ
ν−

Γρ
µνT

µ
ρ. First, we have

Γµ
µρ = −1

2

∂ log det g

∂xρ
=

1

N

∂N

∂xρ
+

1√
det h

∂
√
det h

∂xρ
. (29)

The two terms ∂µT
µ
ν + Γµ

µρT
ρ
ν can therefore be combined to

∂µT
µ
ν + Γµ

µρT
ρ
ν =

∂µ(N
√
det hT µ

ν)

N
√
det h

. (30)

For ν = 0, we then deal with contributions to the Hamiltonian density Hmatter = N
√
det hT 0

0

and momentum densities.
The last connection term in (2), using

gρσΓ
σ
µν =

1

2

(

∂gρµ
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ

)

,

takes the form

Γρ
µνT

µ
ρ =

1

2

∂gµρ
∂xν

T µρ , (31)

the last two terms in gρσΓ
σ
µν disappearing by symmetry of T µρ. For ν = 0, we write

Γρ
µ0T

µ
ρ =

1

2

∂gµρ
∂t

T µρ = − 1

N
√
det h

∂gµρ
∂t

δHmatter

δgµρ
. (32)

Using the chain rule to transform from metric derivatives in space-time tensor form to
metric derivatives by canonical components N , Na and hab, we have

Γρ
µ0T

µ
ρ = − 1

N
√
det h

(

∂N

∂t

δHmatter

δN
+

∂Na

∂t

δHmatter

δNa
+

∂hab

∂t

δHmatter

δhab

)

. (33)

These terms can simply be combined with the time derivative of T 0
0 in (30), as we will

show now.
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4.2 Derivatives

So far, the algebra of space-time deformations has played no role in the terms of the con-
servation law. We now look at the partial derivatives in more detail. Since time derivatives
are canonically computed as Poisson brackets with the total Hamiltonian Htotal[N,Na] =
Hgrav[N,Na] +Hmatter[N,Na],

ḟ =
∂f

∂t
= Ltµf = {f,Htotal[N,Na]} (34)

for any phase-space function f , and the matter contribution Hmatter[N,Na] to the Hamil-
tonian is used to compute energy-momentum components, the algebra should appear.
However, there are several subtleties.

First, we raise an index in Tµν , writing

T µ
0 = gµνTν0 = (hµν − nµnν)Tν0 =

(

hµa +
nµ

N
Na

)

Ta0 −
nµ

N
T00 . (35)

In particular,

T 0
0 = − 1

N2
T00 +

Na

N
Ta0 , (36)

T b
0 =

N b

N
T00 +

(

hab − NaN b

N2

)

Ta0 . (37)

These components, using (19)–(21), are related to metric-derivatives of the Hamiltonian
by

T 0
0 = − 1

N
√
det h

(

N
δHmatter

δN
+Na δHmatter

δNa

)

= − 1

N
√
det h

Cmatter[N,Na] , (38)

T b
0 =

1

N
√
det h

(

NN b δHmatter

δN
+
(

N2hab +NaN b
) δHmatter

δNa
+ 2N chba δHmatter

δhac

)

=
1

N
√
det h

(

N bCmatter[N,Na] +N2hab δHmatter

δNa
+ 2N chba δHmatter

δhac

)

(39)

where

Cmatter[N,Na] = N
δHmatter

δN
+Na δHmatter

δNa
= NHmatter +NaDmatter

a . (40)

Combining all terms, we write

N
√
det h∇µT

µ
0 = ∂0(N

√
det hT 0

0) + ∂b(N
√
det hT b

0)

+
∂N

∂t

δHmatter

δN
+

∂Na

∂t

δHmatter

δNa
+

∂hab

∂t

δHmatter

δhab

= −∂0Cmatter[N,Na] +N b∂bCmatter[N,Na] + (∂bN
b)Cmatter[N,Na](41)

+
∂N

∂t
Hmatter +

∂Na

∂t
Dmatter

a +
∂hab

∂t

δHmatter

δhab
(42)

+∂b

(

N2hab δHmatter

δNa
+ 2N chba δHmatter

δhac

)

. (43)
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We write the first two lines in the last expression as

(41) + (42) = −N
∂Hmatter

∂t
−Na∂Dmatter

a

∂t
+ L ~NCmatter[N,Na] +

∂hab

∂t

δHmatter

δhab
(44)

with the Lie derivative L ~NCmatter[N,Na] of the density-weighted Cmatter[N,Na]. We will
return to the terms in (43) after rewriting time derivatives as Poisson brackets.

4.3 Poisson brackets

The time derivatives of Hmatter and Dmatter
a in (44) can be expressed as Poisson brackets

with the total constraint (23), adding gravitational and matter contributions; at this point
the constraint algebra enters. We write

Ḣmatter = {Hmatter, Htotal[N ] +Dtotal[N
a]} = {Hmatter, Htotal[N ]} + L ~NHmatter (45)

noting that the total diffeomorphism constraint Dtotal[N
a] generates the Lie derivative

along Na. Similarly,

Ḋmatter
a = {Dmatter

a , Htotal[N ] +Dtotal[N
a]} = {Dmatter

a , Hmatter[N ]}+ L ~NDmatter
a , (46)

where we are free to use Hmatter[N ] in the end because the gravitational Hamiltonian does
not depend on matter fields. Continuing with (44), we obtain

(41) + (42) = −N{Hmatter, Htotal[N ]} −Na{Dmatter
a , Hmatter[N ]}+ (Na∂aN)Hmatter

+
∂hab

∂t

δHmatter

δhab
. (47)

The two Poisson brackets encountered here both contain one local constraint and are
therefore not directly given by (26) or (25). Moreover, not all expressions in them refer
to total constraints. Poisson brackets with local functions can be obtained from those
smeared with N or Na by functional derivatives. For instance,

{Hmatter, Hmatter[N ]} =
δ{Hmatter[M ], Hmatter[N ]}

δM
=

δDmatter[hab(M∂bN −N∂bM)]

δM
= Dmatter

a hab∂bN + ∂b(Dmatter
a habN) = 2Dmatter

a DaN +NDaDmatter
a

=
1

N
Da(N2Dmatter

a ) . (48)

Here, we have assumed the matter Hamiltonian to be free of curvature couplings, so that
the matter terms obey the same Poisson relation (26) as the total constraints. Moreover,
we have substituted covariant spatial derivatives Da (with Dahbc = 0) for partial ones. The
Poisson bracket required for (47), which has the total constraint, is then

{Hmatter, Htotal[N ]} =
1

N
Da(N2Dmatter

a ) + {hab, Hgrav[N ]}δHmatter

δhab

. (49)

11



The last term writes {Hmatter, Hgrav[N ]} with an explicit variation by the metric, the only
function in Hmatter with a non-trivial flow generated by Hgrav[N ].

The Poisson bracket with a diffeomorphism constraint in (47) can be rewritten as a Lie
derivative of Hmatter[N ] provided that we add a term for the Lie derivative of the metric.
(Unlike the Hamiltonians in the absence of derivative couplings, the diffeomorphism and
Hamiltonian contributions from matter do not obey the same Poisson bracket as the total
constraints.) We have

{Dmatter
a , Hmatter[N ]} =

δ{Dmatter[N
a], Hmatter[N ]}
δNa

=
δ

δNa

(

Hmatter[N
a∂aN ] +

∫

d3x(L ~Nh
ab)

δHmatter[N ]

δhab

)

= Hmatter∂aN + 2Db δHmatter[N ]

δhab
, (50)

using L ~Nh
ab = −2D(aN b).

4.4 Cancellations

We return to (43) and combine all lines in the final expression of this equation. We first
replace the partial derivative in the last line by a spatial covariant derivative, which can
be done without correction terms because we are dealing with the divergence of a vector
field of density weight one:

(43) = Db

(

N2hab δHmatter

δNa
+ 2N chba δHmatter

δhac

)

= Db

(

N2habDmatter
a + 2N chba δHmatter

δhac

)

.

(51)
Adding this result to (47) and using our expressions of Poisson brackets shows that all
terms cancel upon taking the derivative for all factors in (51), observing the following
identity:

ḣab = {hab, Htotal[N ]+Dtotal[N
a]} = {hab, Htotal[N ]}+L ~Nhab = {hab, Hgrav[N ]}−2D(aNb) .

(52)

5 Deformed energy conservation

With our detailed analysis of the conservation law in the canonical formalism we can see
how modifications of space-time structure according to deformations (27) might change
the classical form. Rather surprisingly, the connection terms in (2) are not affected be-
cause they simply serve to rewrite partial derivatives of energy-momentum components
as derivatives of Hamiltonians suitable for canonical formulations. For this rewriting to
work with modified space-time structures, the connection components used are not to be
modified, still obeying the classical relationship with the metric. As always, one could add

12



a tensor to the connection and try to absorb modifications due to the deformation. A
modified ∂0Cmatter[N,Na] in (41), for instance, could be absorbed by such a tensor if the
connection term (32) that gives rise to ∂N/∂t in (42) is changed by adding N(β − 1) to
it. However, the remaining connection components are not to be changed because they
cancel undeformed Poisson brackets involving the diffeomorphism constraint. The required
terms added to connection components then do not form a covariant space-time tensor,
and algebra deformations cannot be absorbed by changing the connection in a covariant
way. (Unused connection terms, for instance the contributions to Γρ

µν that dropped out by
symmetry in (32), might be affected, but our present considerations have nothing to say
about them.)

Algebraic deformations (27) therefore could only affect the derivative terms in the con-
servation law. However, this alternative option is again difficult to formulate in terms of
stress-energy components because the algebra, especially (48) which now reads 1

N
Da(βN2Dmatter

a ),
plays a role only for the cancellation of one term N2habδHmatter/δN

a in T b
0 in (39), whose

spatial derivative is taken in (43). One cannot take β into account by modifying the
coefficient of T b

0 in the conservation law, nor can β be absorbed elsewhere (such as in
N or Dmatter

a ) because this would be in conflict with other relations crucial for the final
cancellations of N -dependent terms.

It is not possible to account for (27) by simple modifications of connection or derivative
terms in (2). The only, but radical, conclusion we can draw is that the usual space-time
tensor calculus used to define, among other things, the energy-momentum tensor and its
covariant derivative, completely breaks down in quantum space-time described by (27).
In fact, even the relation between the local and integrated forms of the conservation law
would be unclear in the absence of classical coordinates and space-time manifolds.

With a simple modification of the standard covariant conservation law unavailable,
we can define energy conservation more generally as the closure of the constraint algebra
including matter terms. Classically, this condition implies (2) and energy conservation, and
it is still available in quantum gravity. Deformations of space-time structure in quantum
gravity require us to elevate the usual close relationship between energy conservation and
space-time symmetries to a principle: Energy conservation and general covariance are not
just related; they are one and the same notion. They only appear conceptually different
in classical physics because several different but equivalent formulations of this law are
available. In the most general form of quantum gravity, only the version referring directly
to a closed and anomaly-free constraint algebra is possible. When this condition is met,
there is a local symmetry generator along each direction in space-time, and we are allowed
to say that energy and momentum are conserved.

Even in the presence of deformed space-time structures, canonical space-time descrip-
tions are available and show complete consistency of the theory in terms of gauge invariance
and conservation laws associated with this important symmetry. But common space-time
formulations are too narrow to encompass the modifications required by some theories of
quantum gravity. Taking (27) into account, the only possible derivations of observables
and predictions are canonical, coupling gravity to matter as developed in [12, 23]. In par-
ticular, consistent cosmological perturbation theory based on matter perturbations alone
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is not possible in the presence of quantum-geometry corrections in loop quantum gravity.
In this context, it is crucial to have full control on the off-shell constraint algebra, and

not just on a subset realized on complete or partial solution spaces to the constraints.
Often, one tries to side-step complicated anomaly issues of the quantum constraint algebra
by fixing the gauge classically, or choosing a specific time and deparameterizing before
quantization. The resulting equations can formally be made consistent, but one can no
longer check whether they belong to a closed algebra of quantum-corrected constraints.
Most often, one chooses specific gauge fixings or times based on mathematical simplicity
alone, making it highly unlikely that consistent algebraic structures are realized. Given
our conclusions, such models violate not only covariance but also energy conservation.

6 Conclusions

We have found that deformed constraint algebras prohibit the use of standard differential
geometry because quantum corrections cannot be absorbed in connection components or
other ingredients of the conservation law. Details of the derivation show that this conclusion
is very general and insensitive to the precise form of gravitational dynamics. Dynamical
changes of the metric always appear in the canonical conservation law in explicit form,
by the term (∂hab/∂t)δH/δhab in (47). There is no need to refer to the metric dynamics
in terms of field equations for hab or the explicit gravitational contribution Hgrav to the
constraints.5 As a consequence, classical or quantum matter can be formulated consistently
on any background space-time of classical type, that is with undeformed Poisson brackets
(26). This fact is, of course, well known and used in quantum field theory on curved space-
time, whose backgrounds are not required to solve Einstein’s equation. But in contrast
to assumptions often made in the literature on quantum cosmology, quantum fields on
quantum space-time are much more subtle. Space-time structures are modified by quantum
effects, and the resulting correction terms, as shown here, cannot simply be absorbed in
appropriate conservation laws of standard type.

In our considerations, we used effective constraints and Poisson brackets rather than
fully quantized fields and commutators. However, our conclusions are so universal that
they apply to any system with deformed space-time structure. There may be additional
quantum corrections if one goes to higher orders in effective equations or to the full quantum
theory. But since these corrections amount to the standard ones of quantum field theory,
which do not modify the conservation law, they cannot undo the effects pointed out here.

Our results have important consequences for physical evaluations of modern quan-
tum cosmology: Any modification found in homogeneous minisuperspace models, such as
bounce solutions often studied in such contexts, can be implemented straightforwardly. Af-
ter all, the modified minisuperspace dynamics would just function as a new, non-Einstein
background for matter fields. Also metric perturbations can easily be included if the gauge
is fixed or if one uses deparameterization with a single choice of time, for in these cases

5The gravitational constraint algebra is important for the contracted Bianchi identity to hold, as shown
in [24].
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the constraint algebra is circumvented. However, one does so by solving classical equations
or constraints before quantization, and therefore does not produce a consistent quantum
theory of space-time.

The great challenge of quantum gravity is to find a consistent set of quantum constraints
that implements a closed off-shell constraint algebra. (See also [25].) This can be done
only when matter is combined with gravity and the full constraint algebra is considered
without gauge fixing or other restrictions. In loop quantum gravity, it then turns out [12]
that (26) must be deformed to something of the form (27), and our conclusions derived
from the conservation law apply. Not only differential geometry but also ordinary quantum
field theory on curved space-time then becomes inapplicable, for the latter makes use of
traditional conservation laws.
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