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Abstract

In [1] we initiated an approach towards quantizing the Hamiltonian constraint in Loop Quantum Gravity

(LQG) by requiring that it generates an anomaly-free representation of constraint algebra off-shell. We inves-

tigated this issue in the case of a toy model of a 2 + 1-dimensional U(1)3 gauge theory, which can be thought

of as a weak coupling limit of Euclidean three dimensional gravity. However in [1] we only focused on the most

non-trivial part of the constraint algebra that involves commutator of two Hamiltonian constraints.

In this paper we continue with our analysis and obtain a representation of full constraint algebra in loop quan-

tized framework. We show that there is a representation of the Diffeomorphism group with respect to which the

Hamiltonian constraint quantized in [1] is diffeomorphism covariant. Our work can be thought of as a potential

first step towards resolving some long standing issues with the Hamiltonian constraint in canonical LQG.

1 Introduction

A satisfactory definition of Hamiltonian constraint in Loop Quantum Gravity (LQG) [2] remains an open prob-

lem. Despite remarkable progress made in the seminal work of Thiemann ([3],[4],[5]), it is clear that the current

quantization is not satisfactory due to three inter related issues : (1) Enormous ambiguity in the definition of the

continuum Hamiltonian constraint, (2) The absence of a representation of Quantum Dirac algebra (referred to as

the off-shell closure in [6]), and (3) When the constraint is used in symmetry reduced sector of Loop Quantum

cosmology, the low energy limit of the theory turns out to be incorrect, [7]. Progress in obtaining a satisfactory

definition of quantum dynamics in canonical LQG can be achieved by analyzing and overcoming the first two
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obstacles by taking hints from toy models like Loop Quantum Cosmology.

In [1],[8] a new approach was initiated to quantize the Hamiltonian constraint in LQG. This approach is based on

the lessons learnt in ([9], [10], [11], [7]). The idea in [1] was to look for higher density constraints whose action at

finite triangulation was based upon the geometric action of the classical constraints on phase space fields. The con-

tinuum limit of finite triangulation constraint is taken not on Hkin but on certain distributional subspaces known

as habitats [12]. Instead of working with full LQG,in [1] we considered a simple toy model of 2+1 dimensional1

U(1)3 gauge theory which can be thought of as a weak coupling limit of Euclidean canonical gravity. [13]

In [1] we showed that there exists quantization of (density weight 5
4 ) Hamiltonian constraint which satisfied,

[Ĥ[N ], Ĥ [M ]] = ̂Hdiff [q−1(N∇M − M∇N)] (1)

In this paper we continue the analysis of obtaining a representation of the constraint algebra in the loop quantized

U(1)3 gauge theory. Our goal is to obtain a representation of the “Dirac algebra”in the following sense.2

Û(φ1)Û(φ2) = Û(φ1 ◦ φ2) (2)

Û(φ)−1Ĥ [N ]Û(φ) = Ĥ [φ∗N ] (3)

[Ĥ[N ], Ĥ [M ]] = i~D̂[~̂ω] (4)

In this paper we focus on the (spatial) diffeomorphism covariance of the Hamiltonian constraint. That is, we want

to see if there exists a representation of Diff(Σ) on VLMI such that (3) is represented without anomaly.

Right at the outset, it appears that the answer will be in the negative, due to background structure which is

required to define the quantum Hamiltonian constraint in [1].

(1) Diffeomorphism non-covariance of the quantum shift : The action of the (finite-triangulation) Hamiltonian

constraint on a charge network c results in a deformation of the underlying graph γ(c) in a neighborhood of

vertices of γ(c) in the direction of vectors which are themselves defined using data from c. Given a charge

network state |c〉 and its vertex set V (c), the (regularized) expectation value 〈c|Êa
i q̂

−1/4(v)|ǫ|c〉 at any vertex

v ∈ V (c) plays the role of this vector, and was referred to as the quantum shift in [1]. The subscript ǫ

indicates that the operator implicitly depends on regulating structures which are parametrized by ǫ. As we

show below, due to the regularization dependence of the quantum shift vector, it turns out that, given a

state |φ · c〉 (the diffeomorphic image of c under φ), the quantum shift 〈φ · c|Êa
i q̂

−1/4(φv)|ǫ|φ · c〉 defined at

φ(v) ∈ V (φ · c) is not the pushforward (via φ) of 〈c|Êa
i q̂

−1/4(v)|ǫ|c〉. This is the first obstruction which, unless

addressed, will ensure that the Hamiltonian constraint operator will not commute with finite diffeomorphisms.

1As we insisted in [1] and would like to remind the reader again here that although the model we consider is 2+1 dimensional

theory, our analysis to a large extent is independent of dimensionality and we believe it goes through rather straight-forwardly in

3+1 dimensions. Infact as we argued in [1], some of the technicalities which are present in two spatial dimensions will be absent in

three dimensions, thus simplifying the analysis. This should not be too surprising as off-shell closure of Dirac algebra probes the local

structure of field theory, even when the theory is topological on-shell
2The quotation marks indicate that strictly speaking we are not working with the algebra of constraints but with the crossed product

generated by the Hamiltonian constraint and finite diffeomorphisms.
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Non-covariant nature of extraordinary (EO) vertices : The key feature of the Hamiltonian constraint’s action

on kinematical states3 is the creation of so-called extraordinary (EO) vertices. Essentially the idea is the following:

Starting with any charge network c, around each of its non-degenerate vertices (vertices at which not all edges

emanating from it are charged only in one copy of U(1)), we fix, once and for all, a coordinate ball B(v, ǫ) of radius

ǫ and consider a sequence of finite-triangulation Hamiltonian constraint operators ĤT (δ)[N ] with δ ≤ δ0(ǫ). The

action of ĤT (δ)[N ] on |c〉 creates a linear combination of charge network states, each of which has an EO vertex

sitting inside B(v, ǫ). These EO vertices have several distinguishing properties:

(1) They are necessarily zero-volume.

(2) By construction they are inside B(v, ǫ) with v being some non-degenerate and have “non-zero volume4”

vertex.

(3) Their “location” (with respect to the fixed coordinate chart around v) is state-dependent and dictated by the

so-called quantum shift.

(4) Given any charge network c′ with a vertex vE satisfying the above three properties, one can always find charge

network c with a vertex v such that the action of ĤT (δ)(v) results in a linear combination of charge network

states including |c′〉.

Although the EO vertices are zero-volume, the action of the Hamiltonian constraint on such vertices is required

to be non-trivial and have a specific form in order to obtain an anomaly-free commutator of two continuum

Hamiltonian constraints (for more details we urge the reader to consult [1]). The definition of an EO vertex relies

on the vertices lying inside certain prescribed coordinate neighborhoods of non-degenerate vertices. Whence under

an arbitrary diffeomorphism, an EO vertex could be dragged outside the the prescribed neighborhood and would

no longer be classified as an EO vertex by our prescription. This means that the action of a Hamiltonian constraint

on a state will not commute with the action of diffeomorphisms.

Non-trivial density weight of the Lapse : As the Hamiltonian constraint H(x) is a scalar density of weight 5
4 ,

the lapse function is a scalar density of weight − 1
4 whence evaluation of Lapse at a given point requires an explicit

specification of co-ordinate chart in the neighborhood of the point. Whence the pullback of a Lapse by a diffeomor-

phism which occurs in Ĥ [φ∗N ] involves Jacobian between various co-ordinate charts and it is not clear how such

factors could arise in Û(φ)Ĥ [N ]Û(φ−1). This is yet another potential source of diffeomorphism non-covariance of

the Hamiltonian constraint.

In this paper we show that, despite the apparentbackground-dependence of the quantum Hamiltonian con-

straint, we obtain an anomaly-free representation of the Dirac algebra on VLMI by defining a new representation of

the diffeomorphism group on Hkin (and whence by dual action on VLMI).

3By this we mean the Hamiltonian constraint operator at finite triangulation which is densely defined on Hkin.
4In the U(1)3 theory in 2+1 dimensions, the notion of degenerate vertex and zero-volume vertex are not equivalent. As we have

defined above, a degenerate vertex is the one on which all incident edges are charged only in one copy of U(1). All such degenerate

vertices are necessarily zero-volume; however one could easily have a zero volume vertex which was not degenerate. The Hamiltonian

constraint action on a charge network generically created vertices which are degenerate, but in some special cases it creates vertices

which are zero volume but non-degenerate. We labelled them type-B EO vertices in [1].
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Purpose of requiring the Hamiltonian constraint to be diffeomorphism constraint is two fold [3]. On the one

hand, this ensures that the quantum constraint algebra is first class, and perhaps equally importantly, the vast

amount of ambiguity which persists in the continuum quantum constraint can be reduced by requiring diffeomor-

phism covariance. This has been explicitly demonstrated in [3] and as we see below, it remains true even in our

approach.

This paper is organized as follows: In Section 2 we recall key ideas and results from [1]. That section merely

serves to summarize contents of [1] and we do not claim it to be a sufficient prerequisite for understanding all the

details in the subsequent sections. We urge the interested reader to consult [1] for a more detailed understanding

of the structures involved. In Section 3 we do a sample computation where we take the standard representation of

diffeomorphism group on Hkin and obtain, via dual action, a conjugate representation on VLMI. We then check if

the Hamiltonian constraint operator Ĥ [N ] is covariant under this representation of the diffeomorphism group. As

expected, Ĥ [N ] is not covariant and the analysis reveals precisely where the issues mentioned above show up in the

computation. In Section 4, we define a new representation of Diff(Σ) on VLMI which essentially ensures that various

structures required to define the Hamiltonian constraint operator at finite triangulation behave covariantly with

respect to this representation. In Section 5, which is the main section of the paper, we prove the diffeomorphism-

covariance of the continuum Hamiltonian constraint on VLMI. Together with [1], the results of this section establish

a representation of the Dirac algebra for the U(1)3 gauge theory. In section 6 we perform a heuristic check on the

validity of the new representation of Diff(Σ) on VLMI by computing a subset of physical states that capture the

topological sector in the quantum theory and argue that the final answer we obtain is the expected one in the sense

that we would have arrived at the same answer had we worked with the representation of Diff(Σ) commonly used

in LQG.

We end with conclusions where we highlight the unsatisfactory aspects of our work, which is the use of several

auxiliary structures and make some remarks pertaining to the generalization of our work for Euclidean LQG.

2 Summary of [1] and some Notational Changes

In this section, we briefly recap the relevant results and notation of [1], where more details can be found when

desired. There, a proposal was made for a finite-triangulation Hamiltonian constraint operator ĤT (δ) on the vector

space D spanned by charge networks c ≡ (c1, c2, c3) (whose completion is the kinematical Hilbert space Hkin of the

theory) and its continuum limit (δ → 0) was evaluated on a vector space VLMI ⊂ D∗ of distributions spanned by

objects of the type

(Ψf(1)

[c](1)
| :=

∑

(c′1,c2,c3)∈[c](1)

f (1)(V̄ (c′1 ∪ c2 ∪ c3))〈c
′
1, c2, c3| (5)

Here f (1) : Σ|V (c)| → C is a smooth function that is symmetric in it’s arguments5, and the set of arguments

V̄ (c′1 ∪ c2 ∪ c3) is a set of vertices (with the same cardinality as the vertex set V (c) of c) in which any WEO

pairs (recalled below) of vertices are replaced by the single WEO vertex of the pair. In this work we will omit the

parentheses around the U(1)i labels to slightly simplify the notation; i.e., these states will be written Ψfi

[c]i
.

5This assumption was not made in [1] however it is invoked here in the interest of pedagogy. The analysis given in the paper can be

easily seen to hold when we relax this assumption.
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[c](i=1) is a set of charge networks containing a ‘parent’ c = (c1, c2, c3), as well all other charge networks (c
′
1, c2, c3)

in which c2, c3 are unaltered, but c′1 6= c1, and the non-equality is of a special type; namely, each (c′1, c2, c3) has

at least one vertex which is ‘weakly extraordinary (WEO) of type i = 1’ with respect to c. We digress briefly to

explain the notion of extraordinary and weakly extraordinary vertices.

Roughly speaking, extraordinary (EO) vertices of a charge network c′ are those produced by the action of a

finite-triangulation Hamiltonian constraint operator on a charge network c, and WEO vertices are EO vertices

which have additionally been moved by diffeomorphisms which are the identity on c. Given a charge network and

the associated coordinate charts based at its vertices, there is a list of criteria (found in [1]) which determines

whether a vertex is WEO, EO, or neither. This is largely a topological and charge label-dependent classification,

and given an arbitrary charge network c with WEO vertices, it is possible to reconstruct a unique WEO-vertex

free charge network c̃. This comes about as follows. As shown in appendix B of [1], any WEO vertex vE in a

charge-network c is uniquely associated to a vertex v ∈ V (c). Furthermore all the (maximal analytic extension of)

edges beginning at vE terminate in a three-valent vertex. By erasing each of this edge and adding the corresponding

charge to the edge between the above mentioned three-valent vertex and v one reconstructs a WEO-vertex free

charge network that we will denote by c̃ throughout this paper.

If the classification scheme determines that a given vertex vE is EO, then it is uniquely associated to another

vertex v, namely that vertex at which a finite-triangulation Hamiltonian-type operator has acted to produce the

pair
(

v, vE
)

. It is helpful to keep in mind a picture of the action of an operator of the type Êa
i F̂

j
abÊ

b
k for some

fixed i 6= j 6= k at a vertex v of some charge network c. In [1] we have constructed such operators via a ‘loop

assignment scheme’ where, roughly speaking, Êa
i gives the direction and magnitude of one leg of the loops, F̂ j

ab

determines that the charge on the attached loops is only non-zero in U(1)j , and Ê
b
k determines the magnitude of

those U(1)j charges via the U(1)k charges on edges of the underlying state. EO vertices are common apex points

of the (charged) loop collections, and hence come in several flavors, and it is necessary in what follows to respect

their distinction. To this end, we introduce some additional notation.

Each vE is first classified as type A or type B; type A EO vertices lie off of the original graph c, and type B

vertices lie on c. This distinction is not important below, so we omit this information from our notation, and focus

the discussion on type A EO vertices vE. Let vEδ (j, k) denote an EO vertex from which all outgoing edges are

charged in U(1)j ,
6 with the magnitude of those charges being determined by the U(1)k charges in the underlying

charge network. The subscript δ denotes that vEδ (j, k) is located a coordinate distance δ|〈Êa
i 〉| (with respect to the

coordinate system based at the vertex v of the underlying charge network) from v in the direction of 〈Êa
i 〉. By the

classification scheme detailed in [1], the pair
(

v, vEδ (j, k)
)

is unique, and we term it an extraordinary pair.

Weakly extraordinary (WEO) vertices are again detectable via the classification scheme, and are generated from

EO vertices by applying diffeomorphisms (which do not move the underlying state) to states containing EO pairs.

That is, these diffeomorphisms only move the loop collections produced by Hamiltonian-type actions.

In [1], the calculation of the continuum limit action ĤΨ[c]i (in this work we drop the prime on Ĥ as an operator

on VLMI) was performed by first writing the Hamiltonian as a sum H =
∑

iH
i, where i labels the U(1) index

appearing on the curvature F i
ab, and considering the various actions ĤiΨ[c]j for each i, j. The result is as follows:

6In [1], we denoted this vertex as vE
δ
(M, k).

5



Given a density-weight − 1
2 lapse function N, it was found that

Ĥ1[N ]Ψf1

[c]1
=

∑

v∈V (c)

(

Ψ
f1,1
v,2 [N ]

[c]1
−Ψ

f1,1
v,3 [N ]

[c]1

)

(6)

where f1,1
v,2 [N ] is a (generally discontinuous) function which agrees with f1 at almost all points of Σ|V (c)|, except

when its argument is V̄ (c′1 ∪ c2 ∪ c3) for some (c′1, c2, c3) ∈ [c]1, and v ∈ V̄ (c′1 ∪ c2 ∪ c3), in which case it takes the

value

f1,1
v,2 [N ]

(

V̄ (c′1 ∪ c2 ∪ c3)
)

= N(v)λ(~nc
v)

∑

e|b(e) = v

n2
eė

a(0)
∂

∂va
f1
(

v, V̄ (c′1 ∪ c2 ∪ c3)− {v}
)

(7)

where ė(0) is the vector tangent to edge e at v = b(e), and is assumed to be of unit length in a prescribed co-ordinate

system.

In [1] this function was called f̄
(1)(1)
v , where the second superscripted (1) refers to the action of Ĥ1, and the bar to

the fact that the directional derivative is along 〈Êa
2 (v)〉c (as opposed to along 〈Êa

3 (v)〉c, which in [1] was denoted

by a double bar). The expressions for Ĥ2Ψ[c]2 and Ĥ3Ψ[c]3 can be obtained by cyclic permutation of the indices in

the above equations.

The action of the mixed-index cases were found to be of the form

Ĥ2[N ]Ψf1

[c]1
=

∑

v∈V (c)

(

Ψ
f1,2
v,1 [N ]

[c]1
−Ψ

f1,2
v,3 [N ]

[c]1

)

(8)

where again, the functions f1,2
v,1 [N ], f1,2

v,3 [N ] agree with f1 at all values of Σ|V (c)|, except when those arguments

coincide with V̄ (c′1 ∪ c2 ∪ c3) with v ∈ V (c), and there is an EO vertex vEδ (1, 2) ∈ supp(N) associated with v, in

which case we have

f1,2
v,1 [N ]

(

V̄ (c′1 ∪ c2 ∪ c3)
)

=





∑

e∈E(c)|b(e)=v

n1
eė

a(0)∂aN(v)



 f1
(

V̄ (c′1 ∪ c2 ∪ c3)
)

(9a)

f1,2
v,3 [N ]

(

V̄ (c′1 ∪ c2 ∪ c3)
)

=





∑

e∈E(c)|b(e)=v

n3
eė

a(0)∂aN(v)



 f1
(

V̄ (c′1 ∪ c2 ∪ c3)
)

(9b)

Recall that ni
e are charges on the edge e ∈ E(c) in U(1)i. Similarly,

Ĥ3[N ]Ψf1

[c]1
=

∑

v∈V (c)

(

Ψ
f1,3
v,2 [N ]

[c]1
−Ψ

f1,3
v,1 [N ]

[c]1

)

(10)

with (under analogous conditions as stated above, with vEδ (1, 2) replaced with vEδ (1, 3))

f1,3
v,2 [N ]

(

V̄ (c′1 ∪ c2 ∪ c3)
)

=





∑

e∈E(c)|b(e)=v

n2
eė

a(0)∂aN(v)



 f1
(

V̄ (c′1 ∪ c2 ∪ c3)
)

(11a)

f1,3
v,1 [N ]

(

V̄ (c′1 ∪ c2 ∪ c3)
)

=





∑

e∈E(c)|b(e)=v

n1
eė

a(0)∂aN(v)



 f1
(

V̄ (c′1 ∪ c2 ∪ c3)
)

(11b)

The expressions for the remaining Ĥi[N ]Ψfj

[c]j
are cyclic permutations of these. Given these preliminaries, we now

embark on a first attempt (and failure) to arrive at a statement of diffeomorphism covariance of this Hamiltonian.

6



3 Naive Attempt

We now quantify the worries laid out in the introduction regarding why, using the usual representation of the

group of semi-analytic diffeomorphisms (denoted in this paper by Diff(Σ)) that is used in loop quantum gravity,

the Hamiltonian constraint constructed in [1] is not diffeomorphism-covariant. More in detail, in this section we

ask the following question. Consider a representation of Diff(Σ) on VLMI induced via dual action:
(

Û(φ)′Ψfi

[c̃]i

)

(|c〉) := Ψfi

[c̃]i
(Û(φ)|c〉) (12)

where the right hand side of the above equation is given by using the “natural” unitary representation of Diff(Σ)

on Hkin [14]. We now ask if Û(φ)′Ĥj [N ]Û(φ)−1′Ψfi

[c̃]i
equals Ĥj[φ∗N ]Ψfi

[c̃]i
for all i, j. As we will see, the answer

is no, and the reasons are precisely those which were given in the introduction.

Readers who are convinced by the arguments given in the introduction can safely skip this section. However

those who wish to follow details in the subsequent sections might find it helpful to peruse the computations done

here. With out loss of generality, we restrict attention to i = 1 and check the diffeomorphism covariance of

Ĥj=1,2[N ] in the domain defined by Ψf1

[c̃]1
.

3.1 Checking Diffeomorphism Covariance of Ĥ1[N ] on Ψf1

[c̃]1

Given any charge network state |cA〉 we would like to see if
(

Û(φ)′Ĥ1[N ]Û(φ)−1′Ψf1

[c̃]1

)

(|cA〉) =
(

Ĥ1[φ∗N ]Ψf1

[c̃]1

)

(|cA〉) (13)

where Û(φ)′ denotes the natural representation of Diff(Σ) on VLMI obtained by dualizing the action of Diff(Σ) on

Hkin. We can deduce this representation as follows:
(

Û(φ)′Ψf1

[c̃]1

)

(|c′〉) :=Ψf1

[c̃]1
(|φ · c′〉) (14)

=
∑

c′′∈[c̃]1

f1(V̄ (c′′))δc′′,φ·c′

=
(

Ψf1◦φ
φ−1·[c̃]1

)

(|c′〉),

where

φ · [c̃]1 = {φ · (c′1, c̃2, c̃3)|(c
′
1, c̃2, c̃3) ∈ [c̃]1} ≡ [φ · c̃]1. (15)

Whence, the natural representation of Diff(Σ) on VLMI is given by

Û(φ)′Ψfi

[c̃]i
= Ψfi◦φ

φ−1·[c̃]i
(16)

Let us first evaluate the left hand side of (13).

LHS =
(

Û(φ)′Ĥ1[N ]Û(φ)−1′Ψf1

[c̃]1

)

(|cA〉) (17)

=
(

Ĥ1[N ]Û(φ)−1′Ψf1

[c̃]1

)

(|φ · cA〉)

=
(

Ĥ1[N ]′Ψf1◦φ−1

[φ·c̃]

)

|φ · cA〉

=

[

Ψ
(f◦φ−1)1,1

φ(v0),2
[N ]

[φ·c̃] −Ψ
(f◦φ−1)1,1

φ(v0),3
[N ]

[φ·c̃]

]

(|φ · cA〉)

7



where, in the final line we have assumed (without loss of generality) that the only vertex in V (φ · c̃) which lies in

the support of N is φ(v0) with v0 ∈ V (c̃). The resulting vertex functions (f ◦φ−1)1,1φ(v0),2
[N ] and (f ◦φ−1)1,1φ(v0),3

[N ]

are given by

(f◦φ−1)1,1φ(v0),2
[N ] =

{

(f1 ◦ φ−1)
(

V̄ (c′)
)

, if φ · v0 /∈ V (c′)

λ(~nφ·c̃
φ(v0)

)N(φ(v0))V
a
2 (φ(v0))∂

φ(v0)
a (f1 ◦ φ−1)

(

φ(v0), V̄ (c′)− {φ(v0)}
)

, otherwise

(18)

(f ◦ φ−1)1,1φ(v0),3
[N ] is defined similarly with V a

2 replaced by V a
3 .

Whence, assuming φ · cA ∈ [φ · c̃]1, we have

LHS =

{

0 if φ(v0) /∈ V̄ (φ · cA)

N(φ(v0)) [V
a
2 (φ(v0))− V a

3 (φ(v0))] ∂
φ(v0)
a (f1 ◦ φ−1)

(

φ(v0), V̄ (φ · c̃)− {φ(v0)}
)

if φ(v0) ∈ V̄ (φ · cA)

(19)

and if φ · cA /∈ [φ · c̃]1, we have

LHS = 0 (20)

On the other hand, the right hand side of (13) is given by

RHS =
(

Ĥ1[φ∗N ]′Ψf1

[c̃]1

)

|cA〉 =

[

Ψ
f1,1
v0,2[φ

∗N ]

[c̃]1
−Ψ

f1,1
v0,3[φ

∗N ]

[c̃]1

]

|cA〉 (21)

where, following the assumption regarding the support of the lapse with respect to the vertex set of φ · c̃, it is clear

that the only vertex in V (c̃) which lies inside the support of φ∗N is v0. As before, we can evaluate the resulting

vertex functions, and find

f1,1
v0,2

[φ∗N ](V̄ (c′)) =

{

f1(V (c′)) if v0 /∈ V̄ (c′)

(φ∗N)(v0)λ(~n
c̃
v0 )V

a
2 (v0)∂

v0
a f1(v0, V̄ (c′)− {v0}) if v0 ∈ V̄ (c′)

(22)

f1,1
v0,3

[φ∗N ] is defined similarly with V a
2 replaced by V a

3 .

Thus, if cA ∈ [c̃]1 we have

RHS =

{

0 if v0 /∈ V̄ (cA)

(φ∗N)(v0)λ(~n
c̃
v0 ) [V

a
2 (v0)− V a

3 (v0)] ∂
v0
a f1(v0, V̄ (cA)− {v0}) if v0 ∈ V̄ (cA)

(23)

and if cA /∈ [c̃]1, we have

RHS = 0 (24)

We would now like to see if the LHS and RHS of (13) as detailed in (19) to (23) are equal for all Ψf1

[c̃]1
, N, and |cA〉.

Case 1 cA /∈ [c̃]1 =⇒ φ · cA /∈ [φ · c̃]1. In this case from (20), (24) we clearly see that LHS = RHS = 0.

Case 2 cA ∈ [c̃]1 but v0 /∈ V̄ (cA) =⇒ φ · cA ∈ [φ · c̃]1 but φ(v0) /∈ V̄ (φ · cA). In this case from the first equation in

(19) and in (23) we see that LHS = RHS = 0.

Case 3 cA ∈ [c̃]1 and v0 ∈ V̄ (cA) =⇒ φ · cA ∈ [φ · c̃]1 and φ(v0) ∈ V̄ (cA). In this case the LHS and RHS are given

by the first equations in (19) and (23) respectively. It is clear that for a generic choice of the habitat state

Ψf1

[c̃]1
, the LHS and RHS are not equal for two reasons:

8



(i) The LHS involves N(φ(v0)), whereas RHS involves (φ∗N)(v0) = | dφdv0
|
1
6N(φ(v0)); i.e., the two differ by

a Jacobian factor.

(ii) The LHS involves λ(~nφ·c̃
φ(v0)

)~Vi(φ(v0), φ · c̃) which is not equal to λ(~nc̃
v0 )φ∗

~Vi(v0, c̃).

Thus the non-trivial density weight of the lapse and the diffeomorphism non-covariance of the quantum shift

are the two reasons why the naive attempt to prove diffeomorphism covariance of Ĥ1[N ] fails.

3.2 Checking Diffeomorphism-Covariance: H2[N ]Ψf1

[c̃]1

In the previous section, we analyzed the behaviour of Ĥ1[N ] under conjugation by the natural representation of

Diff(Σ) on Ψf1

[c̃]1
and identified two problems which are responsible for its spatial non-covariance. In this section,

we continue along the same route and analyze the diffeomorphism (non-)covariance of Ĥ2[N ] on Ψf1

[c̃]1
. At the very

least, we expect the two culprits identified in the last section to spoil the covariance properties again, but as we

will see in this case there is an additional difficulty. The action of Ĥ2[N ] on charge network states containing EO

vertices (which are by definition zero-volume) is different from its action on non-EO zero-volume vertices. However,

a quick look at the definition of EO vertices reveals that the entire EO structure is diffeomorphism non-covariant:

A diffeomorphism can map an EO vertex into a WEO vertex. This transcends into another issue in the continuum

limit, ensuring diffeomorphism non-covariance of Ĥ2[N ] on Ψf1

[c̃]1
. We now turn to a detailed analysis of this issue.

Given Ψf1

[c̃]1
∈ VLMI and |cA〉 ∈ Hkin, we once again want to see if

(

Û(φ)′Ĥ2[N ]Û(φ−1)′Ψf1

[c̃]1

)

(|cA〉) =
(

Ĥ(2)[φ∗N ]Ψf1

[c̃]1

)

(|cA〉) (25)

∀φ ∈ Diff(Σ). We compute

LHS =
(

Û(φ)′Ĥ2[N ]Û(φ−1)′Ψf1

[c̃]1

)

(|cA〉) (26)

=
(

Û(φ)′Ĥ2[N ]Ψf1◦φ−1

φ·[c̃]1

)

(|cA〉)

=

(

Û(φ)′
[

Ψ
(f◦φ−1)1,2

φ(v0),1
[N ]

φ·[c̃]1
−Ψ

(f◦φ−1)1,2
φ(v0),3

[N ]

φ·[c̃]1

])

(|cA〉)

=

[

Ψ
(f◦φ−1)1,2

φ(v0),1
[N ]

φ·[c̃]1
−Ψ

(f◦φ−1)1,2
φ(v0),3

[N ]

φ·[c̃]1

]

(|φ · cA〉) ,

where in the third line we have used (8) and assumed (without loss of generality) that ∃v0 ∈ V (c̃) such that the

only vertex in V (φ · c̃) which falls inside the support of N is φ(v0). In the fourth line we have used (14). The vertex

functions in the third and fourth lines of (26) are given in Section 2, and

(f ◦ φ−1)1,2φ(v0),3
[N ]

(

V̄ (c′)
)

=
(

f1 ◦ φ−1
)

(V̄ (c′)) (27a)

(f ◦ φ−1)1,2φ(v0),1
[N ]

(

V (c′)
)

=
(

f1 ◦ φ−1
)

(V̄ (c′)) (27b)

∀c′ such that V̄ (c′) does not contain an EO vertex φ(v0)
E
δ (1, 2) of type(1, 2).

If on the other hand, V (c′) contains an EO vertex, (φ · v0)
E
δ (1, 2) (for some δ) then,

9



(f ◦ φ−1)1,2φ·v0,3
[N ]

(

V (c′)
)

= (f ◦ φ−1)1,2φ·v0,3
[N ]

(

(φ · v0)
E
δ (1, 2), . . .

)

=
[

λ(~nφ·c̃
φ·v0

)V a
1 (φ · v0, φ · c̃)(∇aN)(φ · v0)

]

f1 ◦ φ−1
(

(φ · v0)
E
δ (1, 3), ...

)

(f ◦ φ−1)1,2φ·v0,1
[N ]

(

V (c′)
)

= (f ◦ φ−1)1,2φ·v0,1
[N ]

(

(φ · v0)
E
δ (1, 2), . . .

)

=
[

λ(~nφ·c̃
φ·v0

)V a
3 (φ · v0, φ · c̃)(∇aN)(φ · v0)

]

f1 ◦ φ−1
(

(φ · v0)
E
δ (1, 1), ...

)

(28)

Using the last line in (26), it is easy to see that,

LHS = 0 if φ · cA /∈ φ · [c]1

=
[

(f ◦ φ−1)1,2φ·v0,1
[N ]

(

V (cA)
)

− (f ◦ φ−1)1,2φ·v0,3
[N ]

(

V (cA)
)

]

otherwise (29)

Whence upon using (28) in (29) we see that if cA does not contain an EO vertex of type-1, 2 associated to v0 then

LHS = 0 (30)

We now turn our attention to RHS
(

Ĥ(2)[φ∗N ]Ψf1

[c̃]1

)

|cA〉.

RHS =

[

Ψ
f1,2
v0,1[φ

∗N ]

[c̃]1
− Ψ

f1,2
v0,3[φ

∗N ]

[c̃]1

]

|cA〉
(31)

where the vertex functions are once again given by,

f1,2
v0,3

[φ∗N ]
(

V (c′)
)

=

f1
(

V (c′)
)

if there is no EO vertex of type-1,2 w.r.t v0 inV (c′)

[

λ(~nc̃
v0 V

a
1 (c̃, v0)(∇a (φ

∗N))(v0)
]

f1
(

(v0)
E
δ (1, 3), . . .

)

if there is an E.O vertex(v0)
E
δ w.r.tv0

f1,2
v0,1

[φ∗N ]
(

V (c′)
)

=

f1
(

V (c′)
)

if there is no EO vertex of type-1,2 w.r.t v0 inV (c′)

[

λ(~nc̃
v0 V

a
3 (c̃, v0)(∇a (φ

∗N))(v0)
]

f1
(

(v0)
E
δ (1, 1), . . .

)

if there is an E.O vertex(v0)
E
δ w.r.tv0

(32)

Thus it is straight-forward to see that, RHS as defined in (31) is given by,

RHS = 0 if cA /∈ [c̃]1

= f1,2
v0,1

[φ∗N ]
(

V (cA)
)

− f1,2
v0,3

[φ∗N ]
(

V (cA)
)

otherwise (33)

which using (32) further implies that

10



RHS = 0 if there exists no E.O. vertex of type-I,j in V (cA)associated to v0.

= −λ(~nc̃
v0)

[

V a
3 (c̃, v0)f

1
(

(v0)
E
δ (1, 1), . . .

)

− V a
1 (c̃, v0)f

1
(

(v0)
E
δ (1, 3), . . .

)]

(∇a (φ
∗N))(v0)

otherwise

(34)

Comparing (34) with (29) we can easily verify that, if cA /∈ [c̃]1 (which is equivalent to φ · cA /∈ [φ · c̃]1) then

LHS = RHS = 0 (35)

However if cA ∈ [c̃]1 then LHS and RHS are only equal for all diffeomorphisms, if there is no WEO vertex of

type-(1, 2) associated to v0 in cA. Otherwise there could exist a diffeomorphism φ such that it would map a WEO

vertex associated to v0 to an EO vertex (of the same type) associated to φ · v0 in which case LHS would be zero

(from (30) but RHS would be given by the second line in (34).

We thus conclude that given a Ψfi
[c]i

in the LMI-habitat, the action of Ĥ [N ] =
∑3

j=1H
(j)[N ]′ is not covariant

under action of spatial diffeomorphisms due to three reasons.

(a) The quantum shift is not a covariant object in any sense : If two charge-networks c1 and c2 are diffeomorphic

to each other (which means there are infinitely many semi-analytic diffeomorphisms which map c1 to c2; there need

not exist any diffeomorphism whose push-forward maps ~Vj(v, c1) to ~Vj(φ · v, c2).

(b) The non-trivial density weight of lapse causes extra Jacobian factors to arise when comparing φ∗ N with N ◦φ.

( c ) The EO structure is a diffeomorphism non-covariant concept unlike the WEO structure.

3.3 Our Strategy

In this section we briefly outline our approach and explain the key ideas that are developed in subsequent sections.

As some of the analysis done in later sections is slightly involved, we hope that a reading of this section will give

the reader an understanding of the concepts.

Our aim is to show that despite the apparent background dependence of quantum Hamiltonian constraint , we

obtain an anomaly free representation of the Dirac algebra on VLMI by defining a new representation of the

diffeomorphism group on Hkin (and whence by dual action on VLMI). The basic ideas behind our construction are

summarized below.

As shown in [1], and recalled briefly in the Section 2, the continuum Hamiltonian constraint on the LMI habitat,

is a sum of three operators given by,

Ĥ [N ]Ψfi

[c̃]i
=
(

Ĥ1[N ] + Ĥ2[N ] + Ĥ3[N ]
)

Ψfi

[c̃]i
∀ i ∈ {1, 2, 3} (36)

Where Ψfi

[c̃]i
is an arbitrary element in VLMI . We will restrict our analysis to i = 1 case (as the analysis for states

in the i = 2, 3 sectors is exactly analogous) and prove diffeomorphism covariance of H [N ] by showing

Û(φ)Ĥ1[N ]Û(φ−1)Ψf1

[c̃]1
= Ĥ1[φ∗N ]Ψf1

[c̃]1

Û(φ)Ĥj [N ]Û(φ−1)Ψf1

[c̃]1
= Ĥj [φ∗N ]Ψf1

[c̃]1
j ∈ {2, 3} (37)

11



From eq. (37) it follows that Ĥ[N ] is diffeomorphism-covariant on any Ψf1

[c̃]1
∈ VLMI. Diffeomorphism-covariance

of Ĥ[N ] on an arbitrary state in VLMI is a trivial extension of the above claim.

We now describe the main ideas behind the new representation of Diff(Σ) defined in Section 4. As recalled in

Section 2, given any charge network c, there is a unique “undeformed” c̃ associated to it such that the action of the

finite-triangulation Hamiltonian constraint on c involves a set of vectors ~V (v, c̃) associated to each vertex v ∈ V (c̃),

and a characterization of which of the vertices vE(i, j) in c are EO with respect to vertices in c̃. Whence it is clear

that the data set we are dealing with, as far as the definition of the Hamiltonian constraint action on c goes, is

{~V (v, c̃), vE(i, j)|v ∈ V (c̃) ∩ V (c), vE(i, j) ∈ V (c)}. Denote the collection of all such data sets associated to any

diffeomorphism invariant orbit of charge networks by C([c]diff ) = ∪c′ ∈[c]diff
{~V (v, c̃′), vE(i, j)|v ∈ V (c̃′), vE(i, j) ∈

V (c′)}. Intuitively we would like to choose a representation of Diff(Σ) on Hkin which preserves C([c]diff ); that is,

any diffeomorphism should act in such a way that it maps one element of C([c]diff ) to some other element of

C([c]diff )). We achieve this objective as follows.

(i) In each diffeomorphism invariant orbit [c̃]diff of undeformed charge networks, we fix once and for all, an “initial”

charge network c̃0 ∈ [c̃]diff ≡ [c̃0]diff , and a set of diffeomorphisms {φc̃0,c̃′}c̃′∈[c̃0]diff which map c̃0 to any c̃′ ∈ [c̃0]diff .

(ii) We also associate to each such c̃0 an atlas U(c̃0) on Σ such that each vertex v of c̃0 lies in precisely one open

set of U(c̃0) and to each c̃′ ∈ [c̃0]diff we associate an atlas obtained by pushforward7 of U(c̃0) by φc̃0,c̃′ .

(iii) We compute the quantum shift vectors {~V (v, c̃0)|v ∈ V (c̃0)} on the vertices of reference charge-network c̃0

once and for all and define quantum shift vectors for any c̃′ ∈ [c̃0]diff as

~V (v′, c̃′) := (φc̃0,c̃′)∗~V (φ−1
c̃0,c̃′(v

′), c̃0) (38)

Thus, given a [c̃]diff with a reference charge network c̃0, the set C([c]diff ) (such that the unique WEO-vertex free

charge network associated to c is c̃,) is invariant under the action of diffeomorphisms φc̃0,c̃. This motivates our new

representation which essentially amounts to working with ∪c̃0 ∪c̃′∈[c̃0]diff φc̃0,c̃′ instead of Diff(Σ).8 We now revisit

the transformation properties of Ĥ [N ] on VLMI under this representation of Diff(Σ) and show that it transforms

covariantly.

3.4 Preferred diffeomorphisms : φ-maps

In this section we explain how we assign to each diffeomorphism-invariant orbit [c̃]diff of WEO-vertex free charge

networks a set of diffeomorphisms which will be a crucial ingredient in defining a new representation of Diff(Σ)

in the quantum theory.

We start with a trivial observation. [c̃]diff is a category (in fact a groupoid) with c̃′ ∈ [c̃]diff being the objects

and all the diffeomorphisms which map say c̃′ to c′′ constitute Hom(c̃′, c̃′′). Our idea is to work with a subcategory

(in fact a subgroupoid) in [c̃]diff in defining a representation of Diff(Σ) on Hkin. Pick a reference charge-network

c̃0 and for all c̃′ ∈ [c̃]diff fix once and for all a diffeomorphism φc̃0,c̃′ which map c̃0 to c̃′. (We choose φc̃0,c̃0 = Id).

7By pushforward of the coordinate chart we merely mean the coordinates of the diffeomorphic image of a point in the pushed-forward

coordinate chart are the same as the coordinates of original point in the initial coordinate chart.
8At this point we are only trying to motivate our construction of new representation. The details are given in Section 4. For example,

at this point we have not even shown that the set that we are working with forms a group.
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Now given any c̃′, c̃′′ ∈ [c̃]diff we define a diffeomorphism which maps c̃′ to c̃′′ as

φc̃′,c̃′′ := φc̃0,c̃′′ ◦ φ
−1
c̃0,c̃′ (39)

It is easy to verify that

φc̃1,c̃2 ◦ φc̃2,c̃3 = φc̃1,c̃3
φc̃1,c̃2 = φ−1

c̃2,c̃1
(40)

∀ c̃1, c̃2 ∈ [c̃]diff .

The categorical notions are not essential in understanding the representation of Diff(Σ), however it is a useful

concept to understand the type of structure we are dealing with when we fix a diffeomorphism once and for all

between any two charge-networks.

We will sometimes refer to these select set of diffeomorphisms as φ-maps.

3.5 A Diffeomorphism-Covariant Regularization Scheme

Classically, V a
i = q−1/4Ea

i is a C∞ densitized vector field. In [1] the quantization of V a
i (v) at a given point v ∈ Σ

involved a choice of regulating structures such that, at finite regularization parameterized by ǫ, a densely defined

operator V̂ a
i (v)|ǫ on Hkin was obtained. Although this operator is explicitly independent of ǫ due to the density

weights of various quantities, it is implicitly dependent on the chosen regulating structures, which can be most

easily seen through its spectrum. In particular, this dependence implies that generically, given two charge-networks

c1 and c2 that are diffeomorphic to each other,

φ∗

(

〈c|~̂Vi(v)|ǫ|c1〉
)

6= 〈φc|~̂Vi(φ · v)|ǫ|c2〉. (41)

∀ φ which map c1 to c2. This result implies the following.

Consider [c0]diff which is a diffeomorphism-invariant set of charge networks that contains c0. The defintion of the

quantum shift vectors associated to a given c is essentially an assignment of vectors {~Vi(v, c)|v ∈ V (c), i ∈ {1, 2, 3}}.

Eq. (41) implies that, given c1, c2 ∈ [c0]diff ,, there is no meaningful sense in which we can talk about the quantum

shift vectors associated to c1 being diffeomorphically related to quantum shift vectors associated to c2. We term

this property, diffeomorphism non-covariance of quantum shift. As we saw in Section 3, the diffeomorphism non-

covariance of the quantum shift in turn implies that the Hamiltonian constraint operator as we have defined it will

not be diffeomorphism-covariant; i.e., Equation (3) will not be satisfied. We cure this problem by first taking a cue

from the construction of rigging map for finite diffeomorphisms [14], then defining an alternative (as opposed to

the representation currently used in LQG) representation of Diff(Σ) on Hkin. We show that this leads to a solution

to the diffeomorphism non-covariance problem of the quantum shift,9 and finally to a diffeomorphism-covariant

Hamiltonian constraint operator.

First let us briefly recall the result of the construction of the quantum shift in [1]. At each point p ∈ Σ, we

fix once and for all a coordinate system {xp} with origin at p. Let c̃ be a WEO vertex-free charge network with a

9This means that we can in a precise sense talk about a map between quantum shifts associated to two charge-networks which are

diffeomorphic to each other
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vertex v ∈ Σ. The (co-ordinate dependent) regularization procedure, detailed in [1] gives

V̂ a
j (v)|ǫ|c̃〉 = Êa

j |ǫ(v)q̂
−1/4
ǫ (v)|c̃〉 = λ(~nv

c̃ )
1

π

∑

eI∩v

êaIn
j
I |c̃〉 ≡ λ(~nv

c̃ )〈E
a
j (v)〉c̃|c̃〉 =: V a

j (v, c̃)|c̃〉 (42)

where we have employed the abstract index notation and the êaI are unit tangent vectors (with respect to the

coordinate system at v with metric δab) to the edges of c̃ emanating from v. As it stands, V a
j (v, c̃) is computed

separately for each member c̃ of the diffeomorphism equivalence class [c̃]diff of c̃.

To solve the non-covariance problem stated above, we will modify this construction, and compute V a
j (v, c̃0) only

in some reference charge network c̃0 ∈ [c̃]diff ≡ [c̃0]diff . The result will be transported to vertices of other charge-nets

in the equivalence class by the set of relevant φ-maps which were defined in 3.4.

We define the quantum shift vectors V a
i (v, c̃) ∀ v := φc̃0,c̃ · v0|v ∈ V (c̃), c̃ ∈ [c̃0]diff via pushforward with respect

to the ϕc̃0,c̃:
~Vj(v, c̃) := (φc̃0,c̃)∗~Vj(v0, c̃0) (43)

4 Representation of Diff(Σ) on the LMI Habitat

As we saw in Section 3.1, there is a natural representation of Diffeomorphism group on VLMI. It is given by,

Û(φ)′Ψfi

[c]i
= ψfi◦φ−1

[φ·c]i
(44)

However as we saw in Section 3.2, this representation is not the one that will lead us to a non-anomalous Dirac

algebra on VLMI, as Û(φ) generically maps an EO vertex to a WEO vertex. Keeping this in mind, we define a

new representation of Diff(Σ) on Hkin which in turn leads to a novel representation of the diffeomorphism group

on VLMI. We will see that this representation has some desirable properties.

(1) Given [c̃0]diff , and the collection of vectors ∪c̃′∈[c̃0]diff{
~Vi(v, c̃

′)|v ∈ V (c̃′)}, the new representation preserves

this set. More precisely, (φc̃0,c̃′)∗v

(

~Vi(v, c̃0)
)

= ~Vi(v
′, c̃′) for all v ∈ V (c̃0) such that v′ = φc̃0,c̃′(v) ∈ V (c̃′).

(2) It preserves the EO structure associated to charge-nets. (As we will see below, this will be achieved by making

co-ordinate charts around a given vertex “state dependent”).

4.1 An Alternative Representation of Diff(Σ)

4.1.1 Preliminaries

Definitions: Let c̃ be a WEO vertex-free (signified by the tilde) charge network with vertex set V (c̃) =: {v1, . . .

, vI , . . . v|V (c̃)|}, and let δ < δ0(c̃) be an admissible small parameter with respect to each of the coordinate systems

based at the points of V (c̃), as detailed in [1] (roughly, the bound δ0(c̃) guarantees that the finite-triangulation

Hamiltonian-type deformations at ‘fineness’ δ that are performed on c̃ are ‘local enough’ so that one can actually

classify these so-called EO vertices which are formed by the action of Hamiltonian constraint). We define the ith

δ-cilium at the vertex vI , denoted σ
I
i (δ, c̃), as a straight-line arc of coordinate length δ|〈Êa

i 〉c̃|, directed along the
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x1

x2

vI

σI1(δ, c̃)

γ(c̃)

σI2(δ, c̃)

σI3(δ, c̃)

Figure 1: The δ-ciliated graph γσ(δ,c̃)(c̃) determined by c̃ in the neighborhood of the vertex vI with respect to the

coordinate system {xvI} = {x1, x2}.

quantum shift V a
i (vI , c̃), with one end at vI , which goes into the definition of the curvature loop appearing in the

Hamiltonian action.

The δ-ciliated graph determined by c̃, denoted γσ(δ,c̃)(c̃), is given by the union of the graph γ(c̃) underlying c̃

and the set of δ-cilia (see Figure (1)):

γσ(δ,c̃)(c̃) := γ(c̃) ∪

3
⋃

i=1

|V (c̃)|
⋃

I=1

σI
i (δ, c̃). (45)

Now consider the diffeomorphism equivalence class [c̃]diff . We choose once and for all a preferred element of

c̃0 ∈ [c̃]diff ≡ [c̃0]diff to represent the equivalence class, and in the neighborhood of each v ∈ V (c̃0) a fixed coordinate

chart {xv}
c̃0 . For all c̃ ∈ [c̃0]diff , we choose once and for all a preferred collection of coordinate charts {xv′}c̃ in the

neighborhood of each of its vertices v′ = φc̃0,c̃(v) which is obtained by a push-forward of {xv}
c̃0 using φc̃0,c̃.

{xv′}c̃ = (φc̃0,c̃)∗{xv}
c̃0

∀v′ ∈ V (c̃), v ∈ V (c̃0) such that v′ = φc̃0,c̃(v)
(46)

This means that given a v0 ∈ V (c̃0), σi(v0, δ, c̃0) which is a linear curve (in parameter t ∈ [0, δ]) with respect to

the coordinate chart {xv}
c̃0 , beginning at v with its tangent at v being ~Vi(v, c̃0) gets mapped to a linear curve

σi(v
′, δ, c̃) (in parameter t ∈ [0, δ]) with respect to the co-ordinate chart {xv′}c̃, beginning at v with its tangent at

v being ~Vi(v
′, c̃) := (φc̃0,c̃)∗[~Vi(v, c̃0)]. Whence, we get
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φc̃0,c̃
(

γσ(δ,c̃0)(c̃0)
)

= φc̃0,c̃

(

γ(c̃0) ∪
⋃3

i=1

⋃|V (c̃0)|
I=1 σI

i (δ, c̃0)
)

(47)

= γ(c̃) ∪
⋃3

i=1φc̃0,c̃

(

⋃|V (c̃0)|
I=1 σI

i (δ, c̃0)
)

= γ(c̃) ∪
⋃3

i=1

(

⋃|V (c̃0)|
I=1 σI

i (δ, c̃)
)

= γσ(δ,c̃)(c̃)

Whence by adapting the coordinate charts around vertices to charge networks, we preserve the EO nature of a

vertex.10 As we will see, this new ingredient will turn out to be crucial in obtaining an anomaly-free constraint

algebra.

4.1.2 A New Representation

We are now ready to define a new representation of Diff(Σ) on VLMI via a new representation on Hkin. For charge

networks c̃ with no WEO vertices, we have that

Û(φ)|c̃〉 := |φc̃,φc̃ · c̃〉. (48)

If a charge network c1 has any WEO vertices, then, as shown in the appendix, there is a unique WEO vertex-free

charge network c̃(c1) associated to it and c̃(c1) can be recovered from c1 by performing a certain surgery. Using

this fact we then define

Û(φ)|c〉 := |φc̃(c),φ·c̃(c) · c〉. (49)

Clearly this defines a representation:

Û(φ′)Û(φ)|c〉 = |φ ˜φc̃,φ·c̃·c,φ′·φ̃c̃,φ·c̃c
φc̃,φ·c̃ · c〉 = |φφ·c̃,φ′·φ·c̃φc̃,φ·c̃ · c〉 = |φc̃,(φ′◦φ)·c̃ · c〉 = Û(φ′ ◦ φ)|c〉 (50)

The action of the Û(φ) on VLMI descends from the action on Hkin via

〈c|Û(φ)′ := (Û(φ−1)|c〉)† = |φc̃(c),φ−1·c̃(c) · c〉
† = 〈φc̃(c),φ−1·c̃(c) · c| (51)

It is easy to see that using above the equation we have,

(Ψf1

[c̃]1
|Û(φ)′ =

∑

(c′1,c2,c3)∈[c̃]1

f1(V̄ (c′1 ∪ c2 ∪ c3))〈φc̃,φ−1·c̃ · (c
′
1, c2, c3)|. (52)

where by c̃ we mean the WEO vertex-free charge network c̃(c′1, c̃2, c̃3) underlying (c′1, c̃2, c̃3) which is exactly c̃ for

all (c′1, c̃2, c̃3) ∈ [c̃].

Now note that the vertex set V̄ (c′1 ∪ c2 ∪ c3) transforms equivariantly under diffeomorphisms:

φc̃,φc̃(V̄ (c′1 ∪ c̃2 ∪ c̃3)) = V̄ (φc̃,φc̃(c
′
1) ∪ φc̃,φc̃c̃2 ∪ φc̃,φc̃c̃3) (53)

10We are indebted to Madhavan Varadarajan who explained to us the use of state-dependent co-ordinate charts in regularization of

quantum constraints.
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We can now define a (dual) representation on VLMI based on the representation given in (51) as follows:

Û(φ)′Ψfi

[c̃]i
:= Ψ

fi◦φ
φ−1

·c̃,c̃

φ
c̃,φ−1

·c̃
·[c̃]i

(54)

∀ i. The above definition is justified by the following lemma.

Lemma: Ψfi

[c̃]i

(

Û(φ)|cA〉
)

= Ψ
fi◦φφ−1

·c̃,c̃

φ
c̃,φ−1c̃

·[c̃]i
|cA〉 for all |cA〉 ∈ Hkin.

Proof : We give the proof for i = 1. Without loss of generality, we assume that all WEO vertices of cA are of

type 1, as otherwise both sides are trivially zero.

Compute

Ψf1

[c̃]1

(

Û(φ)|cA〉
)

=
∑

c′∈[c̃]1

f1
(

V̄ (c′)
)

δc′,φc̃A,φ·c̃A
(55)

where c′ = (c′1, c̃2, c̃3) ∈ [c̃]1, and c̃A is the WEO vertex-free charge network associated to cA. We have that

φc̃A,φ·c̃A · cA /∈ [c̃1]1 ⇔ φ · c̃A 6= c̃, (56)

and in this case, Ψf1

[c̃]1

(

Û(φ)|cA〉
)

= 0. On the other hand, if φc̃A,φ·c̃A · cA ∈ [c̃]1 (⇔ φ · c̃A = c̃), then

Ψf1

[c̃]1

(

Û(φ)|cA〉
)

= f1
(

V̄ (φc̃A,φ·c̃A · cA)
)

= f1
(

V̄ (φφ−1·c̃,c̃ · cA)
)

, (57)

whereas the RHS is given by
∑

c′∈[c̃]1

f1
(

V̄ (c′)
)

δc′,φc̃A,φ·c̃A
=

∑

c′∈φ
c̃,φ−1

·c̃
·[c̃]1

f1 ◦ φφ−1·c̃,c̃

(

V̄ (c′)
)

δc′,cA (58)

Whence if cA /∈ φc̃,φ−1·c̃ · [c̃]1 (⇔ c̃A 6= φ−1 · c̃), then the right hand side of (55) vanishes. On the other hand if

cA ∈ φc̃,φ−1·c̃ · [c̃]1 (⇔ c̃A = φ−1 · c̃), then

RHS = f1 ◦ φφ−1·c̃,c̃

(

V̄ (cA)
)

= f1
(

V̄ ((φφ−1·c̃,c̃ · cA)
)

(59)

In the second equality we have used the fact that V̄ is a diffeomorphism-equivariant map on the set of vertices.

This proves the lemma.

It is straightforward to verify that (54) defines a representation:

Û(φ)′Ψfi

[c̃]i
:= Ψ

fi◦φ
φ−1

·c̃,c̃

φ
c̃,φ−1

·c̃
·[c̃]i

(60)

Û(φ1)
′Û(φ2)

′Ψf1

[c̃]1
= Û(φ1)

′Ψ
fi◦φ

φ
−1
2 ·c̃,c̃

φ
c̃,φ

−1
2

·c̃
·[c̃]i

Û(φ1)
′Û(φ2)

′Ψf1

[c̃]1
= (Ψ

f1◦α−1

c̃,φ
−1
1 c̃

◦α−1

φ
−1
1 c̃,φ

−1
2 φ

−1
1 c̃

[φ−1
2 φ−1

1 c̃]1
| = (Ψ

f1◦α−1

c̃,(φ1◦φ2)−1 c̃

[(φ1◦φ2)−1c̃]1
| = (Ψf1

[c̃]1
|Û(φ1 ◦ φ2)

′, (61)

so that we indeed have a representation.

We now point out a rather interesting property of this representation. Although VLMI is a subspace of distri-

butions on Hkin , there is a canonical choice of inner product on this space.11

Given Ψ
fi
1

[c̃′]i
,Ψ

fj
2

[c̃′′]j
, the inner product is defined as,

(

Ψ
fi
1

[c̃′]i
,Ψ

fj
2

[c̃′′]j

)

:= δc̃′,c̃′′ f̄
i
1(V (c̃′))∗f j

2 (V (c̃′′))δi,j (62)

11Note that on the Lewandowski Marolf Habitat defined in [12] no such canonical choice exists!
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Note that this inner product is not positive definite unless we restrict ourselves to “basis” states Ψfi

[c̃]i
in VLMI

which are such that |f i(V (c̃))|2 > 0.

In any case, it is clear that the representation of Diff(Σ) on VLMI is unitary with respect to (62) as,

(

Û(φ)Ψ
fi
1

[c̃′]i
, Û(φ)Ψ

fj
2

[c̃′′]j

)

=
(

Ψ
fi
1◦φφ−1c̃′,c̃′

φ
c̃′,φ−1

·c̃′
[c̃′]i

,Ψ
fj
2◦φφ−1c̃′′,·c̃′′

φ
c̃′′,φ−1

·c̃′′
[c̃′′]j

)

=

δφ·c̃′,φ·c̃′′

(f i
1 ◦ φφ−1c̃′,c̃′)(V (φ−1c̃′))∗ (f j

2 ◦ φφ−1c̃′′,·c̃′′)(V (φ−1c̃′′)) δi,j

= δφ·c̃′,φ·c̃′′f
i
1(V (c̃′))∗f j

2 (V (c̃′′))δi,j

=
(

Ψ
fi
1

[c̃′]i
,Ψ

fj
2

[c̃′′]j

)

(63)

where we have used the fact that φc̃,φ·c̃|c̃ = φ|c̃ ∀ φ.

5 Diffeomorphism Covariance

5.1 Ĥ1[N ]′Ψf1

[c]1

In this section we revisit the diffeomorphism-covariance of Ĥ1[N ]′ on Ψf1

[c̃]1
in light of the new representation of

Diff(Σ) on VLMI involving φc̃0,c̃ maps.

Whence our aim is to check if

(

Û(φ)′Ĥ1[N ]′Û(φ−1)′Ψf1

[c̃]1

)

|cA〉 =
(

Ĥ1[(φc̃,φ·c̃)
∗N ]′Ψf1

[c̃]1

)

|cA〉 (64)

∀ Ψf1

[c̃]1
∈ VLMI and |cA〉 ∈ Hkin.

Note that on the right hand side, we expect the lapse to be pulled back by the diffeomorphism φc̃,φ·c̃ (which given

a c̃ and a φ is fixed once and for all) and not by φ as warranted by the new representation of the Diffeomorphism

group.

Before proceeding with the computation, we outline our setup which will also help us clarifying our (often confus-

ing) notations. We denote the reference charge-network in [c̃]diff by c̃0. The WEO vertex free state underlying

cA will be denoted by c̃A. Given a vertex vA in c̃, we will denote the corresponding (image under diffeomorphism

φc̃,c̃0) vertex in c̃0 as v0A.

Without loss of generality we assume that the only WEO vertices which belong to V (cA) are of type − 1, as

otherwise both sides are trivially zero.
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We first compute the LHS using (51), (54) and (6)

LHS =
(

Û(φ)′Ĥ1[N ]′Û(φ−1)′Ψf1

[c̃]1

)

|cA〉

=
(

Ĥ1[N ]′Û(φ−1)′)Ψf1

[c̃]1

)

|φc̃A,φ·c̃A · cA〉

=
(

Ĥ1[N ]′Ψ
f1◦φφ·c̃,c̃

φc̃,φ·c̃·[c̃1]

)

|φc̃A,φ·c̃A · cA〉

=
∑

v∈V (c̃)

(

Ψ
(f◦φφ·c̃,c̃)

1,1
v,2[N ]

φc̃,φ·c̃·[c̃1]
− Ψ

(f◦φφ·c̃,c̃)
1,1
v,3[N ]

φc̃,φ·c̃·[c̃1]

)

|φc̃A,φ·c̃A · cA〉

(65)

Further analysis of above equation can be divided into following two (mutually exclusive and exhaustive) cases.

Case 1 : φc̃A,φ·c̃A · cA /∈ φc̃,φ·c̃ · [c̃1] ⇔ φ · c̃A 6= φ · c̃ ⇔ c̃A 6= c̃.

In this case it is clear that LHS = 0.

Case 2 : φc̃A,φ·c̃A · cA ∈ φc̃,φ·c̃ · [c̃1] ⇔ φ · c̃A = φ · c̃ ⇔ c̃A = c̃.

In this case,

LHS =
∑

v∈V (c̃)

(

(f ◦ φφ·c̃,c̃)
1,1
v,2 [N ]

(

V (φc̃A,φ·c̃A)
)

− (f ◦ φφ·c̃,c̃)
1,1
v,3 [N ]

(

V (φc̃A,φ·c̃A)
)

)

(66)

For the sake of pedagogy, we now assume that the only vertex in V (φ · c̃) = V (φ · c̃A) which falls inside the support

of N is a vertex vA. As the Hamiltonian constraint action is linearly distributed over vertices, there is no loss of

generality in this assumption.

In this case Case 2 gets further sub-divided into following two cases.

case 2a : vA /∈ V (φc̃A,φ·c̃A · cA), and in this case,

LHS =
∑

v∈V (c̃)

(

(f ◦ φφ·c̃,c̃)
1,1
v,2 [N ]

(

V (φc̃A,φ·c̃A · cA)
)

− (f ◦ φφ·c̃,c̃)
1,1
v,3 [N ]

(

V (φc̃A,φ·c̃A · cA)
)

)

=
(

(f ◦ φφ·c̃,c̃)
1,1
vA,2 [N ]

(

V (φc̃A,φ·c̃A · vA)
)

− (f ◦ φφ·c̃,c̃)
1,1
vA,3 [N ]

(

V (φc̃A,φ·c̃A · vA)
)

)

= (f ◦ φφ·c̃,c̃)
1 (
V (φc̃A,φ·c̃A · vA)

)

− (f ◦ φφ·c̃,c̃)
1 (
V (φc̃A,φ·c̃A · cA)

)

= 0

(67)

where in the second line we have used the assumption stated above and in the third line, we have used the defining

property of f1,1 functions,

f1,1
v,2 [N ]

(

V (c′)
)

= f1
(

V (c′)
)

(68)

if v /∈ V (c′).

The only case where LHS is non-trivial is given by,

case 2b : vA ∈ V (φc̃A,φ·c̃A · cA). (Recall that vA ∈ V (φ · c̃A) by definition.)
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In this case, we can start off with the second line in (67) and evaluate the LHS.

LHS =
(

(f ◦ φφ·c̃,c̃)
1,1
vA,2 [N ]

(

V (φc̃A,φ·c̃A · vA)
)

− (f ◦ φφ·c̃,c̃)
1,1
vA,3 [N ]

(

V (φc̃A,φ·c̃A · vA)
)

)

= (f ◦ φφ·c̃,c̃)
1,1
vA,2 [N ]

(

vA, V ((φc̃A,φ·c̃A · vA)− {vA}
)

− (f ◦ φφ·c̃,c̃)
1,1
vA,3 [N ]

(

vA, V ((φc̃A,φ·c̃A · vA)− {vA}
)

(69)

Here without loss of generality we have assumed that the first argument of f1 ◦ φφ·c̃,c̃ is vA.

Notice that as φc̃A,φ·c̃A · cA ∈ φc̃,φ·c̃ · [c̃]1 , the Lemma (A.1) in the appendix tells us that c̃A = c̃. We can now

use (7) in the above equation along with the fact that c̃A = c̃ and get

LHS = N(vA, {xvA}
φ·c̃)λ(~nφ·c̃

vA ) [V a
2 (vA, c̃)− V a

3 (vA, c̃)]
∂

∂(xφ·c̃
vA

)a

(

φ∗φ·c̃,c̃f
)

(vA, {.,.,.})
(70)

Recall that the components of quantum-shift V a
i (vA, c̃) are evaluated in the co-ordinate chart {xvA}

φ·c̃ which is

centered at vA and is obtained by the push-forward of {xv0
A
}c̃

0

centered at a vertex v0A ∈ V (c̃0). Thus components

of ~V (vA, c̃) in {xvA}
c̃ are equal to the components of ~V (v0A, c̃

0) in the co-ordinate system {xv0
A
}c̃

0

. Using this, above

equation simplifies to,

LHS = N(vA, {xvA}
φ·c̃)λ(~nc̃0

v0
A

)
[

V a′

2 (v0A, c̃
0) − V a′

3 (v0A, c̃
0)
]

∂

∂(xφ·c̃

v0
A

)a′

(

φ∗c0,φ·c̃ ◦ φ
∗
φ·c̃,c̃f

)

(v0A, {.,.,.})

LHS = N(vA, {xvA}
φ·c̃)λ(~nc̃0

v0
A
)
[

V a′

2 (v0A, c̃
0) − V a′

3 (v0A, c̃
0)
] ∂

∂(xφ·c̃
v0
A

)a′

(

φ∗c0,c̃f
)

(v0A, {.,.,.})
(71)

In the above equations we have also explicitly displayed the dependence of density-weighted lapse on co-ordinate

system.

We now evaluate the RHS in (64)

RHS =
(

Ĥ1[(φc̃,φ·c̃)
∗N ]Ψf1

[c̃]1

)

|cA〉 (72)

As the only vertex in V (φ · c̃A) which is inside the support of N is vA, it implies that the only vertex in V (c̃A)

which falls inside the support of (φc̃,φ·c̃)
∗N is φ−1 · vA

As before we analyze two cases (Case 1) and (Case 2) separately.

Case 1 :

Recall that case-1 corresponds to c̃A 6= c̃ in which case it is easy to see that

RHS =
∑

v ∈ V (c̃)

(

Ψ
f1,2
v [φ∗N ]

[c̃]1
− Ψ

f1,3
v [Φ∗N ]

[c̃]1

)

|cA〉 = 0 = LHS (73)

Case 2 :

This is the complementary case where c̃A = c̃.

While analyzing LHS in case-2, we specialized to the situation where the only vertex in V (φ · c̃) = V (φ · c̃A) which

is inside the support of N is vA. Clearly this implies that the only vertex in V (c̃A) = V (c̃) which lies in the

support of φ∗N is φ−1 · vA. In this case, RHS is given by,

RHS =
(

f1,2
φ−1·vA

(

V (cA)
)

− f1,3
φ−1·vA

(

V (cA)
)

)

(74)
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As in the case of evaluation of LHS, this case can be further analyzed by looking at to sub-cases (case-2a) and

(case-2b) separately.

case 2a : vA /∈ V (φc̃A,φ·c̃A · cA).

As V is a diffeomorphism equivariant map, we have

φφ·c̃A,c̃A · vA /∈ V (cA)

=⇒ φ−1 · vA /∈ V (cA)

The second line in the above equation needs and explaination.

As vA ∈ V (φc̃A,φ·c̃A · cA) but vA /∈ V (φc̃A,φ·c̃A · cA), it is clear that vA ∈ V (φ · c̃A). But on V (φ · c̃A),

φφ·c̃A,c̃A = φ−1, which is used in the second line of the above equation.

However if φ−1 · vA /∈ V (cA) we have

RHS =
(

f1,2
φ−1·vA

(

V (cA)
)

− f1,3
φ−1·vA

(

V (cA)
)

)

=
(

f
(

V (cA)
)

− f
(

V (cA)
))

= 0
(75)

Whence even in this case we get

LHS = RHS

we are finally left with the final and only non-trivial case case-2b.

Case 2b : vA ∈ V (φc̃A,φ·c̃A · cA).

An argument similar to the one given above (75) leads us to conclude that φ−1 · vA ∈ V (cA). Whence in this

case, RHS is given by,

RHS =
(

f1,2
φ−1·vA

(

V (cA)
)

− f1,3
φ−1·vA

(

V (cA)
)

)

=
(

f1,2
φ−1·vA

(

φ−1 · vA, V (cA)− {φ−1 · vA}
)

− f1,3
φ−1·vA

(

φ−1 · vA, V (cA)− {φ−1 · vA}
)

)

RHS = (φc̃,φ·c̃)
∗N(φ−1vA, {xφ−1·vA}

c̃A)λ(~nc̃A
φ−1vA

)
[

V a
2 (φ

−1vA, c̃)− V a
3 (φ

−1vA, c̃)
]

(

∂

∂(xc̃Aφ−1·vA
)a
f

)

(φ−1vA, .,.,.)

(76)

Once again (in exact analogy with the way we arrived at (71)) we can use the following three observations to “pull

back” the above equation to (v0A, c̃
0).

(1) ~V2(φ
−1 · vA, c̃) is obtained by push-forward of ~V2(v

0
A, c̃

0) using (φc̃0,c̃)∗, it implies that the (ordered set of)

components V a′′

(φ−1vA, c̃) in the preferred co-ordinate system {xφ−1·vA}
c̃ := (φc̃0,c̃)∗{xv0

A
}c̃

0

centered at φ−1 · vA

are same as the components V a(v0A, c̃
0) of ~V (v0A, c̃

0) in the co-ordinate system {xv0
A
}c̃

0

.

(2) We also have, by construction λ(~nc̃A
φ−1vA

) = λ(~nc̃0

v0
A

).
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(3)
∂

∂(xc̃

φ−1
·vA

)a
f(φ−1vA, .,.,.) =

=

(

(φc̃0,c̃)∗
∂

∂(xc̃0

v0
A

)a

)

f(φ−1vA, .,.,.)

= ∂

∂(xc̃0

v0
A

)a

(

φ∗c̃0,c̃f
)

(v0A, .,.,.) ∀ a

(77)

Whence

RHS = (φc̃,φ·c̃)
∗N(φ−1vA, {xφ−1·vA}

c̃A)λ(~nc̃0

v0
A
)
[

V a
2 (v

0
A, c̃

0)− V a
3 (v

0
A, c̃

0)
]

(

∂

∂(xc̃
0

v0
A

)a
φ∗c̃0,c̃f

)

(v0A, .,.,.)

(78)

We can now compare the above equation with (71) and see that the only possible source of mismatch arises from

the evaluation of Lapse. The dependence of lapse in (71) and (78) are respectively given by

N(vA, {xvA}
φ·c̃) = N

(

vA, (φc̃0,φ·c̃)∗){xv0
A
}c̃

0
)

(φc̃,φ·c̃)
∗N(φ−1vA, {xφ−1·vA}

c̃A) = N(vA, (φc̃,φ·c̃)∗{xφ−1·vA}
c̃A) = N(vA, φ∗(φc̃0,c̃)∗{xv0

A
}c̃

0

) = N
(

vA, (φc̃0,φ·c̃)∗){xv0
A
}c̃

0
)

Thus even for Case-2b we see that LHS equals the RHS.

Whence we conclude that
(

Û(φ)Ĥ1[N ]′Û(φ−1)
)

Ψf1

[c̃]1
= Ĥ1[(φc̃,φ·c̃)

∗N ]Ψf1

[c̃]1
(79)

5.2 Ĥ2[N ]Ψf1

[c]1

In this section we will like to show that
(

Û(φ)′Ĥ(2)[N ]′Û(φ−1)′Ψf1

[c̃1]1

)

(|cA〉) =
(

Ĥ(2)[(φc̃,φ·c̃)
∗N ]′Ψf1

[c̃1]1

)

(|cA〉) (80)

∀ |cA〉 ∈ Hkin, ∀ φ ∈ Diff(Σ) and ∀ N .

Once again without loss of generality we assume that the only WEO vertices which belong to V (cA) are of

“type-1” (i.e. all the edges incident on any WEO vertex is only charged under U(1)1), as otherwise both sides are

trivially zero.

We first compute the LHS using (51), (54) and (8)

LHS =
(

Û(φ)′Ĥ2[N ]′Û(φ−1)′Ψf1

[c̃]1

)

|cA〉

=
(

Ĥ2[N ]′Û(φ−1)′)Ψf1

[c̃]1

)

|φc̃A,φ·c̃A · cA〉

=
(

Ĥ2[N ]′Ψ
f1◦φφ·c̃,c̃

φc̃,φ·c̃·[c̃1]

)

|φc̃A,φ·c̃A · cA〉

=
∑

v∈V (c̃)

(

Ψ
(f◦φφ·c̃,c̃)

1,2
v,1[N ]

φc̃,φ·c̃·[c̃1]
− Ψ

(f◦φφ·c̃,c̃)
1,2
v,3[N ]

φc̃,φ·c̃·[c̃1]

)

|φc̃A,φ·c̃A · cA〉

(81)
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Further analysis of above equation can be divided into following two (mutually exclusive and exhaustive) cases

exactly as in the previous section.

Case 1 : φc̃A,φ·c̃A · cA /∈ φc̃,φ·c̃ · [c̃1]

⇔ φ · c̃A 6= φ · c̃ ⇔ c̃A 6= c̃ (82)

In this case it is clear that LHS = 0.

Case 2 : φc̃A,φ·c̃A · cA ∈ φc̃,φ·c̃ · [c̃1]

⇔ φ · c̃A = φ · c̃ ⇔ c̃A = c̃ (83)

In this case,

LHS =
∑

v∈V (c̃)

(

(f ◦ φφ·c̃,c̃)
1,2
v,2 [N ]

(

V (φc̃A,φ·c̃A)
)

− (f ◦ φφ·c̃,c̃)
1,2
v,3 [N ]

(

V (φc̃A,φ·c̃A)
)

)

(84)

For the sake of pedagogy, and without any loss in generality we again assume (this assumption was also made in

the previous section) that the only vertex in V (φ · c̃) = V (φ · c̃A) which falls inside the support of N is a vertex

vA.

In this case Case 2 gets further sub-divided into following two complementary cases.

case 2a : φc̃A,φc̃A · cA does not contain an EO vertex (vA)
E
δ of type-(1, 2) in the neighbourhood of vA.

In this case the vertex functions are unchanged, and

LHS = (f ◦ φφ·c̃,c̃)
1,2
vA,2 [N ]

(

V (φc̃A,φ·c̃A)
)

− (f ◦ φφ·c̃,c̃)
1,2
vA,3 [N ]

(

V (φc̃A,φ·c̃A)
)

=
(

f
(

V (φc̃A,φ·c̃A)
)

− f
(

V (φc̃A,φ·c̃A)
))

= 0

(85)

case 2b : φc̃A,φc̃A · cA contains an EO vertex (vA)
E
δ of type (1, 2) in the neighbourhood of vA for some δ.

In this case we can use (9a) and (9b) to get,

LHS = (f ◦ φφ·c̃,c̃)
1,2
vA,2 [N ]

(

V (φc̃A,φ·c̃A)
)

− (f ◦ φφ·c̃,c̃)
1,2
vA,3 [N ]

(

V (φc̃A,φ·c̃A)
)

=

[

λ(~nvA
c̃ ) V a

1 (vA, φ · c̃) ∂

∂(xφ·c̃
vA

)a
N(vA, {xvA}

φ·c̃) (f ◦ φφ·c̃,c̃)
(

(vA)
E
δ (1, 3), V (φc̃A,φ·c̃A)− {(vA)

E
δ (1, 2)}

)

− λ(~nvA
c̃ ) V a

3 (vA, φ · c̃)∇aN(vA, {xvA}
φ·c̃) (f ◦ φφ·c̃,c̃)

(

(vA)
E
δ (1, 1), V (φc̃A,φ·c̃A)− {(vA)

E
δ (1, 2)}

)]

(86)

LHS =
[

λ(~nvA
c̃ ) V a

1 (vA, φ · c̃) ∂

∂(xφ·c̃
vA

)a
N(vA, {xvA}

φ·c̃) (f ◦ φφ·c̃,c̃)
(

(vA)
E
δ (1, 3), V (φc̃A,φ·c̃A)− {(vA)

E
δ (1, 2)}

)

− λ(~nvA
c̃ ) V a

3 (vA, φ · c̃)∇aN(vA, {xvA}
φ·c̃)f

(

(φ−1 · vA)
E
δ (1, 1), V (cA)− {(φ−1 · vA)

E
δ (1, 2)}

)]

(87)
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where in the last line we have used the key property of our new representation. If (vA)
E
δ (1, 2) is an EO vertex in

V (φc̃,φ·c̃ · cA) which is associated to vA (which is in turn a vertex in V (φ · c̃A) then,

φφ·c̃,c̃ · (vA)
E
δ (1, 2) = (φ−1 · vA)

E
δ (1, 2) (88)

that is, φφ·c̃,c̃ maps it to an EO vertex in V (φφ·c̃,c̃) which is associated to φ−1 · vA ∈ V (c̃).

We now analyze the RHS and show that in all the three cases ( (case 1), (case 2a), (case 2b) ), it matches

the LHS answers given above.

RHS =
(

Ĥ2[(φc̃,φ·c̃)
∗N ]Ψf1

[c̃]1

)

|cA〉 (89)

It is clear that in the first case, (case 1), as c̃ 6= c̃A clearly

RHS = 0

Now consider (case 2a).

Case 2a : φc̃A,φ·c̃A ċA ∈ φc̃,φ·c̃ · [c̃1]

⇔ c̃ = c̃A
(90)

But φc̃A,φc̃A · cA does not contain an EO vertex (vA)
E
δ of type-(1, 2) in the neighbourhood of vA. Where vA is the

only vertex of φ · c̃ which lies inside the support of N . Obviously this implies that the only vertex of c̃ which lies

inside the support of φ∗c̃,φ·c̃N is φ−1 · vA.

Now notice that as as the EO structure associated to any charge-network c is preserved under the φc̃,φ·c̃ for any

diffeomorphism φ (as demonstrated in equation (47)), cA does not contain an EO vertex of type-(1, 2) in the

nighrbourhood of φ−1 · vA, whence in this case

RHS = f1,2
φ−1·vA,2[(φc̃,φ·c̃)

∗N ]
(

V (cA)
)

− f1,2
φ−1·vA,3[(φc̃,φ·c̃)

∗N ]
(

V (cA)
)

= 0 (91)

Recall that even the LHS was trivial in this case.

We now turn to the remaining case, (case 2b) for which LHS was non-trivial. For the benefit of reader, we recall

the conditions defining this case again.

case 2b : φc̃A,φc̃A · cA contains an EO vertex (vA)
E
δ of type-(1, 2) in the neighbourhood of vA for some δ.

Once again, using equation (47) we see that cA contains an EO vertex (φ−1 ·vA)
E
δ of type-(1, 2) in the neighborhood

of φ−1 · vA for the same δ. Hence in this case, RHS is given by,

RHS = f1,2
φ−1·vA,2[(φc̃,φ·c̃)

∗N ]
(

V (cA)
)

− f1,2
φ−1·vA,3[(φc̃,φ·c̃)

∗N ]
(

V (cA)
)

=

[

λ(~nφ−1·vA
c̃ ) V a

1 (φ
−1 · vA, c̃)(

∂
∂(xc̃

φ−1
·vA

)a
)φc̃,φ·c̃)

∗N(φ−1 · vA, {xφ−1·vA}
c̃)

f1
(

(φ−1 · vA)
E
δ (1, 3), V (cA)− {(φ−1 · vA)

E
δ (1, 2)}

)

−λ(~nφ−1·vA
c̃ ) V a

3 (φ−1 · vA, c̃)(
∂

∂(xc̃

φ−1
·vA

)a
)(φc̃,φ·c̃)

∗N(φ−1 · vA, {xφ−1·vA}
c̃)

f1
(

(φ−1 · vA)
E
δ (1, 1), V (cA)− {(φ−1 · vA)

E
δ (1, 2)}

)]

(92)
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We can use
λ(~nφ−1·vA

c̃ ) = λ(~nvA
φ·c̃)

V a
i (φ

−1 · vA, c̃) = V a
i (vA, φ · c̃) ∀ a, i

∂
∂(xc̃

φ−1
·vA

)a
= (φφ·c̃,c̃)∗

∂

∂(xφ·c̃
vA

)a

(93)

to simplify (92)

RHS =

[

λ(~nvA
φ·c̃) V

a
1 (vA, φ · c̃)

(

∂

∂(xφ·c̃
vA

)a

)

(φ∗φ·c̃,c̃φc̃,φ·c̃)
∗N(vA, {xvA}

φ·c̃)

f1
(

(φ−1 · vA)
E
δ (1, 3), V (cA)− {(φ−1 · vA)

E
δ (1, 2)}

)

−λ(~nvA
φ·c̃) V

a
3 (vA, φ · c̃)

(

∂

∂(xφ·c̃
vA

)a

)

(φ∗φ·c̃,c̃φc̃,φ·c̃)
∗N(vA, {xvA}

φ·c̃)

f1
(

(φ−1 · vA)
E
δ (1, 1), V (cA)− {(φ−1 · vA)

E
δ (1, 2)}

)]

RHS = λ(~nvA
φ·c̃)

[

V a
1 (vA, φ · c̃)

(

∂

∂(xφ·c̃
vA

)a

)

N(vA, {xvA}
φ·c̃)

f1
(

(φ−1 · vA)
E
δ (1, 3), V (cA)− {(φ−1 · vA)

E
δ (1, 2)}

)

− V a
3 (vA, φ · c̃)

(

∂

∂(xφ·c̃
vA

)a

)

N(vA, {xvA}
φ·c̃)

f1
(

(φ−1 · vA)
E
δ (1, 1), V (cA)− {(φ−1 · vA)

E
δ (1, 2)}

)]

(94)

On comparing (94) with (87) we conclude that even in this case (case 2b)

LHS = RHS

Whence, we finally have

Û(φ)′Ĥ(2)[N ]′Û(φ−1)′Ψf1

[c̃1]1
= Ĥ(2)[(φc̃,φ·c̃)

∗N ]′Ψf1

[c̃1]1
(95)

∀ φ.

One can similarly show that

Û(φ)′Ĥ(3)[N ]′Û(φ−1)′Ψf1

[c̃1]1
= Ĥ(3)[(φc̃,φ·c̃)

∗N ]′Ψf1

[c̃1]1
(96)

∀ φ.

Using (79), (95) and (96) we see that

Û(φ)′Ĥ [N ]′Û(φ−1)′Ψf1

[c̃1]1
= Ĥ [(φc̃,φ·c̃)

∗N ]′Ψf1

[c̃1]1
(97)

∀ φ.

It is straightforward to generalize this result to Ψfi

[c̃]i
∀ i.

Above result, in conjunction with (61) and result of [1] shows that we have a representation of Dirac algebra on

VLMI in the loop quantized 2 + 1 dimensional U(1)3 theory.
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6 Spectrum of the theory

The new representation of Diff(Σ) on VLMI which was a crucial ingredient in establishing the diffeomorphism

covariance of H [N ] required us to introduce certain auxiliary structures. The choice of reference charge-networks

for each gauge orbit [c̃]diff

We analyze the spectrum of the theory in order to probe the viability of new representation for Diff(Σ). Let

us try to find a simplest class of states in VLMI which are solutions to Ĥ [N ]. Consider a class of states of the form

|Φ〉 =
∑N

I=1

∑3
m=1

[

a
(m)
I Ψ

(fI )
m

[c̃I ]m

]

(98)

where 1 ≤ N < ∞. This is a fairly large class of states in which we look for states which satisfy

3
∑

i=1

Ĥi[N ]|Φ〉 = 0 (99)

∀ N . The resulting equation can be written in a condensed form as,
∑3

i=1 Ĥ
i[N ]|Φ〉 =

∑N
I=1

∑

v∈V (c̃I)

∑3
i,j=1 a

i
I

[

ǫijkΨ
(fI)

i,i
v,j [N ]

[c̃I ]i
+ ǫijk

(

Ψ
(fI )

i,j

v,k
[N ]

[c̃I ]i
− Ψ

(fI)
i,j
v,i[N ]

[c̃I ]i

)]

(100)

From here it is easy to see that, in the class of states given in (98) there is a subset obtained by choosing fI =

constant and a1I = a2I = a3I ∀ I which lie in the kernel of the Hamiltonian constraint. This result is not

completely expected a priori as action of Hj [N ] on Ψfk

[c̃]k
is not trivial even when the vertex function fk is taken to

be constant when j 6= k. The anti-symmetry in the internal indices in the Hamiltonian constraint (which is rather

neatly encoded in this expression) is responsible for the fact that
∑3

i=1 Ψ
fi=const
[c̃]i

lie in the kernel of Hamiltonian

constraint.

As the set [c̃]i is diffeomorphism (intact homeomorphism) invariant, we can see that (formally) identifying all the

Habitat states which are related by diffeomorphisms will yield distributions on Hkin of the type

|[Φ]〉 =
∑3

i=1

∑

[c̃′]i|c̃′ = φ·c̃ Ψ
fi=const
[c̃′]i

=
∑3

i=1

∑

c̃′ = φ·c̃ Ψ
fi=const
[c̃′]i

=
∑3

i=1

∑

c̃′ = φc̃,φ·c̃·c̃
Ψfi=const

[c̃′]i

(101)

Whence the sum over diffeomorphisms reduces to summing over the φ−maps as each [c̃]i has a unique vertex-free

state c̃ associated to it. We see this as a hint that as far as the spectrum of the theory is concerned, summing over

all diffeomorphisms might be equivalent to summing over the selected set of diffeomorphisms as dictated by the

new representation.

7 Conclusion and outlook

In this paper, we continued our construction of a representation of Dirac algebra in quantum U(1)3 gauge theory

which was initiated in [1]. We considered the Hamiltonian constraint Ĥ [N ] defined in [1] and constructed a
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representation of the Diffeomorphism group on the LMI-habitat VLMI such that Û(φ), Ĥ [N ] satisfy the off-shell

closure condition. In contrast to the original Hamiltonian constraint of Thiemann (constructed remarkably for

the case of four dimensional LQG) where diffeomorphism covariance followed as a result of, (i) A diffeomorphism

covariant choice of (state dependent) triangulation, (ii) By assigning state dependent neighborhoods to each vertex

of the spin-network such that this assignment was diffeomorphism invariant ; we had to introduce several new

ingredients not least of which is a new representation of the Diffeomorphism group. From the point of view of Hkin

this representation is completely ad-hoc (and not even unitary !), however this is no longer relevant to us as in our

scheme, the “kinematical” arena (the space on which quantum constraints are defined) is played out by VLMI . It

is here where this representation is unitary with respect to the canonical inner product.

In addition to the new representation for Diff(Σ) we also introduced a notion of state-dependent atlas on Σ.

Roughly speaking the idea is to fix an atlas U(Σ, c̃0) for each reference charge-net c̃0 ( one reference charge

network associated to each diffeomorphism-invariant orbit [c̃]diff of WEO vertex-free charge-networks.) and then

for any c̃′ ∈ [c̃]diff we defined an atlas U(Σ, c̃′) associated to c̃′ by pushing forward U(Σ, c̃0) using φc̃0,c̃′ . The

new representation together with the state dependence of co-ordinate charts ensured that extra-ordinariness of a

vertex is an diffeomorphism invariant notion. This was crucial in establishing diffeomorphism covariance of the

Hamiltonian constraint.

The use of new representation of the diffeomorphism group may seem worrisome as the canonical representation

used so far in LQG has been analyzed in great detail and whose solution lead to generalized knot classes. In order

to analyze the validity of the new representation we considered solving the Hamiltonian constraint in VLMI and

ask if the states obtained by “formally” averaging over all diffeomorphisms would agree with states obtained by

averaging over the preferred set. As we saw, for the 2 + 1 dimensional theory, these results do in fact match for

a subspace of kernel that we computed in section (6). This merely represents a small check on the validity of the

new representation of DIff(Σ) on VLMI . The issue however needs further investigation. As we have seen, the

requirement that Hamiltonian constraint be diffeomorphism covariant on VLMI is quite a stringent requirement

and certainly reduces the vast amount of ambiguity which was present in quantization of Ĥ [N ] presented in [1].

The main source of ambiguity in the definition of Ĥ [N ] was in the determination of quantum shift vectors. As

the definition of quantum shift is regularization dependent, in principle one can associate to each WEO-vertex free

charge network c̃ a different regularization scheme for computing the quantum shift. However as we saw above,

diffeomorphism covariance of Ĥ [N ] requires determination of quantum shift only on reference charge-nets in each

diffeomorphism invariant orbit. For any other charge-net the quantum shift vectors are uniquely determined via

push-forwards.

Perhaps the most un-satisfactory part of our construction is that our final definition of quantum constraints (or

finite transformations generated by them) depends on various auxiliary structures. We list them below.

(1) The choice of reference charge-network c̃0 in each orbit of WEO-vertex free charge nets.

(2) The choice of the subcategory in [c̃]diff or equivalently choice of set of diffemorphisms φc̃0,c̃′ associated to each

diffeomorphism invariant orbit.

(3) The choice of co-ordinate atlas U(Σ, c̃0) for each c̃0.

These structures can also be thought of as the data parametrizing quantization ambiguities which are input in the

definition of quantum constraints.

A key open question is if the use of this auxiliary structures is viable. The final answer to this question can only
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be obtained by looking at expectation value of observables in the physical Hilbert space which should not depend

on any ad-hoc intermediate structures.

We believe that the work we have done here admits a possibility of generalization to Euclidean Quantum gravity.

An extremely important aspect to keep in mind here is that the geometric action of Hamiltonian constraint in

SU(2) case can also be understood in terms of phase-space dependent diffeomorphism on the dynamical fields

[15]. In light of this result one could seek a quantization of Hamiltonian constraint in SU(2) theory with the key

lesson being provided by equation (100). The structure of internal indices show a tempting possibility of how the

extension to SU(2) may be possible.

In any event we believe that some of the lessons we have learnt here as well as in [1] together with the lessons learnt

in ([8], [16]) will have implications in defining quantum dynamics in canonical Loop Quantum Gravity.
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Appendix

In this Appendix we prove a lemma which is used crucially in section (5.1).

Lemma A.1 : Let c̃A, c̃ be WEO-vertex free states and let cA ∈ [c̃A]i, c ∈ [c̃]i. If for any diffeomorphism φ

φc̃A,φ·c̃A · cA ∈ φc̃,φ·c̃ · [c̃]i (102)

then c̃A = c̃.

Proof :

Without loss of generality we assume that i = 1. We will also assume that c̃ has only one WE vertex. That is, ∃ a

v0 ∈ V (c̃) such that (v0, v
′
0) is the WEO pair in c with v′0 being WE vertex of type-1.

We also recall some notations from Section 2. (1) As cA ∈ [c̃A]1

cA = (cA1, c̃A2, c̃A3) (103)

(2) Any c′ ∈ φc̃,φ·c̃ · [c̃]1 is of the form

c′ = (φc̃,φ·c̃ · c
′
1, φ · c̃2, φ · c̃3) (104)

Hence we have
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c̃Ai = c̃i for i = 2, 3 (105)

Thus we have the following

φc̃A,φ·c̃A(cA1, c̃2, c̃3) = φc̃,φ·c̃(c1, c̃2, c̃3)

(c̃A1, c̃2, c̃3) ∈ [c̃]diff , c̃A1 6= c̃1
(106)

As γ(c̃A1 ∪ c̃2 ∪ c̃3) ⊂ γ(cA1 ∪ c̃2 ∪ c̃3), ∃ a (c1, c̃2, c̃3)| γ(c1 ∪ c̃2 ∪ c̃3)| ⊂ γ(c1 ∪ c̃2 ∪ c̃3) such that

φc̃A,φ·c̃A(c̃A1, cA2, cA3) = φ · (c̃1, c̃2, c̃3) = φc̃,φ·c̃(c1, c̃2, c̃3) (107)

where (as a trivial consequence of above equation) we have, (1) (c1, c̃2, c̃3) is gauge-invariant.

(2) (c1, c̃2, c̃3) has no WE vertex.

But from the above lemma we know that there is a unique charge-network contained associated to (c1, c̃2, c̃3) which

satisfies above two conditions, and that is c̃. Whence we have,

φc̃A,φ·c̃A(c̃A1, c̃2, c̃3) = φ · (c̃A1, c̃2, c̃3) =

φc̃,φ·c̃(c1, c̃2, c̃3) = φc̃,φ·c̃ · c̃ = φ · c̃ (108)

Hence

c̃A = c̃ (109)

q.e.d
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