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Recently, two of us have argued that non-Kerr black holes in gravity theories different from
General Relativity may have a topologically non-trivial event horizon. More precisely, the spatial
topology of the horizon of non-rotating and slow-rotating objects would be a 2-sphere, like in Kerr
space-time, while it would change above a critical value of the spin parameter. When the topology
of the horizon changes, the black hole central singularity shows up. The accretion process from a
thin disk can potentially overspin these black holes and induce the topology transition, violating
the Weak Cosmic Censorship Conjecture. If the astrophysical black hole candidates are not the
black holes predicted by General Relativity, we might have the quite unique opportunity to see their
central region, where classical physics breaks down and quantum gravity effects should appear. Even
if the quantum gravity region turned out to be extremely small, at the level of the Planck scale, the
size of its apparent image would be finite and potentially observable with future facilities.

I. INTRODUCTION

General Relativity (GR) is our current theory of grav-
ity and up to now there is no clear observational evi-
dence in disagreement with its predictions. Nevertheless,
the theory has been tested only for weak gravitational
fields, where gtt ≈ −(1 + φ) and |φ| � 1 [1]. There
are instead physically interesting situations in which GR
breaks down and predicts space-time singularities and
regions with closed time-like curves. Here, (unknown)
quantum gravity effects are thought to become impor-
tant. According to the Weak Cosmic Censorship Con-
jecture (WCCC) [2], these quantum gravity regions are
always hidden behind an event horizon and we would
have no chances to observe them. However, the assump-
tion of the WCCC is essentially motivated to assure the
validity of classical gravity in any astrophysical situation,
with the guess that new physics can never be seen by a
distant observer. For the time being, there is no funda-
mental principle requiring that [3].

In 4-dimensional GR, uncharged rotating black holes
(BHs) are described by the Kerr solution, which is com-
pletely specified by two parameters, the mass M and the
spin parameter a. The condition for the existence of the
event horizon is a ≤ M , while for a > M there is no
BH but a naked singularity, which is forbidden by the
WCCC1. While it is not yet clear if naked singularities
can be created in Nature [4], any attempt to make a star
collapse with a > M [5], as well as to overspin an already
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existing Kerr BH and get a naked singularity [6], seems
to be doomed to fail. In Ref. [7], two of us considered
the loop-inspired BHs proposed in [8] and the non-GR
BHs introduced in [9]. In addition to M and a, these
space-times have at least one more parameter: it can be
seen as a “deformation parameter” and it produces de-
viations from the Kerr geometry. It was shown that the
spatial topology of the horizon of these objects is a 2-
sphere (like for a Kerr BH) in the non-rotating and slow-
rotating case, while it changes above a critical value of
a/M . Our conjecture is that such a phenomenon may be
common for non-Kerr BHs. The basic mechanism is the
following. A Kerr BH with a/M < 1 has an outer hori-
zon with radius r+ and an inner horizon with radius r−.
As a/M increases, r+ decreases and r− increases. When
a/M = 1, there is only one horizon (extremal black hole
with r+ = r−) and, for a/M > 1, there is no horizon.
For the BHs studied in [7], the outer and the inner hori-
zons have not the same shape. So, when a/M increases,
the two horizons still approach each other, but eventually
merge forming a single horizon with non-trivial topology.
After the topology transition, the BH central singularity
(or the high curvature region if the singularity is solved,
as it occurs at least for some loop-inspired BHs) is not
hidden behind the horizon any more. Interestingly, such
a rapidly rotating BHs can be easily created: it is just
necessary a thin accretion disk [7].

II. BLACK HOLES IN ALTERNATIVE
THEORIES OF GRAVITY

In this paper, we consider the BH metric proposed in
Ref. [9]. However, as emphasized in [7], the phenomenon
we are going to study should depend only marginally on
this choice and be common to rapidly-rotating non-Kerr
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BHs. Together with the loop-inspired BH solution in [8],
they are the only known 4D electrically-neutral non-Kerr
metrics in analytical form valid beyond the non-rotating
and slow-rotating approximation. The non-zero metric
coefficients, in Boyer-Lindquist coordinates, are [9]2

gtt = −
(

1− 2Mr

ρ2

)
(1 + h) ,

gtφ = −2aMr sin2 θ

ρ2
(1 + h) ,

gφφ = sin2 θ

[
r2 + a2 +

2a2Mr sin2 θ

ρ2

]
+

+
a2(ρ2 + 2Mr) sin4 θ

ρ2
h ,

grr =
ρ2(1 + h)

∆ + a2h sin2 θ
, gθθ = ρ2 , (2.1)

where

ρ2 = r2 + a2 cos2 θ ,

∆ = r2 − 2Mr + a2 ,

h =

∞∑
k=0

(
ε2k +

Mr

ρ2
ε2k+1

)(
M2

ρ2

)k
. (2.2)

Assuming that the function h is infinitely time differ-
entiable, the metric has an infinite number of free param-
eters εi and the Kerr solution is recovered when all these
parameters are set to zero. As shown in [9], ε0 = ε1 = 0,
in order to recover the correct Newtonian limit, while So-
lar System experiments constrain ε2 at the level of 10−4.
For the sake of simplicity, in the rest of the paper we
restrict our attention to the case in which ε3 is the only

RQG/M ∆y/M

0.1 0.444

0.01 0.412

0.001 0.410

TABLE I. Vertical size of the primary image at x = 0 of
the quantum gravity region of a black hole with a/M = 1.18
and ε3 = −1.0. The viewing angle of the distant observer is
i = 5◦. RQG is the radius in Boyer-Lindquist coordinates of
the quantum gravity region. See text for details.

2 As suggested in Ref. [10], a metric of this kind can be solution of
a particular non-local generalization of the Einstein’s equations:

Rµν −
1

2
gµνR = 8πGNO(�/Λ2)Tµν ,

where O(�/Λ2) is a generic non-local function of the covariant
D’Alembertian operator and Λ is the energy scale of the modified
gravity.

deformation parameter and εi = 0 for i 6= 3. In this case,
as discussed in [7], current estimates of the mean radia-
tive efficiency of AGN seem to require −1.1 < ε3 < 25,
but such a bound has to be taken with caution.

III. DIRECT IMAGING BLACK HOLES WITH
NON-TRIVIAL TOPOLOGY

The geometry around a BH can be probed by observ-
ing the direct image of its accretion flow, as already ex-
plored in [11]. For a review on current and near future
capabilities of Very Long Baseline Interferometry (VLBI)
experiments, see e.g. [12] and references therein. If the
gas of accretion is optically thin (which is always possible
at sufficiently high frequencies) and geometrically thick,
one sees the “shadow”; that is, a dark area over a brighter
background [13]. While the intensity map of the image
strongly depends on the specific accretion model, i.e. on
the configuration of the system and on complicated as-
trophysical processes, the contour of the shadow is deter-
mined only by the geometry of the space-time: basically,
it is the photon capture surface as seen by a distant ob-
server. For rotating BHs, the shape of the shadow is not
symmetric with respect to the rotation axis, because the
capture radius for corotating photons is smaller than the
one for counterrotating photons. The effect is more evi-
dent for fast-rotating BHs and observers with a viewing
angle i = 90◦, while it disappears for non-rotating BHs
or observers along the rotation axis.

In this section, we consider two specific cases; this
is enough to illustrate the qualitative features of the
BHs described by the metric (2.1). The first BH has
a/M = 1.18 and ε3 = −1.0. As ε3 < 0, the object is
more oblate than a Kerr BH. a/M = 1.18 corresponds
to the equilibrium value in the case the BH is accreting
from a thin disk on the equatorial plane, see Table II
in [7]. The equilibrium spin parameter is indeed always
larger than M when a compact object is more oblate
than a Kerr BH [14]. The horizon of this BH is defined
by grr = 0; that is:

∆ + a2h sin2 θ = 0 (3.1)

and it is shown in the left panel of Fig. 1. As already
pointed out in Ref. [7], rapidly-rotating oblate BHs have
a shape similar to a donut. However, in the specific case
of the metric (2.1), there is no central hole: the event
horizon extends up to r = 0, where there is a naked
singularity. As second example, we consider a BH with
a/M = 0.87 and ε3 = 1.0. As in the previous case, this
value of a/M corresponds to the one of equilibrium when
the BH is accreting from a thin disk on the equatorial
plane. When ε3 > 0, the object is more prolate than
a Kerr BH and its horizon, still given by Eq. (3.1), is
formed by two disconnected horizons, each of which with
spatial topology of a 2-sphere, as shown in the right panel
of Fig. 1.
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Fig. 2 shows the contour of the shadow (black curve)
and the apparent images of the central singularity (in
red) of the first BH with a/M = 1.18 and ε3 = −1.0.
The viewing angle of the distant observer is i = 5◦ (left
panel), 45◦ (central panel), and 85◦ (right panel). The
BH shadow is computed by considering all the photons
crossing perpendicularly the screen of the observer and
numerically integrating backward in time the geodesic
equations for the metric (2.1). The light rays crossing
the event horizon are inside the shadow, while the ones
coming from infinity are outside. The resolution of the
screen of the observer is 0.001 M . More details about
the computational procedure can be found in previous
papers [11]. The quantum gravity region has been mod-
eled as a ball of constant radius (in Boyer-Lindquist co-
ordinates) RQG = 0.1 M . The choice of RQG is arbitrary
here. However, as RQG decreases, the apparent size of
the quantum gravity region seems to approach a constant
value, as shown in Tab. I. Even if the size of the quan-
tum gravity region is extremely small, say of order of the
Planck scale, the size of its apparent image is finite. Such
a result is quite interesting and it may open a new way
to probe the Planck scale with astrophysical observations.

Fig. 3 shows the trajectories on the xz-plane of some
light rays coming from the quantum gravity region. The
primary image is formed by light rays traveling along
almost-straight paths, while the trajectories of the light
rays responsible for the other images are strongly bent
by the gravitational field of the BH.

Fig. 4 shows the apparent image of the second BH with
a/M = 0.87 and ε3 = 1.0. The shape of this shadow has
a very peculiar structure on the side of the corotating
photons (xobs > 0 in the central and right panel of Fig. 4)
due to the existence of two disconnected event horizons;
a similar feature has never be found for BHs and other
compact objects with trivial topology [11]. It is thus
an observational signature of this BHs with ε3 > 0 and
high spin parameter. Unlike the images in Fig. 2, here
the distant observer cannot see the central singularity at
r = 0, for any value of the viewing angle. That is due
to the presence of the two disconnected horizons, above
and below the equatorial plane.

IV. DISCUSSION

As argued in Ref. [7], rapidly-rotating non-Kerr BHs
may have a topologically non-trivial event horizon. In
this work, we have studied how astrophysical observa-
tions can test this scenario. Interestingly, when these
BHs are overspun and the topology of the horizon
changes, the BH central singularity shows up and, at least
in some cases, it can be seen by a distant observer. In the
previous section, we have shown only the apparent im-
ages of two specific cases, but this is enough to figure out
all the qualitative features. When ε3 < 0 and a/M > 1,
we can usually see the central region at r = 0, but its ap-
parent size decreases/increases for lower/higher values of

a/M . For ε3 = −1.0, a BH with a/M = 1.18 is thus the
most favorable case in a realistic context, because BHs
with higher a/M may not be created in Nature. When
ε3 > 0, the central region of the BH cannot be seen for
spin parameters not exceeding the equilibrium value of
a BH accreting from a thin disk. For higher values of
the spin parameter, the central region may be seen by a
distant observer, but these objects can unlikely be cre-
ated, as it seems to occur for a Kerr naked singularity.
On the other hand, the peculiar structure of the shape
of the shadow due to the existence of two disconnected
horizons is common to all these BHs. However, it is more
evident for high values of a/M and ε3.

To test this scenario, it may not be strictly necessary
to observe the exact shape of the BH shadow. When
ε3 < 0, the detection of the radiation coming from the
quantum gravity region may be enough if it has peculiar
properties. Assuming that such a quantum gravity region
can emit some form of radiation, the latter has likely very
high energies, as the central region should be governed by
Planck scale physics. For instance, we could try to use
these BHs with a visible central singularity to explain
the correlation observed by the Pierre Auger experiment
between ultra high energy cosmic rays (UHECRs) and
active galactic nuclei (AGN) [15]. The observed cosmic
rays with energies above 6 · 1019 eV are definitively dif-
ficult to explain with standard acceleration mechanisms,
while here they might be produced by Planck-energy par-
ticles emitted from the quantum gravity region of AGN,
which are indeed thought to harbor at their center very
rapidly-rotating super-massive BHs.

The prediction of the BH apparent image does not
require the knowledge of specific features of the quan-
tum gravity region. We have just assumed it may emit
electromagnetic radiation. It is however definitively in-
triguing to think about the possible properties of this
region. For the time being, we do not have any reli-
able theory of quantum gravity, and therefore we can-
not know what really happens to the classical singular-
ity. However, there are a few scenarios proposed in the
literature. For instance, in the BHs inspired by Loop
Quantum Gravity [8], as well as in the ones motivated
by non-commutative geometries [16], the central singu-
larity turns out to be replaced by a Planck length size
region violating the weak energy condition. The size of
the quantum gravity region is therefore independent of
the BH mass, while the energy density changes. At least
in the case of the BHs in [16], the shape of the quantum
gravity region is similar to a ring.

Lastly, let us notice that even in GR, when the space-
time has more than four dimensions, BHs can have event
horizons with topology different from the one of the
sphere. Thus, non-trivial event horizons might be a sig-
nature of higher dimensions as well.
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FIG. 1. Event horizon of the two black holes studied in Sec. III. Left panel: black hole with a/M = 1.18 and ε3 = −1.0. Right
panel: black hole with a/M = 0.87 and ε3 = 1.0. Axes in units M = 1.

V. CONCLUSIONS

It is thought that the final product of the gravitational
collapse is a Kerr black hole and astronomers have discov-
ered several good astrophysical candidates. While there
is some indirect evidence suggesting that these objects
have really an event horizon [17], we do not yet know if
the space-time around them is described by the Kerr ge-
ometry. Recently, there has been an increasing interest in
the possibility of testing the Kerr black hole hypothesis
with present and near future experiments [11, 18].

As argued in Ref. [7], black holes with generic defor-
mations from the predictions of General Relativity may
change the topology of the horizon above a critical value
of the spin parameter. The accretion process from a thin
disk can potentially overspin these black holes and induce
the topology transition, which makes the phenomenon
astrophysically interesting. In this paper, we have dis-
cussed how such a possibility can be tested. We have
studied the propagation of light rays in these space-times
and we have computed the direct image of these objects.

Our results are summarized in Fig. 2 (for a black hole
more oblate than a Kerr one) and Fig. 4 (for a black
hole more prolate than a Kerr one). As the contour of
the shadow (the black curves in Figs. 2 and 4) is deter-
mined by the geometry of the space-time, an accurate
observation of the direct image of rapidly-rotating black
hole candidates may test this scenario. Moreover, we
have found the more exciting possibility that a distant
observer may see the central region of these black holes,
where classical physics breaks down and quantum gravity
effects should appear. The apparent images of this quan-
tum gravity region, here simply modeled as a luminous
ball of constant radius, are shown in red in Fig. 2.
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FIG. 2. Apparent image of the black hole with a/M = 1.18 and ε3 = −1.0 for a distant observer with viewing angle i = 5◦

(left panel), 45◦ (central panel), and 85◦ (right panel). The black curve is the contour of the black hole shadow. The red area
is the image of the quantum gravity region. The trajectories of the light rays A, B, C, and D around the black hole are shown
in Fig. 3. Axes in units M = 1.

FIG. 3. Trajectories on the xz-plane of the light rays A, B, C, and D of Fig. 2, for a distant observer with viewing angle i = 5◦

(left panel), 45◦ (central panel), and 85◦ (right panel). The primary image of the quantum gravity region is formed by light
rays like A, while the light rays like B, C, and D are responsible for the multiple images. Axes in units M = 1.

FIG. 4. As in Fig. 2, for the case of the black hole with a/M = 0.87 and ε3 = 1.0. Here, the distant observer cannot see the
quantum gravity region.
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