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with total spin matching the angular momentum of the spacetime.

PACS numbers:
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FRUMAM (FR 2291).

1

http://arxiv.org/abs/1212.5166v1


I. INTRODUCTION

The phase space of rotating (Kerr) isolated horizons has been characterized already in the

very early papers on isolated horizons [1]. However, its quantization in the loop quantum

gravity framework has remained elusive due to what it seemed at first a technical issue:

as a result of the presence of angular momentum (a non-trivial charge generating rigid

rotations around the symmetry axis) diffeomorphisms associated to vector fields tangent to

the horizons are not gauge symmetries of the system.

Even though this breaking of some of the gauge symmetries by the boundary conditions

has nothing pathological in itself and can be found in more familiar contexts 1, it introduces

serious problems for the quantum theory if one tries to approach the issue of quantization

using loop quantum gravity (LQG) techniques. The reason is that diffeomorphism invari-

ance is at the heart of the definition of the LQG framework. Consequently, it can only

accommodate boundary conditions that respect this fundamental symmetry.

This is apparent from the central role played by diffeomorphism invariance in the models

leading to the black hole entropy calculations for the Schwarzschild-type boundary condition.

More precisely, kinematical states of the spherically symmetric system are given by spin

network states puncturing the horizon and endowing it with an area eigenvalue within the

range [A − ǫ, A + ǫ]. The degeneracy of such kinematical states is infinite as it is labelled

by the coordinates defining the embedding of the punctures on the horizon. Physical states

are however finitely many. The reason is that, according to the standard recipe of Dirac

quantization, they are obtained by modding out gauge symmetries which in this case include

tangent diffeomorphisms to the horizons. This is crucial for the finiteness of the entropy.

This central step is not justified in the naive treatments of the rotating case. The lack of

diffeomorphism invariance in the phase space of the Kerr isolated horizon makes the usual

program inapplicable.

An approach to deal with generic quantum isolated horizons (including rotation) has

been proposed in [2]. However, the question of the fate of the diffeomorphism symmetry is

unclear in such treatment. In particular in such formulations both the leading order of the

entropy calculation as well as the logarithmic corrections remain the same as the one of a

1 Notice that this in strict analogy to the fact that generic diffeomorphisms that do not properly fall off at

infinity are not gauge symmetries of the phase space of asymptotically flat solutions of general relativity.
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non-rotating, spherically symmetric model. In this work we emphasize the central role of

diffeomorphism invariance in the construction of the model of quantum rotating horizons.

This will drastically change the nature of the admissible states to be counted in the entropy

calculation, and will make them very natural from the perspective of previously stated

intuitions about rotation in the context of LQG [5, 6]. As a consequence, the leading order

term of the black hole entropy is not modified but the logarithmic corrections are, even

in the special non-rotating case [7]. This resolves an apparent tension between different

approaches to the problem of black hole entropy calculation [8].

One can recover a manifestly diffeomorphism invariant description of the phase space of

a rotating isolated horizon by appropriately including new degrees of freedom that restore

the broken symmetry. This has been shown explicitly in [17] using vector variables. We will

adapt the same idea to the connection variable formulation presented here. In fact what we

aim at is a generalization of the Chern-Simons formulation used in the spherically symmetric

context.

However, the first naive attempt to follow this strategy fails due to the fact that, in con-

trast to the spherically symmetric case, the pull-back to the horizon of the Ashtekar-Barbero

connection does not satisfy the simple boundary condition of the form F (A) = (constant)Σ,

where Σ = e ∧ e [18]. As this boundary condition becomes the key constraint equation

for Chern-Simons theory in the non-rotating case this seems to rule out the possibility of

describing the boundary degrees of freedom in terms of a Chern-Simons theory in the ro-

tating model. Additional heuristics that seems to preclude the Chern-Simons treatment

of the rotating case comes from the natural assumption, first put forward by Krasnov [5],

that quantum states of rotating horizons with total angular momentum J should satisfy an

additional constraint taking the form J =
∑

p Jp (where Jp are the spin operators associated

to punctures of the horizon). In other words one assumes that the total angular momentum

of the black hole is made up from microscopic contributions from individual spins in the

punctures. This suggestion is certainly appealing from an intuitive perspective and from

what we know about LQG couplings to spinning matter, yet (with the exception of the sym-

metry reduced context [6]) it has not been established mathematically as far as we know.

Nevertheless, the point we want to make is that if such a constraint would be true then this

would preclude the use of a Chern-Simons formulation as in such formulations one always

obtains the closure constraint
∑

p Jp = 0 from the equations of motion.
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The two apparent difficulties evoked in the previous paragraph are nicely avoided in one

stroke as follows. We will show that, using the available structure on the Kerr isolated

horizon, one can introduce a new connection A such that by definition one has F (A ) =

(4π/k)Σ for k constant almost everywhere on the horizon (we get to this key subtlety

in a moment). If one uses A as the connection dynamical field instead of A then the

boundary symplectic structure takes the Chern-Simons form as far as the connection field

is concerned. However, on the basis of our discussion in the previous paragraph, this would

seem to contradict Krasnov’s natural intuition that the total spin contributed by the bulk

geometry Σ should be simply related to the spin of the black hole. In fact it does not. The

reason is that the transformation from A to A produces singularities of A in the north and

south poles of the horizon as defined by the symmetry axis. The equation satisfied by the

Cherns-Simons connection is

kℓ2p
4π

F (A ) =
Σ

8πγ
+
J

2
δN +

J

2
δS, (1)

where J is the macroscopic angular momentum and the delta symbols represent singularities

of the curvature at the north and south poles of the horizon as defined by the singularities

of the axisymmetric killing field. The previous constraint implies, in the quantum theory,

that the total spin contribution of spin network punctures must add up to J (modulo k/2).

Admissible states can then be depicted as in Figure 1.

The geometric picture associated with the admissible states is similar to the one advocated

in polymer models of the horizon geometry introduced in [9] and later in [10].

II. ROTATING HORIZONS

In this section we present the variables used in order to describe boundary degrees of

freedom as Chern-Simons theory. We will be able to show explicitly a classical solution in

these variables such that isolated horizon conditions imply a consistent phase space descrip-

tion. The pull-back of the Ashtekar-Barbero connection of Kerr geometry on the horizon

has been computed in [18]. Here we follow a different approach: instead of computing the

pull-back of a bulk connection in Kerr geometry we construct a connection field A
i from

the Kerr horizon data. More precisely the Chern-Simons connection A is required to satisfy

the following set of conditions that will completely fix it up to gauge transformations and
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jN = J
2

jS = J
2

FIG. 1: The admissible states of the rotating black hole are in correspondence with invariant vectors

in the Chern-Simons Hilbert space H k
CS

= Inv[j1 ⊗ j2 ⊗ · · · jn ⊗ J ]k where {ji}ni=1 are the spins

carried by spin network punctures (with arbitrary n) and there are two additional (macroscopic)

punctures at the south and north poles carrying spins J/2 respectively. The subindex k is there to

remind one that the notion of invariant space are those of the quantum group su(2)q with q fixed

by the level k.

diffeomorphisms tangent to the horizon H . First we require the equation

k

4π
F i(A ) =

1

8πγℓ2p
Σi, (2)

where k is the Chern-Simons level which is a function of the area A and the angular mo-

mentum J of the isolated horizon that will be determined in what follows, to hold. The

two-forms of the previous equation are pulled back to the horizon two-surface H . The den-

sitized triad field Σi (the pull-back of ǫijkei∧ ek to H , where ei is the co-tretrad field) is part

of the geometric data provided by the Kerr horizon geometry.

The above equation fixes the connection A up to a rotation around the internal axis

leaving Σi, seen as an internal vector, invariant. Explicitly, if A1 is also a solution of (2)

then A2 = gA1g
−1 − gdg−1 is a solution of (2) with the same Σ if g ∈ U(1)Σ ⊂ SU(2) such

that gΣg−1 = Σ. We view this as an intrinsic ambiguity in the choice of the variable A and

not a gauge transformation. In particular the bulk connection is (by definition) unaffected

by the transformation described above. Hence, we can and will exploit this freedom to fix

our variable A so that an additional condition is satisfied, namely

v⊥y(Ai − A
i)Σi = 0, (3)
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where v⊥ is the unique normal direction to the axisymmetric Killing field ψ = ∂ϕ on the

horizon. In the usual spherical local coordinates the previous condition can simply be written

as (∂θ)y(A
i − A i)Σi = 0. We also require

Lψ(A
iΣi) = 0, (4)

where, again, ψ = ∂ϕ is the axial Killing vector field on the Kerr horizon. With these

conditions the connection A is almost completely fixed by the data provided by Σ and A

of the Kerr isolated horizon. The remaining freedom is fixed by the condition

J =
1

8πγ

∫

H

ψy(Ai − A
i) Σi, (5)

where J is the total angular momentum of the spacetime. Given k, equations (2) to (5)

uniquely determine the connection A
i up to gauge transformations and tangent diffeomor-

phisms (transforming A,Σ and A ).

In order to study the properties of A i in more detail we will construct an explicit solution.

The properties of this solution discussed below are all gauge and diffeomorphism invariant.

We start with a type I connection Ai0 (see Appendix in [14])

A1
0 = cos(θ)dφ

A2
0 =

1√
2
(sin(θ)dφ+ γ̄dθ)

A3
0 =

1√
2
(γ̄ sin(θ)dφ− dθ).

The parameter γ̄ is not determined for the moment. The previous connection will be used

as a ‘seed’ for constructing the Chern-Simons connection A in what follows. The fact that

it is just the usual type I connection of [14] will guarantee that we recover the standard

connection in the limit J → 0. The parameter γ̄ labels a one-parameter family of suitable

type I SU(2) connections2. In [14] the seemingly natural choice γ = γ̄ was made. We will see

here that the inclusion of rotation gives us the means to fix this ambiguity in a more physical

way by requiring that the level of the Chern-Simons theory (computed below) vanishes in

2 This ambiguity exists in general. For a discussion see [24], and also the appendix in [15], where the

ambiguity parameter controlling it is denoted by a dimensionful quantity λ2. The type I geometry comes

with a dimensionful scale (its area) and so the ambiguity becomes natural in such a context and can be

labelled by a dimensionless parameter γ̄.
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the extremal case A = 8πJ . The disappearance of the level in the extremal case will in turn

imply that the entropy of an extremal black hole vanishes [16]. This will however have little

effect on the entropy of physical black holes no matter how close they are to the extremal

case.

The curvature of the previous connection is

F i(A0) = δi1
(γ̄2 − 1)

2
sin(θ)dθ ∧ dϕ. (6)

The solution that we are looking for can be obtained via an active diffeomorphism φW

acting on A0 sending dϕ → ∂ϕW (φ)dϕ. Such action should not be confused with a gauge

transformation as the diffeomorphism acts only on A0. The action on the type I connection

is A0 → φ∗
WA0 and it follows immediately that

F i(φ∗

WA0) = δi1
(γ̄2 − 1)

2
sin(θ)∂ϕW (φ)dθ ∧ dϕ. (7)

Now equation (2) becomes the following equation for W (ϕ)

k ∂ϕW (ϕ) =
A

4πγ(γ̄2 − 1)ℓ2p
. (8)

Thus φ∗
WA0 solves (2) if W (φ) = 1

k
A

4πγ(γ̄2−1)ℓ2p
ϕ. The non-single-valued nature of W (ϕ)

will produce two curvature singularities at the poles. These will play a crucial role in the

quantum theory.

As mentioned above our connection has to fulfill also constraint (3) which is accomplished

by fixing the U(1)Σ ambiguity. Considering all this our solution is given by

A = g[φ∗

WA0]g
−1 + gdg−1 (9)

which is completely fixed (up to gauge transformations) by equations (2), (3), (4), and (5)

and hence by the data contained in A and Σ for a Kerr isolated horizon. Now, it is easy to

show from (9) that in a circulation of an infinitesimal loop around the poles our variables

satisfy
k

4π

∮

C

A
1 =

A

8πγ(γ̄2 − 1)ℓ2p
. (10)

The previous equation will be used to fix the value of the Chern-Simons level k. We require

that
k

4π

∮

C

A
1 =

k

2
+

J

2ℓ2p
. (11)
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From equations (10) and (11) we obtain k = A/(4πγ(γ̄2 − 1)ℓ2p) − J/ℓ2p. The level of

the Chern-Simons connection is given by the usual non-rotating level minus the isolated

horizon angular momentum in Planck units. We choose to fix the ambiguity parameter

γ̄ =
√

(2 + γ)/γ so that the Chern-Simons level takes the simpler form3

k =
A

8πℓ2p
− J

ℓ2p
(13)

which has the important property that it vanishes in the extremal case A = 8πJ . We will

comment further on the importance of this choice.

Equation (11) implies the presence of conical singularities in the curvature F i(A ) at

the poles. We will see in the following section that these singularities are relevant for the

implementation of the Chern-Simons quantization of the rotating isolated horizon. One can

recall the presence of the singularities at the poles if one writes the curvature equation over

H in its entirety (including the poles) as

k

4π
F (A )i =

Σi

8πℓ2pγ
+ pδi1δN + pδi1δS, (14)

where δN and δS are Dirac delta functions centred on the north and south poles, respectively,

and

p =
k

2
+

J

2ℓ2p
. (15)

In the quantum theory we will see that p appears in a quantum constraint which, due to the

properties of quantum Chern-Simons theories, will be sensitive to p modulo k
2
, here denoted

by [p] k
2

. Therefore, we have

[p] k
2

=

[

J

2ℓ2p

]

k
2

. (16)

Remark: There is a non-trivial choice in equation (11) that determines the value of the

Chern-Simons level. This choice implies that quantum states of the rotating horizon are

given by vectors in the representation of rigid gauge transformations with total angular

3 Notice that one could fix γ̄ so that

k =

√

A2 − (4πq)2

8πℓ2
p

− J

2ℓ2
p

. (12)

This would imply that k vanishes for all possible extremal horizons [19–22].
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momentum J =
∫

H
j, where j is the angular momentum density of the rotating horizon

that will be explicitly introduced in the following section. This interpretation is available at

least when J ≤ k. For other values of J , allowed by the classical inequality 8πJ ≤ A, the

interpretation is less obvious as the quantum group structure coming from the quantization of

Chern-Simons theory becomes relevant. We will see in a more extended discussion in Section

V that this feature eliminates some apparently puzzling inconsistencies with the classical

black hole properties found in [5]. If we would have replaced the right hand side of equation

(11) by k
2
, the conical singularities of the connection at the poles would not have had an effect

at the quantum level and physical states would be invariant vectors (intertwiners) under rigid

gauge transformations. The latter choice corresponds to the (SU(2)) generalization of the

type I connection technology used in [2]. This second option is logically possible and one

cannot rule it out on the basis of first principles. The strength of the choice made here is

that it produces quantum states with a simple geometric interpretation. It leads to a Chern-

Simons level that vanishes in the extremal case, and modifies the logarithmic corrections to

the entropy computation.

III. CONSERVATION OF THE SYMPLECTIC STRUCTURE

In this section we present the symplectic structure and prove that it is conserved pro-

vided that the standard boundary conditions hold. The symplectic structure is constructed

in terms of the connection A introduced in the previous section. Additional variables are

necessary to preserve diffeomorphism invariance in the rotating case (see [17] for a dis-

cussion). These are a two form j (that will acquire the physical meaning of the angular

momentum density on shell) and its conjugate momentum, a scalar field Φ.

As in the usual treatment [11] the only allowed variations on the horizon are tangent

diffeomorphisms and SU(2) gauge transformations. We start with the SU(2) gauge trans-

formations denoted by δα for α(x) ∈ su(2), i.e a Lie algebra valued scalar on M . For the

bulk variables we have

δαΣ = [α,Σ]

δαA = −dAα, (17)

while for boundary variables the transformation is

9



δαA = −dA α

δαΦ = (α1|N + α1|S)/2

δαj = 0. (18)

Note that the angular momentum density j is gauge invariant by construction and the scalar

field transforms in a distributional way: only the value of α on H at the symmetry axis (the

north and south poles) change Φ.

We restrict diffeomorphisms to vector fields v that vanish at the north and south poles

of H and, therefore, leave the north and south poles invariant. The transformation δv is

δvΣ = LvΣ = d(vyΣ)

δvA = LvA = vydA+ d(vyA)

δvA = LvA = vydA + d(vyA )

δvj = Lvj = d(vyj)

δvΦ = vydΦ. (19)

Proposition: In terms of the Ashtekar-Barbero variables the presymplectic structure of

the rotating Kerr horizon takes the form

ΩM = ΩB + ΩH

=
1

κγ

∫

M

2δ[1Σ
i ∧ δ2]Ai +

k

4π

∫

H

δ1Ai ∧ δ2A i − 16π

κ

∫

H

δ[1Φ δ2]j, (20)

where k is the level of the CS boundary term and κ = 8πG. ΩB denotes the first (bulk

integral) term while ΩH denotes the last two (surface integral) terms.

Proof: We prove the result by first looking at variations which are pure SU(2) gauge trans-

formations. Then we show the invariance for pure diffeomorphisms.

Invariance under infinitesimal SU(2) transformations

We want to check that ΩM (δα, δ) = ΩB(δα, δ) + ΩH(δα, δ) = 0 for δα which is a local

SU(2) transformation as given in (17) and (18). The first contribution ΩB(δα, δ) yields

ΩB(δα, δ)=
1

κγ

∫

M

(

[α,Σ]i ∧ δAi+δΣi ∧ dAαi
)

= − 1

κγ

∫

M

[

d(αiδΣ
i)−αiδ(dAΣi)

]

=− 1

κγ

∫

H

αiδΣ
i,

10



where we have used the Gauss law δ(dAΣ) = 0 and that boundary terms at infinity vanish.

At the boundary itself we have to take special care of the singular nature of our connection

variables at the poles. Therefore, we split H in two infinitesimal patches around the poles

N and S, and an intermediate strip H∗ = H\(N ∪ S). Thus we obtain

k

4π

∫

H

δαAi ∧ δA i = − k

4π

∫

H

dA α
i ∧ δAi

= − k

4π

∫

H∗

d(αiδAi) +
k

4π

∫

H∗

αiδF
i(A )− k

4π

∫

N∪S

(dαi + ǫijkA
jαk) ∧ δAi

= − k

4π

∫

∂H∗

αiδAi +
1

κγ

∫

H∗

αiδΣi

=
k

4π

∫

∂N

αiδAi +
k

4π

∫

∂S

αiδAi +
1

κγ

∫

H

αiδΣi

=

∫

H

αiδ

(

1

κγ
Σi + pδNδ

i
1 + pδSδ

i
1

)

,

where on line 2 we have integrated by part, on line 3 we used (14) on H∗, on line 4 we used

∂H∗ = −(∂N ∪ ∂S), and on line 5 we used (11). Then

ΩH(δα, δ) =
k

4π

∫

H

δαAi ∧ δA i − 8π

κ

∫

H

δαΦ δj (21)

=
1

κγ

∫

H

αiδΣi + (α1|N + α1|S)δp−
4π

κ
(α1|N + α1|N)

∫

H

δj (22)

Hence, the symplectic structure is gauge invariant, namely ΩM (δα, δ) = ΩB(δα, δ) +

ΩH(δα, δ) = 0, if the following constraint is satisfied

8π

κ

∫

H

j = p. (23)

Invariance under infinitesimal diffeomorphisms

Now we focus on the invariance under infinitesimal diffeomorphisms, in other words, we

want to show that for a small tangent vector field v ∈ T (H) we have

ΩM (δv, δ) = ΩB(δv, δ) + ΩH(δv, δ) = 0.

For the bulk term, using (19), we obtain
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ΩB(δv, δ) =
1

κγ

∫

M

[

LvΣi ∧ δAi − δΣi ∧ LvA
i
]

=
1

κγ

∫

M

[

dA(vyΣ)i ∧ δAi − δΣi ∧ vyF i + d(vyAi δΣ
i)
]

=
1

κγ

∫

M

[

d(vyΣi ∧ δAi) + vyΣi ∧ dA(δAi)− δΣi ∧ vyF i + d(vyAi δΣ
i)
]

=
1

κγ

∫

M

[

d(vyΣi ∧ δAi) + vyΣi ∧ δF i − δΣi ∧ vyF i + d(vyAi δΣ
i)
]

=
1

κγ

∫

M

[

d(vyΣi ∧ δAi) + δ(Σi ∧ vyF i(A)) + d(vyAi δΣ
i)
]

=
1

κγ

∫

H

δ(vyAiΣ
i). (24)

The horizon term yields

ΩH(δv, δ) =
k

4π

∫

H

LvA
i ∧ δAi −

8π

κ

∫

H

[LvΦ δj − δΦLvj]

= − k

4π

∫

H

[δAi ∧ vyF i(A ) + δAi ∧ dA (vyA i)]− 8π

κ

∫

H

[vydΦ δj − δΦ d(vyj)]

= − k

4π

∫

H

[δ(vyAi)F
i(A ) + δFi(A ) vyA i]− 8π

κ

∫

H

[vydΦ δj + δ(dΦ) ∧ vyj]

= − k

4π

∫

H

δ(vyAi F
i(A ))− 8π

κ

∫

H

δ(vydΦ j)

= − 1

κγ

∫

H

δ[vyA iΣi + 8πγ vydΦ j]. (25)

Now, equation ΩM(δv, δ) = 0 is satisfied if the following constraint holds

1

κγ

∫

H

δ[vy(Ai − A
i) Σi − 8πγ vydΦ j] = 0 (26)

for all v ∈ T (H). Equation (26) is nothing else but the diffeomorphism constraint in

these variables. The classical solution corresponding to Kerr is Φ = ϕ, where ϕ is the

Killing parameter associated to axisymmetry. In this case (Ai−A i)ϕΣi/(8πγ) is the angular

momentum density satisfying

J =

∫

H

j =
1

8πγ

∫

H

(Ai − A
i)ϕΣi, (27)

where J is the total angular momentum of the Kerr solution. This provides the physical

interpretation of the l.h.s of the constraint (23) found above telling us that p = 8πJ/κ.

IV. QUANTIZATION

Once the degrees of freedom on the boundary are captured by a Chern-Simons symplectic

structure plus Chern-Simons-like constraint, as the one given in equation (14), the quantiza-
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tion is basically analogous to the one applied in the non-rotating case. There are, however,

new aspects here that have to be treated carefully. The most obvious one is that in addition

to the Chern-Simons connection A we have the field j and its conjugate Φ in the boundary

symplectic structure and their quantization too needs to be addressed. The second issue is

that the Chern-Simons constraint (14) contains two classical singularities at the north and

south poles of the sphere and these are seemingly new features of the rotating system. Here

we will start by ignoring the first problem and go directly to the second. The last part of

this section will be dedicated to the first.

As in the non-rotating case, and if for the moment we concentrate on the connection

fields, the form of the symplectic structure motivates one to handle the quantization of the

bulk and horizon degrees of freedom separately. We first discuss the bulk quantization. As

in standard LQG [8] one first considers (bulk) Hilbert spaces H B
γ defined on a graph γ ⊂ M

and then takes the projective limit containing the Hilbert spaces for arbitrary graphs. Along

these lines let us first consider H
B

γ for a fixed graph γ ⊂M with end points on H , denoted

γ ∩H . The quantum operator associated with Σ in (14) reads

ǫabΣ̂iab(x) = 16πGγ
∑

p∈γ∩H

δ(x, xp)Ĵ
i(p), (28)

where [Ĵ i(p), Ĵ j(p)] = ǫij kĴ
k(p) at each p ∈ γ ∩ H . Also, consider a basis of H B

γ of

eigenstates of both Jp · Jp as well as J3
p for all p ∈ γ ∩ H with eigenvalues ~

2jp(jp + 1)

and ~mp, respectively. These states are spin network states, here denoted by |{jp, mp}n

1
; ···〉,

where jp and mp are the spins and magnetic numbers labelling the n edges puncturing the

horizon at points xp (other labels are left implicit). They are eigenstates of the horizon area

operator âH as well

âH|{jp, mp}n

1
; ···〉 = 8πγℓ2p

n
∑

p=1

√

jp(jp + 1)|{jp, mp}n

1
; ···〉.

Now substituting the expression (28) into the quantum version of (14), we obtain

k

8π
ǫabF̂ i

ab =
∑

p∈γ∩H

δ(x, xp)Ĵ
i(p)− δ(x, xN) J

i
N − δ(x, xS) J

i
S, (29)

where

J iN =
J

2ℓ2p
ẑi and J iS =

J

2ℓ2p
ẑi (30)
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for ẑi a normalized internal direction representing the symmetry axis. As we will show, the

previous equation tells us that the surface Hilbert space H H

γ∩H that we are looking for is

precisely the one corresponding to (the well studied) Chern-Simons theory in the presence

of particles. Equation (29) implies the formal closure constraints

∑

p∈γ∩H

Ĵz(p) =
J

ℓ2p
,

∑

p∈γ∩H

Ĵy(p) = 0,

∑

p∈γ∩H

Ĵx(p) = 0. (31)

We call them formal because they are indeed inconsistent due to quantum uncertainties.

However, there is a clear consistent quantum version of the previous conditions.

From the point of view of quantum geometry (bulk perspective), admissible states (solving

the above constraint in the strongest possible way compatible with the uncertainty principle)

are coherent states of the collection of punctures satisfying the constraints:

∑

p

m(p) =
[

J̄
]

k

[

∑

p

J i(p)

][

∑

p

Ji(p)

]

= [J̄(J̄ + 1)]q(k), (32)

where −j(p) ≤ m(p) ≤ j(p) denote the usual magnetic quantum numbers, J̄ = J/ℓ2p, and in

the last equality, the r.h.s. denotes the SU(2)q(k) Casimir. The state is of the form |J̄ , J̄〉
in the usual Wigner notation |j,m〉. Such states can be graphically represented as shown in

Figure 1.

From the point of view of the boundary Chern-Simons theory the constraints are even

simpler. The two classical punctures are aligned along the same axis. This amounts in

the Chern-Simons description to a single puncture carrying the total macroscopic spin of

the black hole. This is the view taken in [7]. Admissible states span the intertwiner space

j1 ⊗ j2 ⊗ · · · ⊗ jn → J̄ , give condition (32), and finally the usual area constraint

A− ǫ ≤ 8πγℓ2p

n
∑

p=1

√

jp(jp + 1) ≤ A+ ǫ. (33)

It can be seen that the leading order contribution of the entropy is not affected, yet loga-

rithmic corrections are. A detailed calculation will be presented in [7].
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Finally we need to address the quantization of j and Φ and the imposition of the vector

constraint (26), namely

∫

H

δ[vy(Ai − A
i) Σi − 8π vydΦ j] = 0

for all vector fields v tangent to H . At the classical level the previous constraint completely

reduces the (j,Φ) degrees of freedom. This is due to the fact that it is an additional first class

local constraint for two local degrees of freedom. More precisely this constraint is responsible

for imposing diffeomorphism invariance. Here we assume that this holds also at the quantum

level: for each spin network state satisfying the above restrictions there is only one solution

of the previous equation for the quantum counterpart of j and Φ. In other words admissible

states are indeed labelled by the spin quantum numbers satisfying the above constraints up

to diffeomorphisms. This assumption is similar to the one made generically in the context

of quantum states of isolated horizons as far as the bulk Hamiltonian and diffeomorphism

constraints are concerned. It would certainly be worth to be eliminated and it is probably

within the reach of present background independent quantization techniques.

V. CONCLUSIONS

In this work we have constructed a model of a rotating isolated horizon which is axisym-

metric and has angular momentum J . The classical description of the system is based on a

SU(2) Chern-Simons connection plus additional auxiliary fields that restore diffeomorphism

invariance. In the quantum theory the connection is constrained to be flat almost every-

where. As in spherically symmetric models, there are conical singularities with a strength

that matches the quantum flux of the area encoded in the spin quantum numbers of spin

network edges ending at the horizon. In addition to these, there are two conical singularities

at the north and south poles (as defined by the singularities of the axisymmetric Killing

field) with combined strength equal to [J/~]k/2.

An ambiguity parameter in the definition of the SU(2) boundary Chern-Simons connec-

tion, identified in previous models, can be fixed in the rotating case by the requirement

that the level of the Chern-Simons theory vanishes in the extremal case. This requirement

implies that the number of states of an extremal horizon is unity and hence that their en-

tropy vanishes as suggested in [16]. This is by no means in contradiction with the Hawking
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area law for non-extremal black holes: it can be shown [7] that the number of states of the

rotating isolated horizon grows exponentially with the area with a universal coefficient (the

same as in the non-rotating case) for large black holes no matter how close to the extreme

case they are. Therefore, the entropy of physical black holes is consistent with the Hawking-

Bekenstein entropy formula. The proportionality constant is not, as in previous models,

equal to 1/4 (for a newly introduced perspective on the origin of the mismatch see [13], and

for an argument as to how the low-energy Bekenstein-Hawking entropy is to be recovered

see [23]).

Moreover, as shown in [7], the logarithmic correction of the entropy for isolated horizons is

corrected by the inclusion of angular momentum even in the non rotating-case. Corrections

are universal of the form −2 log(A). This is consistent with the results obtained using other

methods [8] as far as non-local corrections are concerned. Local logarithmic corrections can

arise from radiative corrections. In the context of the LQG framework a natural scenario

for these corrections to appear is presented in [23].

In [5] a tension was pointed out between the analog of equations (32), the area spectrum

of LQG, and the fact that classically J can vary between 0 and A/(8π), which completely

disappears in our formalism. In that reference the analogue of (32) was postulated with the

important difference that the r.h.s. would not contain the modk symbol. In such a case

one sees that there are maximum spin states of the horizon for which Jmax ≈ A/(8πγ).

The fact that, classically, Jmax = A/(8π) would seem to imply γ = 1. Moreover, as the

spectrum of the area is non-linear in the spins, it was conjectured in [5] that the extremal

black holes would be represented by single puncture states with a large spin: in the large

spin limit the spectrum becomes linear. None of these conclusions are valid in our model due

to the appearance of the symbol modk on the r.h.s. Indeed any classically allowed angular

momentum value leads to a consistent set of constraints and there are no restrictions on

the value of the Immirzi parameter γ. No matter how close we are from the extremal

situation the black hole states that dominate the statistical mechanical treatment have

many punctures (of the order of A/ℓ2p) which is compatible with the idea that these states

approximate continuum geometries well.
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