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Abstract. In this paper we will investigate how one can create emergent curved spacetimes by locally tuning
the coupling constants of condensed matter systems. In the continuum limit we thus obtain continuous
effective quantum fields living on curved spacetimes. In particular, using Stingnet condensates we can obtain
effective electromagnetism. We will show for example how we obtain quantum electrodynamics in a blackhole
(Schwarzschild) spacetime.

1. Introduction
Even though Hawking radiation[1] is only a kinematical effect of QG, it is one of the very
few predictions of an essentially quantum-gravitational nature which is generally believed
to be true. In order to overcome our lack of access to highly curved chunks of spacetime,
analogue models have been proposed where a curved spacetime is simulated by the effective
equations of motion for light in dielectrics[2], of classical sound or surface waves in a liquid[3],
of perturbations of a Bose-Einstein condensate[4, 5], of perturbations of a super fluid[6] or of
electromagnetism in quantum dielectric[7]. In fact some experiments with analogue model
black holes have already been made that claim to observe stimulated emission of Hawking
radiation, though at a classical level [8].

What we would like to propose in this paper is a slightly different class of models which
is obtained from a simple idea. Condensed matter systems can give rise to many types of
quasiparticles, from Majorana fermions[9] to gauge bosons and anyons[10], practically any
type of matter one might want can be cooked up by some condensed matter system. We will
show in this paper that by varying the coupling constants, in space and in time1, of a condensed
matter system, we can simulate a curved spacetime for the quantum fields of the system.

In the next section we investigate how a variable speed of light can be reinterpreted as a
curved geometry with a constant speed of light. In section 3 we show how an effective metric
emerges from a tweaked quantum system. In section 4 we suggest a concrete realization of
U(1)-Yang-Mills theory in a Schwarzschild black hole background.

2. Variable Speed of Light or Curved Geometry: two descriptions of the same thing.
Imagine a D-dimensional space RD which we endow with the flat metric δµν on which a field
can propagate information at a finite speed c(−→x ,−→u ) which is anisotropic and inhomogeneous
in the sense that it depends on the position in space, −→x , and the direction −→u , −→u being a unit
D-vector (with respect to the flat spacial metric). If this field is all that exists in the space, it may
be difficult to justify the use of the flat metric δµν as it is not based on anything observable. A

1 Space and time is, for the purpose of this sentence, understood to be the flat spacetime of the lab in which the
condensed matter system is located.

ar
X

iv
:1

11
2.

23
11

v1
  [

gr
-q

c]
  1

1 
D

ec
 2

01
1



more operational (and arguably physical) definition of distance should rely on observables in
the theory. A particularly natural choice in our case is to measure distances by sending signals
with the field2, thus relating elapsed time with distance. By definition then, we may define
the speed of signalling to be 1 at the expense of changing the metric. We thus started out with
an flat spacetime metric η but measuring distances by sending signals, we are compelled to
change that metric to

g(x, v, v) := ϕ(x)2(−(v0)2 + k2(x,−→v /‖−→v ‖)−→v 2), (1)

where x := (x0,−→x ), is the spacetime position, v := (v0,−→v ) is a tangent vector at x and
k(x,−→v /‖−→v ‖) := 1

c(x,−→v /‖−→v ‖) is the inverse of the speed at location x and in direction −→v . Notice
how we have an arbitrary local conformal factor ϕ(x) ∈ R+ which we cannot fix classically
since to impose that the speed of signalling is one, we have the option of rescaling space by
x → 1/vx or rescaling time by t → vt or a mixture of both; however, as we will see, quantum
mechanics give us a scale (~) against which to measure and fix this local conformal degree of
freedom3

3. Emergence of Spacetime
The recipe to for cooking up matter fields on curved spacetimes in the lab is conceptually
rather simple. The first step consists of choosing the type of matter wanted. Secondly, one
finds a condensed matter system which whose collective degrees of freedom reproduce the
type of matter sought after; fermionic fields, scalar fields, and the like all have condensed
matter systems from which they can emerge. As explicitly shown in [11], the speed of signals
can be varied by varying the coupling constants. Thus the third step is to upgrade the coupling
constants to functions of space and time, thereby making speed a function of spacetime. These
functions can then be chosen so as to give the desired spacetime. Here is how it works in more
detail.

Suppose a quantum mechanical condensed matter system in D spacial dimensions. In
the limit where the lattice is very fine compared to measurements,i.e. the continuum limit,
the discrete degrees of freedom can be approximated by continuous fields. Generically, the
effective Lagrangian for the system, expressed in Lab spacetime coordinates, will be of the
form

L(x) = −

(∑
a

1

2
Gija ∂iφa(x)∂jφa(x) +

1

2
M2
aφ

2
a(x)

)
− V (φa(x)) (2)

if in the continuum limit the degrees of freedom correspond to scalar fields (for example in
the case of coupled quantum oscillators on a lattice). In what follows we will assume that the
continuum (or emergent) degrees of freedom are scalar fields, but the reasoning is the same for
other types of fields. In fact, for the concrete example we give in section 4 we have a spin-1
U(1) gauge-field (“light”) describing the continuum limit of the degrees of freedom. V is an
function of the fields φa which is bounded from below (otherwise the resulting theory would
be unstable and ill-defined).

Without loss of generality we may suppose Ga to be symmetric (Gija = Gjia ) since its
antisymmetric part vanishes in any case in Eq.(2) (for commutative momentum-spaces). The
canonically conjugate momentum to the field φa(x) is then πa(x) = −G0j

a ∂jφa(x) Thus the
Hamiltonian is

H =
∑
a

πa∂0φa − L =
∑
a

[
∂0φa

−→
∂ φa

] [ −G00
a
−→
0

−→
0 Gsa

] [
∂0φa−→
∂ φa

]
+
∑
a

1

2
M2
aφ

2
a(x) + V (φa(x)),

(3)

2 In the case of multiple fields, what follows will only work if all the fields propagate information at the same
speed.
3 For Eq.(1) to define a metric, certain conditions on the speed c need to be respected, but as we will see, generic
Lagrangian derived systems do indeed give rise to varying speeds which can be reinterpreted metrically.



where Gsa is the spacial part of Ga (i.e. Ga with the zeroth line and column removed). For the
theory to be well defined, the Hamiltonian must be bounded from below, this implies that the
matrices in Eq.(3) must be positive definite which in turns implies that G00

a < 0 and Gsa must
be positive definite which means that the matrix Ga must have Minkowskian, (−,+, . . . ,+),
signature.

If we now fine-tune our system so that the different fields φa all propagate at the same speed,
that is all the matrices Ga are equal, we may define gij = Gij

a

(det(−Ga))
1

D−1
. If we additionally

define gij as the inverse of gij , g = det(−gij), ma = Ma

g
1
4

and we redefine the potential

V (φa)→ 1√
gV (φa) we may rewrite the Lagrangian of Eq.(2) as

L(x) = −√g

{(∑
a

1

2
gij∂iφa(x)∂jφa(x) +

1

2
m2
aφ

2
a(x)

)
− V (φa(x))

}
. (4)

Note that since all theGa had Minkowskian signature, gij will also have the same Minkowskian
signature. Written in this way, the Lagrangian looks a lot like the Lagrangian of fields in
a curved spacetime with metric gij . The only difference being that here gij is a constant
independent of x. However, gij being a collection of coupling constants, nothing stops of from
tuning those coupling constants locally to make them depend on x, the spacetime location. If
we do that we obtain a new Lagrangian

L(x) = −
√
g(x)

{(∑
a

1

2
gij(x)∂iφa(x)∂jφa(x) +

1

2
m2
aφ

2
a(x)

)
− V (φa(x))

}
. (5)

which this time is identical to the Lagrangian of fields in a curved spacetime defined by the
Minkowskian metric gij(x).

Now we see how the conformal factor of the metric is set by the size of quantum fluctuations.
If we multiply the metric by a conformal factor Φ2 (i.e. gij → Φ2gij) then the terms in the
Lagrangian will be multiplied by Φ2D or Φ2(D+1). Since, in quantum physics the amplitudes
are given by a sum of e

1
~
∫
dD+1L, if the Lagrangian gains a factor of Φ2D it is equivalent to

having ~→ ~
Φ2D .

One interesting point to note is that the one thing which really have no choice about is the
signature of the metric. If we start out with a Hamiltonian which is bounded from below4,
then the signature of the effective metric must be Minkowskian. This is very intriguing and
might be telling us about some deeper more intricate relation between quantum physics and
relativity. This, especially considering that, as previously mentioned, it is the size of quantum
fluctuations which determine the conformal factor of the metric. In the following section we
give a concrete realization of U(1) Yang-Mills on a Schwarzschild black hole background.

4. QED in Schwarzschild Spacetime
In [12] Wen proposed a concrete realization of his string-net condensate model for U(1) gauge
Yang-Mills. In this section we will show how one can take this in-lab condensed matter system
of emergent light and locally tune the coupling constants of the system in order to end up with
emergent light on an effective Schwarzschild black hole background. Thus creating a quantum
system of a black hole with electromagnetic radiation. In addition to the interest of being able
to observe a purely quantum gravitational effect, because the underlying quantum system will
consist of a spin lattice, we will be implementing a minimum length scale. That is interesting
because there has been some questioning [13] as to whether Hawking radiation would exist if
there was a minimal length scale due to the fundamental way in which the continuum plays a
roll in deriving the Hawking radiation5.

4 We talk here of the Bosonic case, the Fermionic case is of course more complicated.
5 One requires the existence of trans-Planckian modes in the original derivation.



The conceptual idea behind string-net condensate models is as follows (see [12, 14] for
technical details). The underlying quantum system is a spin lattice or quantum rotor lattice.
That is, a lattice, with on each edge, a quantum rotor or a spin. A string operator corresponding
to a path γ on the lattice corresponds to the ordered product of alternating raising and lowering
operators along the path. The typical string-net condensate Hamiltonian then consists of
three terms: a string tension term (∝

∑
k(S

z
k)2 in our spin J example), a string fluctuation

term (∝
∑

γ Sγ + S†γ , the sum of all string of length 2 operators), and a Gauß constraint
term (∝

∑
v (
∑

ev S
z
e )2. When the coupling constant in front of the Gauß constraint is much

bigger than the other two coupling constants, we effectively project down on to the sub-
Hilbert space where the constraint is imposed exactly and thus there are no open strings.
In particular, the the string fluctuation term for the effective Hamiltonian becomes a sum
over plaquettes P of the closed-string operators around the plaquettes[12]. In other words
Heff = J

∑
e(S

z
e )2 − 1

2g
∑

P (WP + WP
†), where the first sum is over the edges of the lattice

and WP is the closed-string operator over plaquette P . If, on the edges of the lattice, we
have quantum rotors θe then Sze = −i ∂

∂θe
, ae = Se−iθe (S ∈ 1

2N)and the continuum limit of
the effective theory, when J � g, is U(1)-Yang-Mills, in 2 + 1 dimensions with continuum
Lagrangian

L2+1 =

−→
E 2

J
− l2gB2 = −

√
det(g2D)gik2Dg

jm
2DFij(A)Fkm, (6)

where l is the size of the lattice spacing and the coupling constants are given modulo constants
of order one which depend on the exact lattice configuration.The metric is g2D := −J2dt2 +
J
gl2

(dx2 +dy2). This Lagrangian is arrived at by defining the gauge field with support on lattice

edges
−→
Ae := θe

−→e , where−→e is the unit vector pointing in the direction of edge e and then taking
the continuum limit.

It is also possible to make a 3+1 dimensional system of emergent light [12] by layering
2D lattices together so make a 3D lattice. In which case we obtain the following continuum
Lagrangian, written in orthonormal coordinates, and with the third coordinate perpendicular
to the layering

L3+1 =
1

ζlJ

(
E2

1 + E2
2 + ζ2E2

3

)
− gl

ζ

(
ζ2B2

1 + ζ2B2
2 +B2

3

)
, (7)

with ζ being the ration between the layer spacing and the lattice length l. If we now stack shells
of spherical layers together, we obtain a Lagrangian of the form Eq.(6) with the metric

g3D := exp(2Θ)

{
−dt2 +

dr2

9Jgl2ζ2
+

r2

9Jgl2
d2Ω

}
, (8)

if the condition 3g = 16J , which ensures consistency of the metrical interpretation, is satisfied.
We obtain an arbitrary conformal factor exp(2Θ) because in 3 + 1 dimensions, the conformal
factor of the metric in the action of Yang-Mills exactly simplifies and does not appear in the
action. r is the radial distance and d2Ω is the standard metric on the 2-sphere. Satisfying the
metricity constraint, we automatically have that at cold enough temperatures, the system will
be in the stringnet condensate phase of emergent light[12]. So we will have U(1)-Yang-Mills
on the curved background. If we now wish that background to be Schwarzschild, we must
impose

exp(2Θ) = 9Jgl2 =
(
1− 2M

r

)
c2

ζ = c
(
1− 2M

r

)
, (9)

whereM is the mass of the black hole and c is the desired speed of light. Since ζ,g,J , and l must
all be positive quantities, we see that we can build the black hole only down to the horizon, we



cannot cross the horizon as this requires a sign change in the metric. We can thus build the
Schwarzschild spacetime from infinity down to the horizon by appropriately tuning g and J
(which here vary between 0 and a value of order 1 and is thus not problematic) and piling up
the layers closer and closer together close to the horizon. For a small enough black hole, we
can build the metric to within an arbitrarily small fraction of the effective Planck length of the
horizon: to get to within ε of the horizon, the smallest ratio we need between the inter-layer
distance and the intra-layer lattice distance is ζ = cε

2M+ε .
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