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Abstract. We theoretically analyze the noise transformation of a high power continuous-
wave light field that is reflected off a critical Kerr non-linear cavity (KNLC). Our investigations
are based on a rigorous treatment in the time-domain. Thereby, realistic conditions of a specific
experimental environment including optical intra-cavity loss and strong classical driving noise
can be modeled for any KNLC. We show that even in the presence of optical loss and driving
noise considerable squeezing levels can be achieved. We find that the achievable squeezing
levels are not limited by the driving noise but solely by the amount of optical loss. Amplitude
quadrature squeezing of the reflected mean field is obtained if the KNLC’s operating point is
chosen properly. Consistently, a KNLC can provide a passive, purely optical reduction of laser
power noise as experimentally demonstrated in [1]. We apply our model to this experiment
and find good agreement with measured noise spectra.

PACS numbers: 42.65.Hw, 42.50.Lc, 42.79.Gn
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1. Introduction

Due to the effect of self-squeezing the (quantum-) noise distribution of a light field can be
manipulated when passed through a Kerr medium [2] or when coupled to and reflected off a
KNLC (Fig. 1) [3, 4, 5, 6]. In this way, the optical Kerr effect can be used for the generation
of squeezed light which can be exploited to enhance state-of-the-art metrology to quantum
metrology. For a review we refer to [7]. In contrast to methods based on second order non-
linear processes – such as the optical-parametric-oscillation (OPO) – no second harmonic
pump field is required for operating the KNLC. Thus a technical realization of squeezed
light generation seems to be less involved. It was shown by Collet and Walls [4] that a
loss-less KNLC operated at its so-called critical point (refer to the centered curves in Fig. 2)
provides perfect squeezing in the amplitude quadrature of the reflected field at zero Fourier
frequency. This specific characteristic enables a further technical application in the classical
noise regime: In contrast to conventional techniques [8, 9], a KNLC can provide a light power
stabilization within its bandwidth and in a purely optical, passive way, as it was observed in
[1]. Such a passive, classical noise reduction scheme might find application in gravitational
wave astronomy. Here, ultra-stable high-power laser radiation is needed [10] to achieve a
sufficiently high interferometric sensitivity, e.g. as envisioned for Advanced LIGO [11] and
the Einstein Telescope [12].

ρc ρend
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R v
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Figure 1. Schematic of a Kerr non-linear cavity (KNLC). Ein is the driving field coupled
to the cavity, E the intra-cavity field, lrt the fraction of E that is lost per round-trip at the
imperfect end mirror and v the vacuum field that couples in at the end-mirror. The reflected
field is denoted as R. We investigated the regime where ρc < ρend ≤ 1.

Reynaud et al. [13] have analyzed the squeezing of quantum-noise achievable in
reflection of a multi-stable KNLC. They showed that a KNLC operated close to the turning
points of the corresponding resonance curve also yields perfect squeezing at zero Fourier
frequency, though not in the amplitude quadrature of the reflected field. In fact, they revealed
that the amplitude quadrature at zero frequency is not squeezed if a loss-less multi-stable
KNLC is considered. Consistently, the multi-stable state is not favorable if a passive, purely
optical reduction of laser power noise is targeted at low frequencies.

In the pulsed laser regime the squeezing of quantum noise by means of the optical Kerr-
effect was demonstrated in several experiments [14, 15]. In these experiments no optical
cavities were involved. The reduced quantum noise was observed in certain field quadratures
that depart from the amplitude quadrature of the mean field. Also in the continuous-wave laser
regime one experiment was conducted to demonstrate squeezing of quantum noise [16]. Here
a small reduction of about 1.5 dB below the shot noise limit could be demonstrated by means
of a KNLC driven by a 1.2 mW laser beam. White et al. [17] have used a KNLC pumped
by a 30 mW laser beam and achieved a reduction by 1.5 dB of classical noise. Recently,
at an intermediate-power 0.75 W laser a classical power noise reduction by a surprisingly
great factor of 32 dB by means of a KNLC was demonstrated [1]. This strong reduction was
observed at the driving laser’s relaxation oscillation frequency where its noise in the amplitude
quadrature is much higher than in the phase quadrature.

In this paper we report on our numerical investigations of the noise transformation of
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a high-power light field that is coupled to and reflected off a critical KNLC. We used the
approach of a rigorous treatment in the time-domain which easily includes the full nonlinear
formalism and the full range of different experimental parameters such as low and high cavity
finesse values. It is thus also possible to calculate the cavity dynamics on time-scales of the
cavity storage time revealing cavity ringing or the hysteresis effect, as well as the non-linear
response to large (classical) signals, refer e.g. to Fig. 6.15 and Fig. 6.17 in [18], respectively.
Here, we use our model to describe the squeezing of quantum noise and weak classical driving
noise with Gaussian statistics under consideration of the KNLC’s detuning and loss. Model
input parameters are the cavity length, cavity mirror reflectivities, the intra-cavity optical
loss, the Kerr non-linearity and the optical pump power. As all of these parameters can be
determined or at least estimated in experimental environments, our numerical calculations
have a great potential to easily model and understand experimental results, e.g. those reported
in [1].

In the following, the noise distribution in phase-space is analyzed for a quantum noise
limited driving field as well as for a field that shows (unbalanced and possibly correlated)
classical noise in its amplitude and phase quadrature. In both cases, several values for the
internal cavity loss are considered, and for certain operating points the noise transformation
is illustrated by the corresponding Wigner functions [19]. We focus on the noise reduction in
the amplitude quadrature of the mean field that is reflected off the KNLC. This is essential
in view of a potential passive, purely optical reduction of laser power noise. We show that
the presence of intra-cavity loss strongly influences the phase-space rotation and thus the
quadrature yielding the optimal noise reduction. Additionally, we show that even for a driving
field with an unbalanced (classical) noise distribution in its amplitude and phase quadratures
strong noise reductions, even below quantum noise, can be achieved. As already shown by
Collet and Walls [4] for a quantum noise limited driving field, the loss-less KNLC needs to
be operated at its critical point in order to obtain optimal squeezing (noise reduction) in the
amplitude quadrature of the reflected mean field. We show that this condition still holds for
a driving field that exhibits classical noise in both amplitude and phase quadrature. In the
presence of intra-cavity loss, however, amplitude quadrature noise reduction can be obtained
with a critical KNLC only if operated with a detuning aside from the critical point.

2. Calculation of the light fields

The non-linear nature of a KNLC becomes evident by looking at the analytic expression for
the monochromatic, steady-state intra-cavity field (for zero loss), as given by

E =
iτc

1− ρcρend exp[2i(Φ + θ|E|2)]
Ein . (1)

Here ρc (τc) and ρend (τend) are the amplitude reflectance (transmittance) factors of the
coupling and end mirror, respectively. Φ denotes the geometric detuning with respect to the
carrier light frequency ω0. Furthermore, θ|E|2 is the intensity dependent phase shift induced
by the optical Kerr effect. In the variable θ the non-linear refraction index n2, the length of
the Kerr medium LKM, the cross sectional area A of the light field, the speed of light c and
the carrier frequency ω0 are included according to [6]

θ =
n2ω0LKM

2Ac
. (2)

Fig. 2 shows the intra-cavity power P = |E|2 depending on the (static) cavity detuning Φ
for three cases: the linear case with θ = 0 (black dotted curve), the so-called critical state with
θ = θcrit (red solid curve) and a multi-stable case with θ = 2θcrit (blue dashed curve). As
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Figure 2. Normalised intra cavity power (left) and phase (right) without Kerr effect (black
dotted curves), the so-called critical state (red solid curves) with its critical point of infinite
slope (highlighted by the red circles) and a multi-stable state (blue dashed curves) of the KNLC
with half-bandwidth γ.

Eq. (1) is a transcendental (implicit) equation, it has been solved numerically. Fig. 2 reveals
that the critical state and the multi-stable state exhibit particular operating points at which the
resonance curve shows an infinite slope. In the critical state the infinite slope occurs at the
critical operating point OPcrit (highlighted by the red circles) and in the multi-stable state at
the two turning points of the resonance curve. As shown in [4] and [13] these operating points
are favorable in view of the achieving high squeezing levels. However, since in the multi-
stable case perfect squeezing is not obtained in the amplitude quadrature of the reflected field
we restrict our investigations to the critical state.

In order to model noisy optical fields reflected off the KNLC in the time-domain it is
necessary to evaluate the light fields (and their interference) after each round-trip. As we are
interested in the noise transfer of a KNLC set to a certain operating point, we assume a static
detuning of the cavity, i.e. Φ(t) = Φ = constant. Following this line, the internal field reads

E(ntrt) = iτcEin(ntrt) + Ert [(n− 1)trt] . (3)

Here

Ert [(n− 1)trt] =

ρendρc exp
[
2iΦ + 2iθ |E [(n− 1) trt]|2

]
E [(n− 1)trt] (4)

describes the field after one round-trip. The nonlinearity of our approach at this stage is
evident due to the exponential function in Eq. (4) depending on the field intensity |E|2. The
round-trip time in a cavity of length L is

trt =
2L

c
. (5)

The reflected field is then given by

R(ntrt) = ρcEin(ntrt) + iτcE(ntrt) . (6)

The time dependence of the input field can be described by

Ein(t) = Ein + δE(t)in with δEin(t) = 0 . (7)

If the mean field Ein is set to be real, Eq. (7) can be written as

Ein(t) = E0 + δX1(t) + iδX2(t) (8)

giving a real-valued phase-space description of the input laser field with δX1(t) and δX2(t)
being the fluctuations in its amplitude (X1) and phase quadrature (X2), respectively. The
same description does then apply to the reflected field after n round-trips according to Eq. (6)
and its converged value for n⇒∞.
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Eventually, the cavity reflected fluctuating fields of our converged time-domain
simulations need to be expressed as normalized noise spectral densities in order to allow
for a comparison with experimental data. For this reason we apply to the reflected field a fast
Fourier transformation (FFT) and normalize the result such that, for a zero Kerr effect, the
vacuum noise of a coherent input field transforms into a noise spectral density of magnitude
unity (0 dB) with a white spectrum.

In the following we describe our time-domain simulation in more detail. We also
describe the transfer functions we used to calculate the noise spectral densities for other
than vacuum noise input, i.e. for classical noise inputs with unbalanced, possibly correlated,
fluctuations in the amplitude and phase quadratures. With respect to the transfer functions
we restrict ourselves to the regime where the noise amplitude is much smaller than the
driving field amplitude, i.e. to the regime where a linearized approximation is valid. For all
results presented here, a fluctuation at a certain Fourier frequency is always transformed into
output noise at the same single frequency, since the Fourier transformation does not show any
additional frequency components. Note that we indeed have observed additional frequency
components for parameters outside the regime presented in this manuscript.

We consider an amplitude-modulated input field by setting Eq. (8) to

Ein = Eam(t) = E0 + x1 cos(Ωt) (9)

and accordingly to

Ein = Epm(t) = E0 + ix2 cos(Ωt) . (10)

for a phase-modulated field. Here, Ω is the angular Fourier frequency and x1 and x2 are
real-valued scaling factors with |x1|, |x2| � |E0|. The FFT (we have used FFTW3 [21])
of the reflected field R(ntrt) provides the relative amplitudes of upper and lower sidebands
at positive and negative frequencies R(±Ω), respectively. The phases of upper and lower
sidebands determine whether an input amplitude modulation is transferred to an output
amplitude or phase modulation. The full coupling can be described by 4 coefficients Tij

T11 = [R∗am(−Ω) +Ram(Ω)] /(2x1) (11)
T12 =

[
R∗pm(−Ω) +Rpm(Ω)

]
/(2x2) (12)

T21 = [i[R∗am(−Ω)−Ram(Ω)]] /(2x1) (13)
T22 =

[
i[R∗pm(−Ω)−Rpm(Ω)]

]
/(2x2) . (14)

These coefficients can be written as a 2 × 2-matrix T(Ω), which is commonly referred to as
the (linearized) input-output transfer function. The spectral density matrix (covariance matrix)
reads

S(T) =
1

2

(
T ·T† + T∗ ·TT

)
. (15)

The diagonal components of the 2× 2-matrix S correspond to the normalized power spectral
densities of the field’s amplitude (X1) and phase (X2) quadrature amplitudes. Off-diagonal
components are due to correlations between the two quadratures. From this matrix the spectral
density of any measured linear combination Xζ = cos(ζ)X1 + sin(ζ)X2 can be evaluated to

Sζ = ( cos ζ sin ζ ) · S(T) · ( cos ζ; sin ζ ) , (16)

where ζ denotes the homodyning angle. If the noise transformation is considered for other
than the reference vacuum input, the matrix T needs to be replaced by

T′ = T·( cosϑ − sinϑ; sinϑ cosϑ )·( exp(2r1) 0; 0 exp(2r2) ) .(17)

The matrix on the right is the general squeezing matrix with (r1+r2) ≥ 0 due to Heisenberg’s
uncertainty relation. Values r1,2 < 0 correspond to a noise level below vacuum noise



The critical Kerr non-linear optical cavity in the presence of internal loss and driving noise6

(squeezed) and r1,2 > 0 above vacuum noise (anti-squeezed), respectively. The matrix on
the left describes a rotation of the squeezing (noise) ellipse in phase space, i.e. the squeezed
quadrature is determined by the squeezing angle ϑ. In order to constitute a driving field
that exhibits stationary classical noise (such as thermal noise) in its amplitude and phase
quadrature, both r1 and r2 need to be greater than zero. For an extensive overview of this
linear transfer function formalism we refer to [20].

In addition to quantum noise and classical driving noise that enters the KNLC through the
coupling mirror, also vacuum noise contributions due to intra-cavity loss need to be considered
and the corresponding input-output relation (denoted as L in the following) derived. For
simplicity, we map the cavity round-trip loss lrt onto the end mirror amplitude transmissivity
τend = lrt. Hence, similar to the derivation of the input-output relation T we consider the
transfer function for the following light fields

vam(t) = x1 cos(Ωt) (18)
vpm(t) = ix2 cos(Ωt) (19)

that couple in at the end mirror. The beat with the driving field is described by setting Ein(t)
to E0, and the time-dependent loss-driven amplitude modulation inside the cavity then reads

Eam(ntrt) = iτendvam(t) + iτcE0 exp [iΦopt[(n− 1)trt]]

+ Ert,am[(n− 1)trt] . (20)

The contribution to the overall noise is given by the KNLC transmitted part, which reads

T (ntrt) = iτcEam(ntrt) exp [Φopt[(n− 1)trt]] . (21)

In analogy to Eqs. (11) – (14), the coefficients of the input-output transfer function L(Ω) are
determined from the FFT of T (ntrt). Finally, the total power spectral density matrix is given
by

Stot(Ω) = S(T(Ω)) + S(L(Ω)) . (22)

3. Amplitude quadrature squeezing

First, we analyze a shot noise limited (vacuum noise limited, r1 = r2 = 0) input field and
calculate the power noise spectra for several values of the KNLC round-trip loss l2rt. It is
convenient to quantify the loss in terms of the so-called escape efficiency

ηesc =
τ2c

l2rt + τ2c
⇔ l2rt =

τ2c (1− ηesc)
ηesc

. (23)

We consider escape efficiencies of 1 (loss-less), 0.999, 0.99, 0.9 and 0.75, respectively. In
all cases, the KNLC is set to its critical point and the power noise spectrum is calculated
for the X1-quadrature of the reflected mean field (S11,tot). The results are shown in Fig. 3.
The spectrum obtained for the loss-less case agrees with the results of Collet [4] and Reh-
bein [6] and yields the predicted squeezing in the amplitude quadrature. If a KNLC with
internal optical loss (ηesc < 1) is considered, the spectra show a qualitatively different
behaviour. The intra-cavity loss affects the phase space rotation of the reflected light field
such that the squeezed quadrature deviates from the amplitude quadrature. This deviation
increases with increasing loss as can be seen in the lower graph of Fig. 3. Please refer
also to the Wigner functions obtained for the critical point (OP6,crit) shown in Figs. 6 and
7. Correspondingly, for comparatively low escape efficiencies (cyan long dash-dotted and
yellow dash-dotted curves in Fig. 3) the beam reflected off the KNLC shows a considerably
enhanced amplitude quadrature noise at low frequencies. Around the pole frequency of
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Figure 3. Top: Amplitude quadrature noise spectra of the light field reflected off the critical
KNLC for a shot noise limited input field (0 dB reference). The frequency is normalized
to the respective cavity half-bandwidth γ. Five values for the escape efficiency ηesc are
considered. In all cases squeezing of quantum noise can be observed. Bottom: The graph
shows the frequency dependent squeezing angle. Only for the loss-less case the squeezed
quadrature matches the X1-quadrature (0◦) at low frequencies. In presence of intra-cavity
loss the squeezed quadrature deviates from the X1-quadrature. This deviation increases with
increasing loss.

the KNLC the cavity dispersion turns the noise ellipse and thus the squeezed quadrature
towards the amplitude quadrature of the reflected light field. As the (anti-)squeezing levels
degrades at frequencies above the cavity’s bandwidth, only moderate squeezing levels can
be achieved around Ω = γ. In the case of high escape efficiencies (ηesc = 0.999 and 0.99)
considerable amplitude quadrature squeezing can still be achieved in the mid frequency range.
On the contrary, at low frequencies where the (anti-)squeezing factors are comparatively high,
already a small deviation of the squeezed quadrature from the amplitude quadrature leads to
a degraded squeezing level or even a noise enhancement, respectively.

Likewise, we analyze the noise transformation for an input field that still has a Gaussian
statistics but exhibits an unbalanced noise distribution in phase-space. To constitute a realistic
situation of an experiment we choose the noise of the driving field in its Xϑ-quadrature with
20 dB and in its Xϑ+90◦ -quadrature with 10 dB above the reference value. The quadrature
angle ϑ is set to 40◦ with respect to the X1-quadrature of the driving mean field. The results
obtained are shown in Fig. 4. In the loss-less case (ηesc = 1) the relative spectral noise
reduction is essentially the same as in Fig. 3. At high frequencies a slightly enhanced noise
level appears. Here, the (anti-)squeezing levels are almost zero but the cavity dispersion
causes a rotation of the initial noise ellipse (refer to the lower graph) such that the Xϑ-
quadrature approximates the X1-quadrature of the reflected mean field. Please note that at
the lower bound of the considered spectrum the noise reduction is about 45 dB just as in the
case of a shot noise limited driving field (refer to Fig. 3). The squeezing is still about 30 dB
although the driving field exhibits significant classical noise in both of its quadratures. In
contrast to Fig. 3 the spectra obtained for a KNLC with ηesc 6= 1 show narrow dips that fall
below the noise level achieved in the loss-less case. This feature becomes evident by looking
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Figure 4. Top: Amplitude quadrature noise spectra of the KNLC as shown in Fig. 3 but for an
input field with a classical and unbalanced noise distribution in quadrature phase-space. The
noise power in the Xϑ-quadrature and in the Xϑ+90◦ -quadrature are set to 20 dB and 10 dB
above shot noise, respectively. The quadrature angle ϑ is set to 40◦. Middle, Bottom: The
frequency dependent quadrature angle yielding the lowest noise level. The middle graph shows
a zoom of the bottom graph to make the origin of the dips in the spectra obtained for ηesc 6= 1
more obvious (see text). At low frequencies this quadrature angle is almost the same as in
Fig. 3. At frequencies far above the half-bandwidth γ the squeezing factors are comparatively
small but the initial noise distribution is still rotated in phase-space due to the detuned KNLC.

at the middle graph of Fig. 4. It shows the frequency dependence of the quadrature that yields
the lowest noise level. The dips in the spectra occur at that frequency where the squeezed
quadrature coincides with the X1-quadrature (i.e. with 0◦) of the reflected mean field. This
fact is highlighted by the arrows pointing from the middle towards the top graph.

4. Influence of the cavity operating point

The foregone investigations shows that for intra-cavity loss (ηesc < 1) the squeezed
quadrature does not coincide with the X1-quadrature of the reflected mean field at low
frequencies. It is obvious that this quadrature angle must have a connection with the
chosen operating point (OP) of the KNLC. Since we want to prove the KNLC’s capability
for a passive, purely optical reduction laser power noise under consideration of a realistic
experimental situation, we investigate the noise transformation in dependence of the OP.
In view of a possible application in a high-power laser stabilization for e.g. advanced
gravitational-wave detectors [12, 11] a noise reduction at frequencies down to 1 Hz are
required. Thus, an optimization with regard to the noise reduction at low frequencies is
favorable. We investigate the noise transformation for eight OPs at certain frequencies
(Ω = 0.1γ and Ω = γ, where γ is the KNLC’s half-bandwidth). The considered OPs lie
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Figure 5. Left: The graph shows eight OPs on the steep resonance slope of a critical KNLC.
The operating point OP6,crit is the critical point. For all OPs the noise transformations are
investigated in phase space at sideband frequencies corresponding to 0.1γ and γ, respectively.
Right: The graph shows the Wigner function of a vacuum state providing a reference for our
analysis. Note that all modulation fields at sideband frequencies of a monochromatic coherent
state carrier field are, per definition, in a vacuum state. The X1-axis corresponds to the
amplitude quadrature of the carrier field, and theX2-axis to its phase quadrature, respectively.

on the steep resonance slope of the KNLC as illustrated in the left graph of Fig. 5. They
correspond to 0.25 to 0.95 of the intra-cavity power Pres that is achieved on resonance. In all
cases the critical point relates to OP6,crit yielding an intra-cavity power of 0.75Pres [22].

Generally, the modulation state of a light field at Fourier frequency Ω is fully
characterized by its quasi-probability distribution in the quadrature-amplitude phase space –
the so-called Wigner function. Plotted for several OPs, the Wigner function nicely illustrates
the different noise transformations possible for a KNLC. Within the linearized approximation,
Gaussian input noise is generally transformed into noise with again Gaussian statistics. For
such states the corresponding Wigner function is determined by the maximal and minimal
noise levels (in the two orthogonal quadratures) and the orientation of the noise ellipse in
phase-space. One obtains

W =
1

π
exp[−x21,ϑ exp(2r1)− x22,ϑ exp(2r2)] (24)

with

x1,ϑ = x1 cosϑ− x2 sinϑ (25)
x2,ϑ = x1 sinϑ+ x2 cosϑ . (26)

The factors exp(2r1,2) accounts for a squeezed (r1,2 < 0) or an anti-squeezed noise
(r1,2 > 0). For r1,2 = 0 one obtains the Wigner function of a vacuum state as shown in
the right graph of Fig. 5. The Wigner function of a pure, 10 dB amplitude-squeezed state is
determined by r1 = ln(0.1)/2, r2 = ln(10)/2 and ϑ = 0.

We note that Kitagawe and Yamamoto [2] and Reynaud et al. [13] showed that non-
Gaussian Wigner functions can be obtained for strong Kerr non-linearities at zero frequency.
In the frequency and Kerr nonlinearity regime investigated here, non-linear transfer functions
and thus non-Gaussian Wigner functions would also occur, but only for strongly mixed input
states with a corresponding quadrature noise many orders of magnitude above shot noise. The
result would be a mixed non-Gaussian state with an entirely positive Wigner function. In this
work, however, we apply our model to the regime where the noise amplitude is much smaller
than the amplitude of the mean driving field. For every calculation, we have verified that the
transfer functions and thus the noise transformation are indeed linear, thus, the approximation
of Gaussian Wigner functions is appropriate.
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Figure 6. Noise transformations of a (pure) vacuum input state at sideband frequency
Ω = 0.1γ for several operation points (OPs) of the KNLC, in terms of Wigner functions.
Note that every Wigner function is normalized to its maximum. By that, the size of the colored
area increases with the mixedness of the state. For every Wigner function the angle and the
vacuum normalized variance of the state’s lowest noise quadrature is given. Left: ηesc = 1
(loss-less). At OP6,crit the squeezed quadrature matches the amplitude quadrature. Middle:
ηesc = 0.9. The loss changes the phase-space rotation such that the squeezed quadrature
matches the X1-quadrature at two OPs, one close to OP4 and another close to OP8. Right:
ηesc = 0.75. Again, the squeezed quadrature matches the X1-quadrature at OPs that depart
from the critical point OP6,crit. The high optical loss leads to strongly mixed states.

Figure 7. Noise transformations for Ω = γ. Left: ηesc = 1 (loss-less). Due to the
cavity dispersion at high frequencies no OP yields amplitude quadrature squeezing. Middle:
ηesc = 0.9. In contrast to the loss-less case there still exist two OPs at which the squeezed
quadrature matches the X1-quadrature (one close to OP3 and another close to OP6,crit).
Right: ηesc = 0.75. Due to the high optical loss the squeezing is strongly degraded. At
OPs close to OP2 and OP8 the achievable amplitude quadrature squeezing is about 3 dB and
4.9 dB, respectively.

Fig. 6 and Fig. 7 show the noise transformation of a shot noise limited driving field at
two different Fourier frequencies, Ω = 0.1γ and Ω = γ respectively. For both cases we
considered three values for the escape efficiency (ηesc = 1, 0.9 and 0.75). The left 9 tiles of
Fig. 6 (Ω = 0.1γ) and Fig. 7 (Ω = γ) show the Wigner functions obtained for ηesc = 1.
One can see that the squeezed quadrature (e.g. the semi-minor axis of the noise ellipse)
rotates towards the X1-quadrature when approaching the critical point OP6,crit. When the
intra-cavity power is further increased (OP7 and OP8) it rotates in opposite direction back
towards the X2-quadrature. For Ω = 0.1γ (Fig 6, left) being well inside the bandwidth of
the KNLC the squeezed quadrature matches the X1-quadrature at the critical point (OP6,crit).
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Figure 8. Transformations of a driving field (upper left graph) with an unbalanced noise
distribution in phase-space. The semi-major axis of the input noise ellipse corresponds to a
noise level of 20 dB above the shot noise reference, the semi-minor axis to 10 dB above shot
noise. Again, for every Wigner function the angle and the vacuum normalized variance of the
state’s lowest noise quadrature are given. The KNLC has a escape efficiency of η = 0.90. The
considered frequency is Ω = 0.1γ.

Considering Ω = γ (Fig 7, left) the squeezed quadrature only approximates theX1-quadrature
at OP6,crit. This can be explained by the phase-space rotation caused by a detuned cavity at
higher frequencies.

The Wigner functions obtained for ηesc < 1 (middle and right blocks of Fig. 6 and
Fig. 7) show a qualitatively different behavior of the phase-space rotation. The first essential
difference is that for Ω = 0.1γ in all considered cases the squeezed quadrature does not match
the X1-quadrature if the KNLC is operated at its critical point. Again, this fact explains the
enhanced noise at low frequencies in the corresponding spectra (refer to Fig. 3). The second
difference is that the squeezed quadrature oversteps the X1-quadrature at a certain OP and
starts to rotate back again at OPs corresponding to higher intra-cavity powers. That means the
semi-minor axis of the noise ellipse coincides with the X1-quadrature at two OPs that both
depart from the critical point. Both potentially yield a purely optical reduction of laser power
noise or a bright amplitude squeezed state, respectively. Furthermore, from the comparison
of the Wigner functions for Ω = 0.1γ and Ω = γ one can deduce that the squeezing level, or
more generally the noise reduction, can be optimized for a certain frequency by a proper
choice of the OP. Looking at the left block of Fig. 6 the squeezed quadrature optimally
approximates the X1-quadrature at a frequency of Ω = 0.1γ if the KNLC is operated at
OP6,crit. In contrast, for Ω = γ (left graph of Fig. 6) the best approach is obviously obtained
at a OP being close to OP5.

Fig. 8 illustrates the noise transformation of a driving field showing significant classical
noise, i.e. being in a highly mixed state. This field is constituted just as in the previous section
(refer to Fig. 4). The KNLC has an escape efficiency of ηesc = 0.9. The frequency considered
is Ω = 0.1γ. Again, it can be deduced that there exist two OPs (one close to OP4 and another
close to OP8) that yield a noise reduction in the X1-quadrature of the reflected mean field.
Although the driving field exhibits considerable classical noise, a reduction even below shot
noise can be achieved. From the comparison with the middle plot of Fig. 6 one can deduce
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Figure 9. Top: Amplitude quadrature noise spectra for a shot-noise limited input field
reflected off the KNLC, which is operated at the optimum operation points, respectively,
in order to provide maximum squeezing levels for different intra-cavity loss values. The
squeezing levels approach the value 10 log10(1− ηesc) at low frequencies. Bottom:
Frequency dependence of the squeezing angle (quadrature angle of lowest noise). The OPs
are chosen such that this angle is zero at low frequencies in all cases.

that the orientation of the input field’s noise ellipse has a significant influence on the squeezed
quadrature of the transformed noise, but only at OPs corresponding to intra-cavity powers
smaller than 0.5Pres. For higher intra-cavity powers (OP4 to OP8) where the (anti-)squeezing
levels increases, the squeezed quadrature can be found to be almost the same as in the case of
a shot noise limited driving field.

5. Optimisation in the case of loss

From the phase-space representation of the noise transformation (Figs. 6 and 7) we found
that also a critical KNLC with internal loss can yield a noise reduction in the amplitude
quadrature of the reflected mean field if the OP is chosen properly. By the choice of the OP
the noise reduction can be optimized at a certain frequency. Here we focus on low sideband
frequencies being below the cavity half-linewidth γ. This regime is of great importance
since passive filtering with standard optical cavities can provide a noise reduction only at
frequencies above the cavity half-linewidth. Remember that there are two potential OPs
yielding a noise reduction at low frequencies. We found that the OP that corresponds to
higher intra-cavity powers yields slightly better noise reduction. The spectra obtained at the
respective optimized OP for a shot noise limited driving field are shown in Fig. 9. The lower
graph shows the frequency dependence of the quadrature angle yielding the lowest noise. As
intended, at low frequencies it coincides with the amplitude quadrature of the reflected mean
field. The achieved squeezing levels (top graph) are solely limited by the intra-cavity loss and
approximate the value 10 log10(1 − ηesc) at low frequencies. Although the optimized OPs
depart from the critical point the degradation of the squeezing level is solely caused by the
vacuum noise contribution corresponding to the optical loss.

Similarly, we consider the optimization for the input field showing classical noise as
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Figure 10. Amplitude quadrature noise spectra with optimized noise reduction as in Fig. 9,
but here for the input field previously considered in Figs. 4 and 8.

.

already considered for Figs. 4 and 8. The resulting spectra are shown in Fig. 10. Despite
significant driving noise considerable squeezing levels can still be achieved at low frequencies.
In the presence of optical loss the squeezing level at low frequencies is still limited to a value
of 10 log10(1−ηesc), i.e. classical noise of the driving field does not limit the squeezing but its
bandwidth. In view of a purely optical passive reduction of laser power noise in the classical
regime, a considerable reduction at low frequencies is always possible, independent of the
input fields noise distribution.

6. Comparison with experimental data

Finally we model the KNLC that was used in [1] for a passive, purely optical reduction of
laser power noise. Its coupling mirror power reflectance was Rc = 0.983. The intra-cavity
round-trip loss was estimated to 0.5 % resulting in an escape efficiency of ηesc ≈ 0.77. The
KNLC’s half-bandwidth was about γ ≈ 2π · 4.5 MHz. The pump beam was guided through
a modecleaner ring cavity acting as spatial and low-pass filter (refer to Fig. 2 in [1]). The
filtered beam had a power of about 750 mW and was coupled to the KNLC. It was shown in
[1] that for this input power the KNLC was very close to its critical state. The reflected beam
was guided through the mode cleaner a second time and eventually detected with a photo
diode realizing a measurement of the reflected mean field’s amplitude quadrature noise.

In order to model the experimental situation of [1], first, the characteristics of the input
field need to be taken into account. Thus, we have performed a spectral analysis of the power
noise of a free running Nd:YAG laser identical to that used in [1]. Additionally, we performed
a tomographic noise analysis at the frequency of the laser’s relaxation oscillation using a
balanced homodyne detector. The tomography has revealed that the semi-major axis of the
reconstructed noise ellipse deviates by roughly ϑ = 10◦ from the mean field’s amplitude
quadrature (i.e. Xϑ−10◦ = X1). Furthermore, the noise level in the Xϑ+90◦ -quadrature
corresponding to the semi-minor axis of the noise ellipse has been found to be about 33 dB
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Figure 11. Comparison of our modeled (top) with the measured noise reduction spectra
(bottom) obtained in [1] for different operation points of the KNLC, normalized to the peak
input noise. Our model assumes an additional intra-cavity 1/f -phase-noise in order to achieve
the qualitative agreement shown. The grey curve in the top graph is obtained instead of the
magenta curve, if no additional phase noise is considered.

below the level in the Xϑ-quadrature. In our noise model we use the appropriately scaled
power noise measurement as a description of the noise spectrum in the Xϑ-quadrature. Also
in accordance with measurement results we approximated the noise in theXϑ+90◦ -quadrature
by a cavity pole function having a 1/f2-scaling above the laser relaxation oscillation.
Furthermore, the orientation of the noise ellipse in phase-space is assumed to be ϑ = 10◦

for all frequencies. In order to account for the modecleaner in the experimental setup, the
input noise data are multiplied by a another pole function describing the modecleaner’s low-
pass behavior before the transformation introduced by the KNLC is calculated.

Second, we have verified that the assumption of a linear noise transformation is still
appropriate for the power and frequency regime investigated in [1]. Although the noise
level in the Xϑ-quadrature of the driving field is at the laser relaxation oscillation frequency
several orders above shot noise, our time-domain simulation does not show any harmonic
frequencies. Instead, we find that for the modeled critical KNLC (Pin = 750 mW,
ηesc = 0.77, γ = 2π · 4.5 MHz) the non-linear property of the transfer function in the
frequency regime above Ω = 0.1γ only becomes significant for input noise levels 5 orders
of magnitude above the experimentally found peak value. Finally, the field reflected off the
critical KNLC is multiplied by the pole function and attenuated to about 150 mW in order to
model the modecleaner low-pass filtering and the photo-electric detection scheme used in [1],
respectively.
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Fig. 11 compares the modeled X1-noise-reduction spectra (top) with the experimental
results (bottom). As in [1], seven exemplary OPs are considered. They are chosen with re-
spect to the noise reduction at the laser’s relaxation oscillation frequency. As already stated
in [1], the experimental noise reduction spectra show additional noise in the mid-frequency
range. We have verified that this noise is not due to the Kerr effect since it also appears when
the Kerr effect is switched off by rotating the light’s polarization by 90◦. Presumably, this
excess noise is thermally driven (e.g. by thermo-refractive noise [23]) as the intra-cavity pow-
ers reached values in the order of 100 W at a waist size of about 30µm. In our model we
assume an intra-cavity 1/f -phase-noise that scales with the square of the intra-cavity power.
The strength of this phase noise is fitted such that the magenta curve is obtained from the
spectrum yielding the best noise reduction (grey curve in Fig. 11). This phase noise model is
used for all other curves. Doing so it is possible to model noise reduction spectra being in an
excellent agreement with the experimental results.

7. Summary

We have theoretically investigated the noise transformation of a critical KNLC based on a
rigorous treatment in a time-domain simulation. We have eventually aimed at the modeling
of the passive laser noise reduction with such a cavity, as observed in [1]. The comparison
of our modeled laser power noise reduction spectra showed an excellent agreement with the
experimental results of the work mentioned when adding a 1/f excess phase noise. Our
model revealed that the knowledge of both, the optical loss inside the KNLC as well as
the phase space distribution of the input laser noise are crucial for a correct description.
In our time-domain simulation of the experimental data of [1] we have not observe the
transformation of input noise to other frequencies, i.e. linearized equations would have been
equally valid. We therefore restricted our entire theoretical analysis of the influence of optical
loss and input noise phase space distribution presented here to the regime of linear transfer
functions. Our analysis has shown that a KNLC is generally able to provide a noise reduction
beyond shot noise, even in the presence of optical intra-cavity loss and classical driving noise.
We have found that the noise reduction in the amplitude quadrature of the reflected mean
field can be optimized by the choice of the KNLC operating point. The noise reduction level
at frequencies much smaller than the KNLC’s half-bandwidth γ has not been found to be
limited by the noise of the driving field, but solely by the intra-cavity loss. The bandwidth
in which significant squeezing levels can be achieved, however, has turned out to be limited
by the amount of classical noise carried by the driving field. We believe that the presented
investigations and our numerical model have a high potential to estimate parameters required
in existing and future experiments aiming at a purely optical reduction of laser noise or at
the squeezing of quantum-noise based on a KNLC. A future experiment with considerably
stronger driving noise than present in [1] may show whether our approach is also able to
correctly model nonlinear transfer functions and the generation of non-Gaussian noise through
a critical KNLC.
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