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Abstract. The quantum state of light changes its nature when being reflected off

a mechanical oscillator due to the latter’s susceptibility to radiation pressure. As a

result, a coherent state can transform into a squeezed state and can get entangled with

the motion of the oscillator. The complete tomographic reconstruction of the state of

light requires the ability to readout arbitrary quadratures. Here we demonstrate such

a readout by applying a balanced homodyne detector to an interferometric position

measurement of a thermally excited high-Q silicon nitride membrane in a Michelson-

Sagnac interferometer. A readout noise of 1.9 · 10−16
m/

√
Hz around the membrane’s

fundamental oscillation mode at 133 kHz has been achieved, going below the peak

value of the standard quantum limit by a factor of 8.2 (9 dB). The readout noise

was entirely dominated by shot noise in a rather broad frequency range around the

mechanical resonance.

PACS numbers: 42.50.-p 42.50.Lc 03.65.-w

1. Introduction

Experiments in quantum opto-mechanics seek to create and study pure quantum states

in compound systems of mechanical oscillators and light. Recently, the quantum

mechanical ground state of a mechanical oscillator was reached using laser cooling

based on the light’s radiation pressure [1]. Radiation pressure coupling of light and

mechanical devices also forms the basis for proposals to produce (ponderomotively)

squeezed states of light [2] as well as to produce entanglement between light fields and

mechanical motion [3, 4] or between two mechanical objects [5] providing a means for

reliable storage of quantum states [6]. A tomographic characterization of the optical

and mechanical subsystems involved are necessary to provide a full description of the

quantum state.
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Figure 1. Sketch of the Michelson-Sagnac interferometer with homodyne readout

scheme. The laser light is split by a balanced beam splitter and recombined after

reflection at the membrane. Signal sidebands leak out the dark port and are overlapped

with a strong local oscillator (LO) on a second (homodyne) beam splitter. An electro-

optical modulator (EOM) provided a phase modulation (PM) to generate an error

signal for locking the homodyne readout phase θ.

Here we apply a broadband tomographic characterization of the optical subsystem

to an opto-mechanical system around its mechanical resonance, i.e. a tomographic

interferometer readout. The system is a Michelson-Sagnac interferometer containing a

translucent, high-Q mechanical oscillator. The readout scheme is a balanced homodyne

detector (BHD) allowing the measurement of arbitrary field quadratures, which is

necessary for a generic full description of the state.

In figure (1) the Michelson-Sagnac interferometer of our experiment is sketched

within the dashed circle. It consisted of a balanced (50/50) beam splitter and two

steering mirrors forming its Sagnac mode. A commercially available silicon nitride

(SiN) membrane [7] was placed in the center of the folded arms. The reflected

parts of the light were overlapped with the respective transmitted parts and formed

the interferometer’s Michelson mode, which was sensitive to a displacement of the

membrane. The interference of all four beams at the beam splitter towards the

interferometer’s signal output was controlled to be destructive in order to provide a so-

called ’dark port’. A detailed description can be found in [8]. The topology’s quantum
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noise contributions have been theoretically analyzed in [9] and the first experimental

realization of the topology was reported in [8, 10] using a conventional single photodiode

readout. Recently, the Michelson-Sagnac topology was theoretically investigated in view

of the realization of dissipative opto-mechanical coupling [11].

The membrane used in this work had a measured power reflectivity of R = 17%

at a laser wavelength of 1064 nm under normal incidence. By taking into account the

material’s index of refraction nSiN = 2.2 [12] its thickness could be deduced to 40 nm.

This together with the membranes side length of 1.5 mm results in an effective mass of

m = 80 ng [10]. The interferometer was operated inside a vacuum chamber to avoid gas

damping or excitation of the membrane motion. We determined the mechanical quality

factor Q of the fundamental oscillation mode for different pressures. As result, we found

Q = 6 · 105 for gas pressures below 4 · 10−6 mbar.

A piezoelectric element (piezo) actuated the membrane’s position such that the

carrier light destructively interfered in the interferometer’s signal output port. The

signal field thus mainly contained the upper and lower sideband fields that were produced

by the thermally excited membrane motion. To accomplish the tomographic readout,

the output field was overlapped with an external local oscillator (LO) field of the same

optical frequency as the interferometer’s input on a 50/50 beam splitter. The light of

the two beam splitter output ports was directed to two photodiodes forming a balanced

homodyne detector. The difference of the photocurrents depends on the relative phase

θ between the LO and signal field and can be written as

i−(θ) ∝ αLOXθ = αLO(cos(θ)X1 + sin(θ)X2) . (1)

Here, αLO is the coherent amplitude of the local oscillator, X1 and X2 are the

amplitude and phase quadrature amplitudes of the signal field with respect to its

coherent amplitude, and Xθ is the quadrature amplitude at a phase angle θ. Note,

that the above equation is only valid if αLO is much bigger than the coherent amplitude

of the signal beam, which is close to zero (exactly zero in case of perfect interferometer

contrast) for the interferometer operated on its dark port.

The membrane’s thermally driven motion generates an excitation of the reflected

light’s phase quadrature, which is converted to an amplitude quadrature excitation of

the interferometer’s output field by the interference at the beam splitter. Vice versa, the

output field’s phase quadrature is a measure of the differential amplitude quadrature

excitation in the two arms of the interferometer. Due to the strong laser noise rejection

at the Michelson dark-port this excitation is given by optical quantum noise, i.e. by

shot noise.

Figure (2) shows a zero-span measurement of the noise power at the membrane’s

resonance frequency fres while the readout quadrature angle θ was scanned by a

piezo driven mirror. This measurement is a tomographic readout because it allows

for reconstruction of the output light’s Wigner-function. Indeed the motion of the

membrane is not visible in one particular quadrature angle where the noise power reaches

shot noise. Note that squeezing is not expected in our setup due to the low laser power



Tomographic readout of an opto-mechanical interferometer 4

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

N
o

is
e

 p
o

w
e

r 
(d

B
m

)

Time (s)

Maximum thermal noise

(amplitude quadrature)

No thermal noise

(phase quadrature)

Figure 2. Zero-span noise-power measurement at the membrane’s fundamental

resonance frequency fres = 133.88 kHz. The readout phase θ is scanned continuously.

The blue curve shows the measured noise power, the dashed green line its theoretical

model, and the grey curve shows the independently measured shot noise. For a

particular quadrature phase (θ = π/2), no membrane displacement but only shot noise

was measured. The black curve shows electronic dark noise. The resolution bandwidth

(RBW) was set to 10 kHz.

and the high level of thermal noise. In figure (3) measured spectra of the output light

around the membrane’s eigenfrequency are shown for various guadrature angles. For a

readout quadrature of θ = π/2 almost no signal from the membrane excitation is visible.

In figure (4) we present the broadband power spectrum for a frequency range from

10 kHz to 25 MHz. Here, we stabilized the readout homodyne phase to the amplitude

quadrature θ = 0. For this purpose, an electro-optic modulator (EOM) imprinted a

phase modulation of fmod = 10 MHz on the local oscillator beam. The homodyne signal

was demodulated with the modulation frequency, generating an error signal for locking

the homodyne readout phase via the above mentioned piezo driven mirror. The read

out is limited by quantum shot noise for frequencies above 50 kHz.

In figure (5) we characterized the sensitivity of the Michelson-Sagnac interferometer

with balanced homodyne detector readout for three different interferometer light powers.

The spectra were converted into displacement spectral densities by the method described

in [10] and independently by a calibrated piezo driven membrane motion with f =

128 kHz. Starting from Pin = 20 mW we increased the input power to 200 mW.

The phase of the balanced homodyne detector’s local oscillator was controlled to the

amplitude quadrature (θ = 0) and its power was PLO = 12 mW for all measurements.

The signal power in all measurements was always less than 0.5 mW.

The quantum shot noise was measured by blocking the interferometer output at

the BHD. A comparison between the calibrated shot noise and its theoretical prediction

(1) carried out in [10] indicated an overall loss of 50% in the experiment. This value

agreed with our expectations and was given by the imperfect quantum efficiency of our

balanced homodyne detector of separately mesasured 70% and imperfect reflectivities
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Figure 3. Noise power spectra taken for different values of the quadrature angle θ.

The top curve was taken with θ = 0 (black line) while the horizontal trace corresponds

to shot noise (gray line). As θ approaches π/2, less information about the membrane

displacement is captured. Electronic dark noise is plotted in dark-gray.

of the interferometer input and output optics. We expect that with better photo

diodes and high-quality optics the overall loss can be reduced to below 10% in future

experiments. For each input power, the optical shot noise is plotted in grey (dashed
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Figure 4. Noise power spectrum taken while θ = 0. Above 50 kHz the spectrum

is limited by optical shot noise. For smaller frequencies, accoustics and other noise

sources are present. The upper readout limit of 25 MHz is set by electronics only. The

RBW was 10 kHz and the data has been normalized by the modelled electronic transfer

function of the photo detector. The bump at 8 MHz is due to imperfect modelling.
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Figure 5. Calibrated spectra for different input powers Pin. The measured shot noise

level for Pin = 200 mW is plotted in gray. The corresponding electronic dark noise level

is plotted as brown line. Each dashed gray line indicates the calculated shot noise level

for each individual input powers. The orange dashed line shows the uncorrelated sum

of shot noise and thermal noise for 200 mW input power. It is in excellent agreement

with the measurement. The standard quantum limit is plotted as solid black line. A

defined displacement marker at 128 kHz is used for calibration of the y-axis.

lines). Off resonance, it is the dominant noise source within a broad frequency range from

50 kHz to 25 MHz in all measurements. For Pin = 200 mW a displacement sensitivity of

1.9 · 10−16 m/
√
Hz at 120 kHz could be achieved. The orange dashed line corresponds to

the uncorrelated sum of the thermal and shot noise. The gap between the three different

measured shot noise levels exactly matches
√
10 and

√
4 as predicted by theory.

To conclude, we applied a tomographic readout to fully characterize the state of

light being reflected off a thermally excited SiN membrane at room temperature. The

readout was shot noise limited over a broad spectral region around the mechanical

resonance and achieved an imprecision significantly below the standard quantum limit

at the membrane’s resonance frequency. In comparison to a simple amplitude quadrature

readout using a single photodiode, the balanced homodyne detector has the advantage

that the interferometer can be operated precisely at a dark port providing full laser noise

rejection. Additionally, the readout local oscillator acts as a mode selective element,

which is useful to discriminate residual transversal modes at the interferometer signal

output port. Our setup is in principle able to detect nonclassical properties of the

output light such as ponderomotive squeezing [2] or could be part of an opto-mechanical

entanglement analysis [3]. As the displacement sensititivity is limited by quantum shot

noise, it could be enhanced by injecting squeezed states of light as demonstrated in

numerous table-top experiments [13, 14, 15].
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