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Abstract

We give sufficient and necessary geometric conditions, guaranteeing that an immersed com-
pact closed manifold Σm ⊂ Rn of classC1 and of arbitrary dimension and codimension (or, more
generally, an Ahlfors-regular compact set Σ satisfying a mild general condition relating the size of
holes in Σ to the flatness of Σ measured in terms of beta numbers) is in fact an embedded manifold
of class C1,τ ∩W 2,p, where p > m and τ = 1−m/p. The results are based on a careful analysis
of Morrey estimates for integral curvature–like energies, with integrands expressed geometrically,
in terms of functions that are designed to measure either (a) the shape of simplices with vertices
on Σ or (b) the size of spheres tangent to Σ at one point and passing through another point of Σ.

Appropriately defined maximal functions of such integrands turn out to be of class Lp(Σ) for
p > m if and only if the local graph representations of Σ have second order derivatives in Lp

and Σ is embedded. There are two ingredients behind this result. One of them is an equivalent
definition of Sobolev spaces, widely used nowadays in analysis on metric spaces. The second one
is a careful analysis of local Reifenberg flatness (and of the decay of functions measuring that
flatness) for sets with finite curvature energies. In addition, for the geometric curvature energy
involving tangent spheres we provide a nontrivial lower bound that is attained if and only if the
admissible set Σ is a round sphere.

MSC 2000: 28A75, 46E35, 53A07

1 Introduction

In this paper we address the following question: under what circumstances is a compact,m-dimensional
set Σ in Rn, satisfying some mild additional assumptions, an m-dimensional embedded manifold of
class W 2,p? For p > m = dim Σ we formulate two necessary and sufficient criteria for a positive
answer. Each of them says that Σ is an embedded manifold of class W 2,p if and only if a certain ge-
ometrically defined integrand is of class Lp with respect to the m-dimensional Hausdorff measure on
Σ. One of these integrands measures the flatness of all (m+1)-dimensional simplices with one vertex
at a fixed point of Σ and other vertices elsewhere on Σ; see Definition 1.2. The other one measures
the size of all spheres that touch an m-plane passing through a fixed point of Σ and contain another
(arbitrary) point of Σ (Definition 1.3).
∗Partially supported by the MNiSzW Research project N N201 611140.
†Partially supported by the DFG–MNiSzW research project Geometric curvature energies (Mo966/4-1).
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The extra assumptions we impose on the set Σ are: (1) Ahlfors regularity with respect to the m-
dimensional Hausdorff measure H m, and (2) roughly speaking, a certain relation between the flatness
of Σ and the size of “holes” it might have: the flatter Σ is, the smaller these holes must be. To state the
main result, Theorem 1.4, formally, let us first specify these two conditions precisely and then define
the geometric integrands mentioned above. Throughout the paper we denote with Bn(a, s) an open
n-dimensional ball of radius s centered at the point a ∈ Rn, and we write a ≈ b if a/C ≤ b ≤ Ca for
some constant C ≥ 1, and a . b (or a & b), if only the left (or right) of these inequalities holds.

1.1 Statement of results

Definition 1.1 (the class of m-fine sets). Let Σ ⊂ Rn be compact. We call Σ an m-fine set and write
Σ ∈ F (m) if there exist constants AΣ > 0 and MΣ ≥ 2 such that

(i) (Ahlfors regularity) for all x ∈ Σ and r ≤ diam Σ we have

H m(Σ ∩ Bn(x, r)) ≥ AΣr
m ; (1.1)

(ii) (control of “holes” in small scales) for each x ∈ Σ and r ≤ diam Σ we have

θΣ(x, r) ≤MΣ βΣ(x, r) .

Here, βΣ and θΣ denote, respectively, the beta numbers and the bilateral beta numbers of Σ,
defined by

βΣ(x, r) :=
1

r
inf

{
sup

z∈Σ∩B(x,r)
dist(z, x+H) : H ∈ G(n,m)

}
, (1.2)

θΣ(x, r) :=
1

r
inf
{
dH (Σ ∩ B(x, r), (x+H) ∩ B(x, r)) : H ∈ G(n,m)

}
, (1.3)

where G(n,m) stands for the Grassmannian of all m-dimensional linear subspaces of Rn, and where

dH (E,F ) := sup{dist(y, F ) : y ∈ E}+ sup{dist(z, E) : z ∈ F}

is the Hausdorff distance of sets in Rn. Intuitively, condition (ii) of Definition 1.1 ascertains that if
Σ is flat at some scale r > 0, then the gaps and holes in Σ cannot be large. Their sizes are at most
comparable to the degree of flatness of Σ. If an m-fine set Σ satisfies βΣ(x, r) → 0 uniformly w.r.t
x ∈ Σ as r → 0, then Σ is Reifenberg flat with vanishing constant, see e.g. G. David, C. Kenig and T.
Toro [5, Definition 1.3] for a definition. However, note that neither the Reifenberg flatness of Σ, nor
rectifiability of Σ itself is required in Definition 1.1. Both these properties follow from the finiteness
of geometric curvature energies we consider here.

It is relatively easy to see that F (m) contains immersedC1 submanifolds of Rn (cf. [16, Example
1.60] for a short proof), or embedded Lipschitz submanifolds without boundary. It also contains other
sets such as the following stack of spheres Σ =

⋃∞
i=0 Σi∪{0}, where the 2-spheres Σi = S2(ci, ri) ⊂

R3 with radii ri = 2−i−2 > 0 are centered at the points ci = (pi + pi+1)/2 for pi = (2−i, 0, 0) ∈ R3,
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Figure 1: Left: a union of countably many spheres is in F (2) ∩A (δ). Right: a set in F (1) \A (δ).

i = 0, 1, 2, . . . . Note that the spheres Σi and Σi+1 touch each other at pi+1, and the whole stack Σ is
an admissible set in the class F (2); see Figure 1.

A slightly different class A (δ) of admissible sets was used by the second and third author in [29].
Roughly speaking, the elements of A (δ) are Ahlfors regular unions of countably many continuous
images of closed manifolds, and have to satisfy two more conditions: a certain degree of flatness and a
related linking condition; all this holds up to a set of H m-measure zero. The class A (δ) contains, for
example, finite unions ofC1 embedded manifolds that intersect each other along sets of H m-measure
zero (such as the stack of spheres in Figure 1), and bi-Lipschitz images of such unions, but also certain
sets with cusp singularities. For example, an arc with two tangent segments,

A =
{
x ∈ R2 : x1, x2 ≥ 0 and

(
x2

1 + x2
2 = 1 or max

i=1,2
|xi| = 1

)}
is in A (δ) for each δ > 0. However,A is not in F (1) as the βA(·, r) goes to zero as r → 0 at the cusp
points while θA(x, r) remains constant there. On the other hand, the union of a segment and countably
many circles that are contained in planes perpendicular to that segment,

{
(t, 0, 0) : t ∈ [0, 1]

}
∪
∞⋃
j=1

γj ∪
∞⋃
j=2

γ̃j ,

where
γj =

{
2−j(1, cosϕ, sinϕ) : ϕ ∈ [0, 2π]

}
and γ̃j is the image of γj under the reflection (x, y, z) 7→ (1 − x, y, z), is not in A (δ) as the linking
condition is violated at all the points of the segment but it does belong to F (1), as the circles prevent
the β(x, r) from going to zero at the endpoints of the segment.

Both F (m) and A (δ) contain sets of fractal dimension, e.g. sufficiently flat von Koch snowflakes.
However, if one of our curvature energies of Σ is finite, it follows rather easily that the Hausdorff
dimension of Σ must be m.
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Definition 1.2 (Global Menger curvature at a point). Let Σ ∈ F(m) and x ∈ Σ. Set

KG[Σ](x) ≡ KG(x) := sup
x1,...,xm+1∈Σ

K(x, x1, . . . , xm+1) ,

where

K(x, x1, . . . , xm+1) :=
H m+1(conv(x, x1, . . . , xm+1))

diam
(
{x, x1, . . . , xm+1}

)m+2 , (1.4)

and conv(E) and diam(E) denote the convex hull and the diameter of a set E, respectively1. We say
that KG(x) is the global Menger curvature of Σ at x.

When m = 1 and Σ is just a curve or a more general one-dimensional set then K(x0, x1, x2)
is the ratio of the area of the triangle T = conv(x0, x1, x2) to the third power of the maximal edge
length of T . Thus, K is controlled by R(T )−1, where R(T ) is the circumradius of T ;

K(x0, x1, x2) ≤ 1

4R(T )
=

Area (T )

|x0 − x1| |x1 − x2| |x2 − x0|
.

For triangles with angles bounded away from 0 and π, both quantities are in fact comparable. There-
fore, in this case our global curvature function KG does not exceed a constant multiple of the global
curvature as defined by O. Gonzalez and J.H. Maddocks [12], and widely used afterwards; see
e.g. [13], [4], [22], [21], [23], [27], [10], [9], and for global curvature on surfaces [25], [26]. Also
for m = 2, integrated powers of a function quite similar to K(x0, x1, x2) in (1.4) were used in [28] to
prove geometric variants of Morrey-Sobolev imbedding theorems for compact two-dimensional sets
in R3 in an admissibility class slightly more general than the class A (δ) defined in [29].

To define the second integrand, we first introduce the tangent-point radius, which for the purposes
of this paper is a function

Rtp : Σ× Σ×G(n,m)→ [0,+∞]

given by

Rtp(x, y;H) :=
|y − x|2

2 dist(y, x+H)
. (1.5)

Geometrically, this is the radius of the smallest sphere tangent to the affine m-plane x + H and
passing through x and y. (If y happens to be contained in x + H , in particular if y = x, then we set
1/Rtp(x, y;H) = 0.)

Definition 1.3 (Global tangent-point curvature). Assume that H : Σ → G(n,m) is an arbitrary
map. Set

Ktp[Σ](x) ≡ Ktp(x) ≡ Ktp(x,H(x)) := sup
y∈Σ

1

Rtp(x, y;H(x))
.

Of course, the definition of Ktp : Σ → [0,+∞] depends on the choice of H . However, we shall
often omit the particular map H from the notation, assuming tacitly that a choice of ‘tangent’ planes
Σ 3 x 7→ H(x) ∈ G(n,m) has been fixed.

1The function in (1.4) resembles the type of discrete curvatures considered by G. Lerman and J.T. Whitehouse [18], [17]
but scales differently, see Remark 5.2 in [28].
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Theorem 1.4. Let 0 < m < n and Σ ∈ F(m). Assume p > m. The following conditions are
equivalent:

(1) Σ is an embedded W 2,p-submanifold of Rn without boundary;

(2) KG[Σ] ∈ Lp(Σ,H m);

(3) There is a map H : Σ→ G(n,m) such that for this map

Ktp[Σ] ≡ Ktp(·, H(·)) ∈ Lp(Σ,H m).

A quick comment on the equivalence of (1) and (3) should be made right away: it is a relatively
simple exercise to see that for a C1 embedded manifold Σ the Lp norm of Ktp(·, H(·)) can be finite
for at most one continuous mapH : Σ→ G(n,m) – the one sending every x ∈ Σ to TxΣ ∈ G(n,m).

Let us also mention a toy case of the equivalence of conditions (1) and (2) in the above theorem.
For rectifiable curves γ in Rn the equivalence of the arc-length parametrization Γ of γ being injective
and in W 2,p, and the global curvature of γ being in Lp has been proved by the second and third author
in [27]. To be more precise, let SL := R/LZ, L > 0, be the circle with perimeter L, and denote by
Γ : SL → Rn the arclength parametrization of a closed rectifiable curve γ : S1 → Rn of length L.
Then the global radius of curvature function ρG[γ] : SL → R, ; see, e.g., [13], is defined as

ρG[γ](s) := inf
σ,τ∈SL\{s}

σ 6=τ

R(Γ(s),Γ(σ),Γ(τ)), s ∈ SL (1.6)

where, again, R(·, ·, ·) denotes the circumradius of a triangle, and the global curvature κG[γ](s) of γ
is given by

κG[γ](s) :=
1

ρG[γ](s)
. (1.7)

In [27] we prove for p > 1 that Γ ∈ W 2,p(SL,Rn) and Γ is injective (so that γ is simple) if and only
if κG[γ] ∈ Lp. Examples show that this fails for p = 1 = dim γ: There are embedded curves of class
W 2,1 whose global curvature κG is not in L1. The first part of the proof (3)⇒ (1) for m = 1, namely
the optimal C1,τ -regularity of curves with finite energy, is modelled on the argument that was used
in [30] for a different geometric curvature energy, namely for

s
γ×γ 1/Rqtp.

We conjecture that the implications (1)⇒ (2), (3) of Theorem 1.4 fail for p = m > 1.

Remark. If (2) or (3) holds, then according to Theorem 1.4 Σ is embedded and locally, for some
R > 0, Σ ∩ Bn(x,R) is congruent to a graph of a W 2,p function f : Rm → Rn−m. Since p > m,
we also know from a result of A. Calderón and A. Zygmund (see e.g. [7, Theorem 1, p. 235]) that
Df : Rm → L(Rm,Rn−m) is differentiable a.e. in the classic sense.

Remark. One can complement Theorem 1.4 by the contribution of S. Blatt and the first author [3]
in the following way. Suppose that 2 ≤ k ≤ m + 2 and in Definition 1.2 one takes the supremum
only with respect to (m+ 2)− k points of Σ, defining the respective curvature KG,k as a function of
k-tuples (x0, x1, . . . , xk−1) ∈ Σk. Suppose that p > m(k − 1) and Σ is a C1 embedded manifold.
Then, KG,k is of class Lp(Σk,H mk) if and only if Σ is locally a graph of class W 1+s,p(Rm,Rn−m),
where s = 1 −m(k − 1)p−1 ∈ (0, 1). If k = m + 2 and p > m(m + 2), then the assumption that
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Σ be a C1 manifold is not necessary; one can just assume Σ ∈ F (m). See [3] for details. We believe
that the characterization of [3] does hold for all 2 ≤ k ≤ m + 2 without the assumption that Σ is of
class C1. (To prove this, one would have to generalize the regularity theory presented in [16] to all
curvatures KG,k).

Blatt’s preprint [2] contains a similar characterization in terms of fractional Sobolev spaces of
those C1 manifolds Σ for which the tangent–point energy

s
Σ×Σ 1/(Rtp)q is finite.

Remark. W. Allard, in his classic paper [1], develops a regularity theory form-dimensional varifolds
whose first variation (i.e., the distributional counterpart of mean curvature) is in Lp for some p > m.
His Theorem 8.1 ascertains that, under mild extra assumptions on the density function of such a
varifold V , an open and dense subset of the support of ‖V ‖ is locally a graph of class C1,1−m/p.
For p > m Sobolev–Morrey imbedding yields W 2,p ⊂ C1,1−m/p and one might naı̈vely wonder
if a stronger theorem does hold, implying Allard’s (qualitative) conclusion just by Sobolev–Morrey.
Indeed, J.P. Duggan [6] proved later an optimal result in this direction. For integral varifolds, W 2,p-
regularity can be obtained directly via elliptic regularity theory, see U. Menne [19, Lemmata 3.6
and 3.21].

In Allard’s case the ‘lack of holes’ is built into his assumption on the first variation δV of V .
Our setting is not so close to PDE theory: both ‘curvatures’ are defined in purely geometric terms
and in a nonlocal way. Here, the ‘lack of holes’ follows, roughly speaking, from a delicate interplay
between the inequality θ(x, r) . β(x, r) built into the definition of F (m) and the decay of β(x, r)
which follows from the finiteness of energy. A more detailed account on our strategy of proof here, is
presented in the next subsection.

At this stage we do not know for our curvature energies what the situation is like in the scale
invariant case p = m. For two-dimensional integer multiplicity varifolds, however (or in the sim-
pler situation of W 2,2-graphs over planar domains) Toro [31] was able to prove the existence of
bi-Lipschitz parametrizations. For m-dimensional sets Toro [32, eq. (1)] established a sufficient con-
dition for the existence of bi-Lipschitz parametrizations in terms of θ. Her condition is satisfied, e.g.,
by S. Semmes’ chord-arc surfaces with small constant, and by graphs of functions that are sufficiently
well approximated by affine functions; see [32, Section 5] for the details.

Remark. Following the reasoning in [27, Lemma 7] one can easily provide nontrivial lower bounds
for the global tangent-point curvature for hypersurfaces (n = m+1), and also for curves m = 1 < n;
see Theorem 1.5 below. Indeed, setting E := ‖Ktp[Σ]‖Lp(Σ), where Σ ⊂ Rn is a compact connected
m-dimensional C1-submanifold without boundary, we can find at least one point x ∈ Σ such that
Ktp[Σ](x) ≤ E/(H m(Σ)1/p), since otherwise we had a contradiction via

E =

(ˆ
Σ

(
Ktp[Σ](x)

)p
dH m(x)

)1/p

>
E

H (Σ)1/p
H (Σ)1/p = E.

Therefore R := infy∈ΣRtp(x, y, TxΣ) ≥H m(Σ)1/p/E. If there existed an open ball Bn(a,R) with

(x+ TxΣ) ∩ ∂Bn(a,R) = {x}

such that Σ ∩ Bn(a,R) 6= ∅, then we could find a strictly smaller sphere tangent to Σ in x and
containing yet another point y ∈ Σ contradicting the definition of R. Hence we have shown that the
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union of such open balls

M :=
⋃
{Bn(a,R) : ∂Bn(a,R) ∩ (x+ TxΣ) = {x}} (1.8)

contains no point of Σ. In other words, Σ is a compact embedded submanifold without boundary,
contained in Rn\M , and one can ask for the area minimizing submanifold in Rn\M . In codimension
one, i.e., for m = n− 1, Σ = ∂Ω for a bounded open set Ω ⊂ Rn, and the union of balls defining M
just consists of two such balls, one in Ω and one in the unbounded exterior of Σ. So, due to the classic
isoperimetric inequality (see, e.g. [8, Theorem 3.2.43]) one finds

H n−1(Σ) ≥ nω1/n
n H n((Ω))

n−1
n

≥ nω1/n
n H n(B(a,R))

n−1
n = H n−1(∂Bn(a,R)) = nωnR

n−1.

which by definition of R can be rewritten as

‖Ktp[Σ]‖Lp(Σ) = E ≥ (H n−1(Σ))
1
p
− 1
n−1 (nωn)

1
n−1 (1.9)

with equality if and only if Σ equals a round sphere. Hence, we obtain the following simple result.

Theorem 1.5. Let p > 0. Among all compact embedded C1-hypersurfaces with given surface area,
the round sphere uniquely (up to isometries) minimizes the energy ‖Ktp[Σ]‖Lp(Σ,H n−1). If p > n− 1,
the same holds true for all (n− 1)-fine sets Σ ∈ F (n− 1).

Similarly, for m = 1 one concludes that any of those great circles on any of the balls Bn(a,R)
generating M in (1.8) that are also geodesics on M uniquely minimize E among all closed simple
C1-curves Σ ≡ γ ⊂ Rn \M , which provides the lower bound

‖Ktp[γ]‖Lp(γ) = E ≥ 2πH 1(γ)
1
p
−1
. (1.10)

This is exactly what we found for curves in [27, Lemma 7 (3.1)], and is also consistent with (1.9) if
n = 2 = m+ 1.

1.2 Essential ideas and an outline of the proof.

This paper grew out of our interest in geometric curvature energies and earlier related research, cf.
[27], [24], [28], [29] and [16]. While working on the integral Menger curvature energy of rectifiable
curves γ ⊂ Rn

Mp(γ) =
y

γ×γ×γ

1

Rp(x, y, z)
dH 1(x) dH 1(y) dH 1(z) , p > 3,

we realized how slicing can be used to obtain optimal Hölder continuity of arc-length parametriza-
tions.2 (The scale invariant exponent p = 3 is critical here: polygons have infiniteMp-energy precisely
for p ≥ 3; see S. Scholtes [20] for a proof).

2The second and the third author of this paper acknowledge with gratitude the stimulating conversations that they had in
the spring of 2008 with Joan Verdera at CRM in Pisa. His insight that most of the work in [24] should and could be phrased
in the language of beta numbers has helped us a lot in our subsequent research.
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One crucial difference between curves γ and m-dimensional sets Σ in Rn for m ≥ 2 lies in the
distribution of mass in balls on various scales: If γ is a rectifiable curve and r < 1

2 diam γ, then
obviously H 1(γ ∩ Bn(x, r)) ≥ r for each x ∈ γ. For m > 1 the measure H m(Σ ∩ Bn(x, r)) might
be much smaller than rm due to complicated geometry of Σ at intermediate length scales. In [28] we
have devised a method, allowing us to obtain estimates of H m(Σ ∩ Bn(x, r)) for m = 2, n = 3 and
all radii r < R0, with R0 depending only on the energy level of Σ in terms of its integral Menger
curvature. This method has been later reworked and extended in the subsequent papers [29], [16], to
yield the so-called uniform Ahlfors regularity, i.e., estimates of the form

H m(Σ ∩ Bn(x, r)) ≥ 1

2
ωmr

m, for all r < R0 = R0(energy) ,

for other curvature energies and arbitrary 0 < m < n (to cope with the case of higher codimension, we
used a linking invariant to guarantee that Σ has large projections onto some m-dimensional planes).
Combining such estimates for H m(Σ ∩ Bn(x, r)) with an extension of ideas from [24] we obtained
in [28], [29] and [16] a series of results, establishing C1,α regularity for surfaces, or more generally,
for a priori non-smooth m-dimensional sets for which certain geometric curvature energies are finite.
Finally, we also realized that the well-known pointwise characterization of W 1,p-spaces of P. Hajłasz
[14] is the missing link, allowing us to combine the ideas from [16] and [29] in the present paper in
order to provide with Theorem 1.4 a far-reaching, general extension of [27, Theorems 1 & 2] from
curves to m-dimensional manifolds in Rn.

Let us now discuss the plan of proof of Theorem 1.4 and outline the structure of the whole paper.
The easier part is to check that if Σ is an embedded compact W 2,p manifold without boundary,

then conditions (2) and (3) hold. We work in small balls B(x,R) centered on Σ, with R > 0 chosen
so that Σ∩B(x,R) is a (very flat) graph of a W 2,p function f : Bm(x, 2R)→ Rn−m. Using Morrey’s
inequality twice, we first show that

βΣ(a, r) . g(a)r, a ∈ B(x,R) ∩ Σ, 0 < r < R ,

for a function g ∈ Lp that is comparable to some maximal function of |D2f |. Next, working with this
estimate of beta numbers on all scales r = R/2k, k = 0, 1, 2, . . ., we show that in each coordinate
patch each of the global curvatures KG and Ktp can be controlled by two terms,

KG(a), resp. Ktp(a) . g(a) + C(R)

where C(R) is a harmless term depending only on the size of the patches. (It is clear from the defi-
nitions that for embedded manifolds one can estimate both KG and Ktp taking into account only the
local bending of Σ and working in coordinate patches of fixed size; the effects of self-intersections
are not an issue). This yields Lp-integrability of KG and Ktp. We refer to Section 4 for the details.

The reverse implications require more work. The proofs that (3) or (2) implies (1) have, roughly
speaking, four separate stages. First, we use energy estimates to show that if ‖KG‖Lp or ‖Ktp‖Lp are
less than E1/p for some finite constant E, then

βΣ(x, r) .

(
E

AΣ

)κ/(p−m)

rκ .
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Here κ denotes a number in (0, 1 −m/p), depending only on m, p with different explicit values for
KG or Ktp, and AΣ is the constant from Definition 1.1 measuring Ahlfors regularity of Σ. By the
very definition of m-fine sets, such an estimate implies that the bilateral beta numbers of Σ tend to
zero with a speed controlled by rκ. In particular, Σ is Reifenberg flat with vanishing constant, and an
application of [5, Proposition 9.1] shows that Σ is an embedded manifold of class C1,κ. See Section
3.1 for more details.

Next, we prove the uniform Ahlfors regularity of Σ, i.e. we show that

H m(Σ ∩ B(x, r)) ≥ 1

2
H m(Bm(x, r))

for all radii r ∈ (0, R0), where R0 depends only on the energy bound E and the parameters n,m, p,
but not at all on Σ itself. Here, we rely on methods from our previous papers [16] and [28,29]. Roughly
speaking, we combine topological arguments based on the linking invariant with energy estimates to
show that for each r < R0 = R0(E,n,m, p) the portion of Σ in Bn(x, r) has large projection onto
some plane H = H(r) ∈ G(n,m). See Section 3.2.

(There is a certain freedom in this phase of the proof; it would be possible to prove uniform
Ahlfors regularity first, and estimate the decay of βΣ(x, r) afterwards. This approach has been used
in [28, 29].)

After the second step we know that in coordinate patches of diameter comparable to R0 the man-
ifold Σ coincides with a graph of a function f ∈ C1,κ(Bm,Rn−m). The third stage is to bootstrap the
Hölder exponent κ to the optimal τ = 1 − m/p > κ for both global curvatures KG and Ktp. This
is achieved by an iterative argument which uses slicing: If the integral of the global curvature to the
power p over a ball is not too large, then this global curvature itself cannot be too large on a substantial
set of good points in that ball. Geometric arguments based on the definition of the global curvature
functions KG and Ktp show that |Df(x) −Df(y)| . |x − y|τ on the set of good points. It turns out
that there are plenty of good points at all scales, and in the limit we obtain a similar Hölder estimate
on the whole domain of f . See Section 3.3.

The fourth and last step is to combine the C1,τ -estimates with a pointwise characterization of
first order Sobolev spaces obtained by Hajłasz [14]. The idea is very simple. Namely, the bootstrap
reasoning in the third stage of the proof (Section 3.3) yields the following, e.g. for the global Menger
curvature KG: On a scale R1 ≈ R0, the intersection Σ ∩ Bn(a,R1) coincides with a flat graph of a
function f : P ' Rm → Rn−m ' P⊥, with

|Df(x)−Df(y)| .
(ˆ

Bm(x+y
2
,5|x−y|)

KG
(
(ξ, f(ξ))

)p
dξ

)1/p

|x− y|τ

for τ = 1−m/p. Such an inequality is true for every p > m so we can easily fix a number p′ ∈ (m, p)
and show that

|Df(x)−Df(y)| .
(
M(x) +M(y)

)
|x− y| , (1.11)

where M(·)p′ is the Hardy–Littlewood maximal function of the global curvature. Since p/p′ > 1, an
application of the Hardy–Littlewood maximal theorem yieldsMp′ ∈ Lp/p′ , or, equivalently,M ∈ Lp.
Thus, by the well known result of Hajłasz (see Section 2.3), (1.11) implies that Df ∈ W 1,p. In fact,
the Lp norm ofD2f is controlled by a constant times the Lp-norm of the global Menger curvatureKG.
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An analogous argument works for the global tangent-point curvature function Ktp. This concludes the
whole proof; see Section 3.4.

For each of the global curvatures K(i)
G , there are some technical variations in that scheme; here

and there we need to adjust an argument to one of them. However, the overall plan is the same in both
cases.

The paper is organized as follows. In Section 2, we gather some preliminaries from linear algebra
and some elementary facts about simplices, introduce some specific notation, and list some auxiliary
results with references to existing literature. Section 3 forms the bulk of the paper. Here, following
the sketch given above, we prove that Lp bounds for (either of) the global curvatures imply that Σ is
an embedded manifold with local graph representations of class W 2,p. Finally, in Section 4 we prove
the reverse implications, concluding the whole proof of Theorem 1.4.

Acknowledgement. The authors are grateful to the anonymous referee for her/his careful reading of
this paper and the suggestions which have helped to improve the presentation of our work.

2 Preliminaries

2.1 The Grassmannian

In this paragraph we gather a few elementary facts about the angular metric �(·, ·) on the Grassman-
nian G(n,m) of m-dimensional linear subspaces3 of Rn.

Here is a summary: for two m-dimensional linear subspaces

U = span {u1, . . . , um} and V = span {v1, . . . , vm}

in Rn such that the bases (u1, . . . , um), (v1, . . . , vm) are roughly orthonormal and such that |ui−vi| ≤
ε, we have the estimate �(U, V ) . ε. This will become especially useful in Section 3.3.

For U ∈ G(n,m) we write πU to denote the orthogonal projection of Rn onto U and we set
QU = IdRn − πU = πU⊥ , where IdRn : Rn → Rn denotes the identity mapping.

Definition 2.1. Let U, V ∈ G(n,m). We set

�(U, V ) := ‖πU − πV ‖ = sup
w∈Sn−1

|πU (w)− πV (w)| .

The function�(·, ·) defines a metric on the Grassmannian G(n,m). The topology induced by this
metric agrees with the standard quotient topology of G(n,m). We list several properties of � below.
They will become useful for Hölder estimates of the graph parameterizations of Σ in Section 3.3. The
proofs are elementary and we omit them here.

3Formally, G(n,m) is defined as the homogeneous space

G(n,m) := O(n)/(O(m)×O(n−m)) ,

where O(n) is the orthogonal group; see e.g. A. Hatcher’s book [15, Section 4.2, Examples 4.53, 4.54 and 4.55] for the
reference. Thus G(n,m) could be treated as a topological space with the standard quotient topology. Instead, we work with
the angular metric �(·, ·), see Definition 2.1.
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Remark. Notice that

�(U, V ) = ‖πU − πV ‖ = ‖IdRn −QU − (IdRn −QV )‖ = ‖QV −QU‖ .

Proposition 2.2 (Lemma 2.2 in [29]). If the spacesU, V ∈ G(n,m) have orthonormal bases (e1, . . . , em)
and (f1, . . . , fm), respectively, and if |ei − fi| ≤ ϑ for i = 1, . . . ,m, then �(U, V ) ≤ 2mϑ.

Definition 2.3. Let V ∈ G(n,m) and let (v1, . . . , vm) be a basis of V . Fix some radius ρ > 0 and
two constants ε ∈ (0, 1) and δ ∈ (0, 1). We say that (v1, . . . , vm) is a (ρ, ε, δ)-basis if

(1− ε)ρ ≤ |vi| ≤ (1 + ε)ρ for i = 1, . . . ,m

and |〈vi, vj〉| ≤ δρ2 for i 6= j .

Specifically, a (ρ, 0, 0)-basis will be called ortho-ρ-normal.

Proposition 2.4. Let ρ > 0, ε ∈ (0, 1/2) and δ ∈ (0, 1) be some constants. Let (v1, . . . , vm) be a
(ρ, ε, δ)-basis of V ∈ G(n,m). Then there exist an ortho-ρ-normal-basis (v̂1, . . . , v̂m) of V and a
constant C2 = C2(m) such that

|vi − v̂i| ≤ (ε+ C2δ)ρ for i = 1, . . . ,m .

Proof. By scaling we may assume that ρ = 1. Define wi := vi/|vi| for i = 1, . . . ,m, f1 := w1,
v̂1 := w1, and then recursively

fk := wk −
k−1∑
i=1

〈wk, v̂i〉v̂i, and v̂k := fk/|fk| for k = 1, . . . ,m,

and observe that |wi−vi| = |1−|vi|| ≤ ε and |〈wi, wj〉| ≤ δ/(1−ε)2 < 4δ for all i, j = 1, . . . ,m, and
in addition, V = span{w1, . . . , wm} = span{v̂1, . . . , v̂m} by construction. Notice that ||fk| − 1| =
||fk| − |wk|| ≤ |fk − wk|, and therefore

|fk − v̂k| = ||fk| − 1| ≤ |fk − wk|

so that by
|vk − v̂k| ≤ |vk − wk|+ |wk − fk|+ |fk − v̂k| ≤ ε+ 2|fk − wk|

the main task turns out to be to estimate ak := |fk−wk| for k = 1, . . . ,m, where we get immediately
a1 = 0 by definition. If one estimates

ak ≤
k−1∑
i=1

|〈wk, wi〉|+
k−1∑
i=1

|wi − v̂i|

≤ 4δ(k − 1) +
k−1∑
i=1

(ai + |fi − v̂i|)

≤ 4δ(k − 1) + 2
k−1∑
i=1

ai,
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one can prove by induction that

ak ≤ 4δ
[
(k − 1) + 2

l∑
i=0

3i(k − i− 2)
]

+ 2 · 3l+1
k−l−2∑
i=1

ai for all l = 0, . . . , k − 3.

Specifically for l = k − 3 we obtain

ak ≤ 4δ
[
(k − 1) + 2

k−3∑
i=0

3i(k − i− 2)
]
,

and therefore, for all k = 1, . . . ,m,

|vk − v̂k| ≤ ε+ 8δ
[
(m− 1) + 2

m−3∑
i=0

3i(m− i− 2)
]

=: ε+ C2(m)δ .

Proposition 2.5. Let U, V ∈ G(n,m) and let (e1, . . . , em) be some orthonormal basis of V . Assume
that for each i = 1, . . . ,m we have the estimate dist(ei, U) = |QU (ei)| ≤ ϑ for some ϑ ∈ (0, 1/

√
2).

Then there exists a constant C3 = C3(m) such that

�(U, V ) ≤ C3ϑ .

Proof. Set ui := πU (ei). For each i = 1, . . . ,m we have |QU (ei)| ≤ ϑ, so

|ui − ei| = |QU (ei)| ≤ ϑ hence

1− ϑ2 <
√

1− ϑ2 ≤ |ui| ≤ 1 < 1 + ϑ2 for i = 1, . . . ,m . (2.12)

For any i 6= j the vectors ei and ej are orthogonal, hence

0 = 〈ei, ej〉 = 〈πU (ei) +QU (ei), πU (ej) +QU (ej)〉
= 〈πU (ei), πU (ej)〉+ 〈QU (ei), QU (ej)〉 .

Therefore
|〈ui, uj〉| = |〈QU (ei), QU (ej)〉| ≤ |QU (ei)||QU (ej)| ≤ ϑ2 . (2.13)

Estimates (2.12) and (2.13) show that (u1, . . . , um) is a (ρ, ε, δ)-basis of U with constants ρ = 1,
ε = ϑ2 and δ = ϑ2. Let (f1, . . . , fm) be the orthonormal basis of U arising from (u1, . . . , um) by
means of Proposition 2.4, so that we obtain

|fi − ei| ≤ |fi − ui|+ |ui − ei| ≤ (1 + C2)ϑ2 + ϑ .

Using Proposition 2.2 and the fact that ϑ2 < ϑ < 1 we finally get

�(U, V ) ≤ 2m((1 + C2)ϑ2 + ϑ) ≤ 2m(1 + C2 + 1)ϑ .

Now we can set C3 = C3(m) := 2m(1 + C2(m) + 1) = 2m(2 + C2(m)).

12



Proposition 2.6. Let (v1, . . . , vm) be a (ρ, ε, δ)-basis of V ∈ G(n,m) with constants ρ > 0, ε ∈
(0, 1/2) and δ ∈ (0, 1). Let (u1, . . . , um) be some basis of U ∈ G(n,m), such that |ui− vi| ≤ ϑρ for
some ϑ ∈ (0, 1√

2
− 1

4) and for each i = 1, . . . ,m. Furthermore, let us assume that

C3(ε+ C2δ) < 1/2 . (2.14)

Then there exists a constant C4 = C4(m, ε, δ) such that

�(U, V ) ≤ C4ϑ .

Proof. Set ei := vi/ρ and let (ê1, . . . , êm) be the orthonormal basis of V arising from (e1, . . . , em)
by virtue of Proposition 2.4. Set fi := ui/ρ.

|QU (êi)| ≤ |QU (êi − ei)|+ |QU (ei)| ≤ |êi − ei|�(U, V ) + |ei − fi|
≤ |êi − ei|�(U, V ) + ϑ .

From Proposition 2.4 we have |êi − ei| ≤ ε+ C2δ, so

|QU (êi)| ≤ (ε+ C2δ)�(U, V ) + ϑ ≤ 2(ε+ C2δ) + ϑ
(2.14)
<

1

4
+ ϑ <

1√
2
,

since C3(m) ≥ 4 for all m ∈ N; see the definition of C3(m) at the end of the proof of Proposition
2.5. Hence Proposition 2.5 is applicable to the orthonormal basis (ê1, . . . , êm) of V , and we conclude

�(U, V ) ≤ C3(ε+ C2δ)�(U, V ) + C3ϑ

hence (1− C3(ε+ C2δ))�(U, V ) ≤ C3ϑ .

Since we assumed (2.14) we can divide both sides by 1− C3(ε+ C2δ) reaching the estimate

�(U, V ) ≤ C3

1− C3(ε+ C2δ)
ϑ .

Finally we set

C4 = C4(m, ε, δ) :=
C3(m)

1− C3(m)(ε+ C2(m)δ)
.

2.2 Angles and intersections of tubes

The results of this subsection are taken from our earlier work [29]. We are concerned with the inter-
section of two tubes whose m-dimensional ‘axes’ form a small angle, i.e. with the set

S(H1, H2) := {y ∈ Rn : dist(y,Hi) ≤ 1 for i = 1, 2}, (2.15)

where H1 6= H2 ∈ G(n,m) are such that πH1 restricted to H2 is bijective. Since the set {y ∈
Rn : dist(y,Hi) ≤ 1} is convex, closed and centrally symmetric4 for each i = 1, 2, we immediately
obtain the following:

4The term central symmetry is used here for central symmetry with respect to 0 in Rn.
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Lemma 2.7. S(H1, H2) is a convex, closed and centrally symmetric set in Rn; πH1(S(H1, H2)) is a
convex, closed and centrally symmetric set in H1

∼= Rm.

For the global tangent-point curvature Ktp, the next lemma and its corollary provide a key tool in
bootstrap estimates in Section 3.3.

Lemma 2.8. There exist constants 1 > ε1 = ε1(m) > 0 and c2(m) <∞ with the following property.
If H1, H2 ∈ G(n,m) satisfy 0 < <)(H1, H2) = α < ε1, then there exists an (m − 1)-dimensional
subspace W ⊂ H1 such that

πH1

(
S(H1, H2)

)
⊂ {y ∈ H1 : dist(y,W ) ≤ 5c2/α} .

For the proof, we refer to [29, Lemma 2.6]. It is an instructive elementary exercise in classical
geometry to see why this lemma is true for m = 2 and n = 3.

The next lemma is now practically obvious.

Lemma 2.9. Suppose thatH ∈ G(n,m) and a set S′ ⊂ H is contained in {y ∈ H : dist(y,W ) ≤ d}
for some d > 0, where W is an (m− 1)-dimensional subspace of H . Then

H m
(
S′ ∩ Bn(a, s)

)
≤ 2msm−1d

for each a ∈ H and each s > 0.

Proof. Writing each y ∈ S′ ∩ Bn(a, s) as y = πW (y) + (y − πW (y)), one sees that S′ ∩ Bn(a, s) is
contained in a rectangular box with (m − 1) edges parallel to W and of length 2s and the remaining
edge perpendicular to W and of length 2d.

2.3 The voluminous simplices

Several energy estimates for the global Menger curvature are based on considerations of simplices
that are roughly regular, which means that they have all edges ≈ d and volume ≈ dm+1. Here are the
necessary definitions, making this vague description precise.

Definition 2.10. Let T = conv(x0, . . . , xm+1) be an (m + 1)-dimensional simplex in Rn. For each
j = 0, . . . ,m+ 1 we define the faces fcj(T ), the heights hj(T ) and the minimal height hmin(T ) by

fcj(T ) = conv(x0, . . . , xj−1, xj+1, . . . , xm+1) ,

hj(T ) = dist(xj , aff{x0, . . . , xj−1, xj+1, . . . , xm+1})
and hmin(T ) = min{hi(T ) : i = 0, 1, . . . ,m+ 1} ,

where aff{p0, . . . , pN} denotes the (at mostN -dimensional) affine plane spanned byN+1 the points
p0, . . . , pN ∈ Rn.

Note that for any (m+ 1)-dimensional simplex T the volume is given by

H m+1(T ) =
1

m+ 1
hi(T )H m(fci(T )) for any i ∈ {0, . . . ,m+ 1}. (2.16)
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The faces fci(T ) are lower-dimensional simplices themselves, so that a simple inductive argument
yields the estimate

H m+1(T ) ≥ 1

(m+ 1)!
hmin(T )m+1. (2.17)

Definition 2.11. Fix some η ∈ [0, 1] and d > 0. Let T = conv(x0, . . . , xm+1) be an (m + 1)-
dimensional simplex in Rn. We say that T is (η, d)-voluminous and write T ∈ V (η, d) if the following
conditions5 are satisfied

diam(T ) ≤ d and hmin(T ) ≥ ηd .

Proposition 2.12. Let T = conv(x0, . . . , xm+1) be an (η, d)-voluminous simplex in Rn and set
α = 1

8η
2. Let x̄0 ∈ Rn be such that |x0 − x̄0| ≤ αd and set T̄ = conv(x̄0, x1, . . . , xm+1). Then

diam(T̄ ) ≤ 9
8d and hmin(T̄ ) ≥ 1

2ηd =
(

4
9η
) (

9
8d
)
.

Thus, T̄ ∈ V
(

4
9η,

9
8d
)

.

Proof. First we estimate the height h0(T̄ ). Because |x0 − x̄0| ≤ αd and η ∈ [0, 1] we have

h0(T̄ ) ≥ h0(T )− αd ≥ (η − α)d >
1

2
ηd . (2.18)

Fix two indices i1, i2 ∈ {1, 2, . . . ,m+ 1} such that i1 6= i2. We shall estimate the height hi1(T̄ ).
Without loss of generality we can assume that xi2 is placed at the origin. Furthermore, permuting the
vertices of T we can assume that i1 = 1 and i2 = 2. We need to estimate h1(T̄ ). Set

P = span{x0 − x2, x3 − x2, . . . , xm+1 − x2} = span{x0, x3, . . . , xm+1}
P̄ = span{x̄0 − x2, x3 − x2, . . . , xm+1 − x2} = span{x̄0, x3, . . . , xm+1} .

Now we can write

h1(T̄ ) = dist(x1, P̄ ) = |QP̄ (x1)|
= |QP (x1)− (QP (x1)−QP̄ (x1))|
≥ |QP (x1)| − |QP (x1)−QP̄ (x1)| (2.19)

≥ ηd− ‖QP −QP̄ ‖|x1|
≥ (η −�(P, P̄ ))d ,

so all we need to do is to estimate �(P, P̄ ) from above unless <)(P, P̄ ) = 0, in which case we are
done anyway.

For that purpose let y0 := πP∩P̄ (x0) be the closest point to x0 in the (m − 1)-dimensional
subspace P ∩ P̄ . (Recall that x2 = 0.) Set

v1 :=
x0 − y0

|x0 − y0|
∈ (P ∩ P̄ )⊥,

5A similar class of 1-separated simplices has been considered by Lerman and Whitehouse in [17, Section 3.1]
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and choose an orthonormal basis (v2, . . . , vm) of P ∩ P̄ . Since y0 ∈ P ∩ P̄ ⊂ aff{x1, x2, . . . , xm+1}
one has

|x0 − y0| ≥ dist(x0, aff{x1, x2, . . . , xm+1}) ≥ hmin(T ) ≥ ηd,

so that

QP̄ (v1) =
QP̄ (x0 − y0)

|x0 − y0|
=

QP̄ (x0)

|x0 − y0|
=

dist(x0, P̄ )

|x0 − y0|
≤ |x0 − x̄0|

ηd
≤ α

η
. (2.20)

Choose any vector v̄1 ∈ P̄ such that (v̄1, v2, . . . , vm) forms an orthonormal basis of P̄ . Note that
πP̄ (v1) is orthogonal to vj for each j = 2, . . . ,m. Indeed, if j ∈ {2, . . . ,m}, then we have

〈πP̄ (v1), vj〉 =
〈 m∑
i=2

〈v1, vi〉︸ ︷︷ ︸
=0

vi, vj

〉
+
〈
〈v1, v̄1〉 v̄1, vj

〉︸ ︷︷ ︸
=0

= 0.

Hence, for

w =
πP̄ (v1)

|πP̄ (v1)|
,

we have P̄ = span{w, v2, . . . , vm} and (w, v2, . . . , vm) is also an orthonormal basis of P̄ . Moreover

|w − v1| ≤ |w − πP̄ (v1)|+ |πP̄ (v1)− v1| = (1− |πP̄ (v1)|) + |QP̄ (v1)| .

Using (2.20) we obtain (1− |πP̄ (v1)|) ≤ α/η, hence

|w − v1| ≤ 2
α

η
. (2.21)

Let h ∈ Sn−1 be any unit vector in Rn. We calculate

|πP (h)− πP̄ (h)| =

∣∣∣∣∣∣
m∑
j=2

〈h, vj〉vj + 〈h, v1〉v1 −
m∑
j=2

〈h, vj〉vj − 〈h,w〉w

∣∣∣∣∣∣
≤ |〈h, (v1 − w)〉v1|+ |〈h,w〉(v1 − w)| ≤ 2|v1 − w| ≤ 4

α

η
.

This gives us the bound �(P, P̄ ) ≤ 4αη . Plugging this into (2.19) and recalling that α = 1
8η

2 we get

hi1(T̄ ) = h1(T̄ ) ≥
(
η − 4αη

)
d =

1

2
ηd .

Since the index i1 was chosen arbitrarily from the set {1, . . . ,m+ 1}, together with (2.18) we obtain

hmin(T̄ ) ≥ 1

2
ηd ,

which ends the proof.
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2.4 Other auxiliary results

The following theorem due to Hajłasz gives a characterization of the Sobolev space W 1,p and is now
widely used in analysis on metric spaces. We shall rely on this result in Section 3.4.

Theorem 2.13 (Hajłasz [14, Theorem 1]). Let Ω be a ball in Rm and 1 < p < ∞. Then a function
f ∈ Lp(Ω) belongs to W 1,p(Ω) if and only if there exists a function g ∈ Lp(Ω) such that

|f(x)− f(y)| ≤ |x− y|
(
g(x) + g(y)

)
. (2.22)

In fact, Hajłasz shows that if f ∈W 1,p, then (2.22) holds for g equal to a constant multiple of the
Hardy–Littlewood maximal function M(|Df |) of |Df | defined as

Mh(x) := sup
r>0

ˆ
−

Bm(x,r)

h(y) dy.

Conversely,
‖f‖W 1,p ≈ ‖f‖Lp + inf

g
‖g‖Lp ,

where the infimum is taken over all g for which (2.22) holds. This follows from the proof of Theorem
1 in [14, p. 405].

Recall that β and θ numbers were defined by (1.2) and (1.3).

Definition 2.14 (cf. [5], Definition 1.3). We say that a compact set Σ ⊂ Rn is Reifenberg-flat (of
dimension m) with vanishing constant if

lim
r→0

sup
x∈Σ

θΣ(x, r) = 0 .

The following proposition was proved by David, Kenig and Toro. We will rely on it in Section 3.1.

Proposition 2.15 (cf. [5], Proposition 9.1). Let κ ∈ (0, 1) be given. Suppose Σ is an m-dimensional
compact Reifenberg-flat set with vanishing constant in Rn and that there is a constant CΣ such that

βΣ(x, r) ≤ CΣr
κ for each x ∈ Σ and r ≤ 1.

Then Σ is an m-dimensional C1,κ-submanifold of Rn without boundary6.

3 Towards the W 2,p estimates for graphs

In this section we prove the harder part of the main result, i.e. the implications (2)⇒ (1) and (3)⇒ (1).
We follow the scheme sketched in the introduction. Each of the four steps is presented in a separate
subsection.

6Although boundaries of manifolds are not explicitly excluded in the statement of [5, Proposition 9.1] it becomes evident
from the proof that no boundaries are present; see in particular [5, p. 433].
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3.1 The decay of β numbers and initial C1,κ estimates

In this subsection we prove the following two results.

Proposition 3.1. Let Σ ⊂ Rn be an m-fine set, i.e. Σ ∈ F (m), such that

‖KG‖Lp(Σ,H m) ≤ E1/p

for some E <∞ and some p > m. Then, the inequality

βΣ(x, r) ≤ C
(
E

AΣ

)κ1/(p−m)

rκ1 , κ1 :=
p−m

p(m+ 1) + 2m
,

holds for all r ∈ (0,diam Σ] and all x ∈ Σ. The constant C depends on m, p only.

Proposition 3.2. Let Σ ∈ F (m) be an m-fine set such that

‖Ktp‖Lp(Σ,H m) ≤ E1/p

for some map H : Σ→ G(n,m), a constant E <∞ and some p > m. Then, the inequality

βΣ(x, r) ≤ C
(
E

AΣ

)κ2/(p−m)

rκ2 , κ2 :=
p−m
p+m

,

holds for all r ∈ (0,diam Σ] and all x ∈ Σ. The constant C is an absolute constant.

The argument is pretty similar in either case but it will be convenient to give two separate proofs.
For the proof of Proposition 3.1 we mimic – up to some technical changes – the proof of [16,

Corollary 2.4]. First we prove a lemma which is an analogue of [16, Proposition 2.3].

Lemma 3.3. Let Σ ⊂ Rn be anm-fine set, and let x0, x1, . . . , xm+1 be arbitrary points of Σ. Assume
that T = conv(x0, . . . , xm+1) is (η, d)-voluminous for some η ∈ (0, 1) and some d ∈ (0,∞).
Furthermore, assume that ‖KG‖Lp(Σ,H m) ≤ E1/p for some E < ∞ and some p > m. Then there
exists a constant C = C(m, p) depending only on m and p, such that

E ≥ CAΣd
m−pηp(m+1)+2m .

Equivalently,

η ≤ C ′
(
E

AΣ

)κ1/(p−m)

dκ1 ,

where C ′ = C ′(m, p) and

κ1 =
p−m

p(m+ 1) + 2m
.

Proof. Set α = 1
8η

2. By Proposition 2.12, each (m+ 1)-simplex

T̄ = conv(x̄0, x1, . . . , xm+1)
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satisfying |x0 − x̄0| ≤ αd is (4
9η,

9
8d)-voluminous. Thus, for any such T̄ we have according to (2.17)

K(T̄ ) ≥
(

4
9η
)m+1

(m+ 1)!9
8d

= C
ηm+1

d
, (3.23)

where C = C(m) = (4
9)m+1 8

9(m+1)! . Using (3.23) we obtain

E ≥ ‖KG‖pLp(Σ,H m)

≥
ˆ

Σ∩B(x0,αd)
KG(x)p dH m(x)

≥
(
C
ηm+1

d

)p
H m(Σ ∩ B(x0, αd))

≥ Cp
(

1
8

)m
AΣd

m−pηp(m+1)+2m .

This completes the proof of the lemma.

We are now ready to give the Proof of Proposition 3.1.
Fix some point x ∈ Σ and a radius r ∈ (0, diam(Σ)]. Let T = conv(x0, . . . , xm+1) be an

(m + 1)-simplex such that xi ∈ Σ ∩ B(x, r) for i = 0, 1, . . . ,m + 1 and such that T has maximal
H m+1-measure among all simplices with vertices in Σ ∩ B(x, r), i.e.

H m+1(T ) = max{H m+1(conv(x′0, . . . , x
′
m+1)) : x′i ∈ Σ ∩ B(x, r)} .

The existence of T follows from the fact that the set Σ∩B(x, r) is compact and from the fact that the
function T 7→H m+1(T ) is continuous with respect to x0, . . . , xm+1; see, e.g., formula (2.16).

Renumbering the vertices of T we can assume that hmin(T ) = hm+1(T ). Thus, according to (2.16)
the largest m-face of T is conv(x0, . . . , xm) . Let H = span{x1− x0, . . . , xm− x0}, so that x0 +H
contains the largest m-face of T . Note that the distance of any point y ∈ Σ ∩ B(x, r) from the affine
plane x0 +H has to be less then or equal to hmin(T ) = dist(xm+1, x0 +H), since if we could find a
point y ∈ Σ ∩ B(x, r) with dist(y, x0 +H) > hmin(T ), then the simplex conv(x0, . . . , xm, y) would
have larger H m+1-measure than T but this is impossible due to the choice of T .

Since x ∈ Σ ∩ B(x, r), we know that dist(x, x0 + H) ≤ hmin(T ). Thus, we obtain for all
y ∈ Σ ∩ B(x, r)

dist(y, x+H) ≤ dist(y, x0 +H) + dist(x, x0 +H) ≤ 2hmin(T ). (3.24)

Hence

βΣ(x, r) ≤ 2hmin(T )

r
. (3.25)

Now we only need to estimate hmin(T ) = hm+1(T ) from above. Of course T is (η, 2r)-voluminous
with η = hmin(T )/(2r). Lemma 3.3 implies that

βΣ(x, r) ≤ 2hmin(T )

r
= 4η ≤ C

(
E

AΣ

)κ1/(p−m)

rκ1 ,
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which ends the proof of the proposition.

Now we come to the Proof of Proposition 3.2.
Fix x ∈ Σ and r ∈ (0, diam Σ]. We know by definition of the β-numbers that β ≡ βΣ(x, r) ≤ 1.

We also know that for any z ∈ Σ ∩ B(x, βr/2) that

sup
Σ∩B(x,r)

dist(·, x+Hz) ≥ βΣ(x, r)r,

where Hz ∈ G(n,m) denotes the image of z under the mapping H : Σ→ G(n,m). Furthermore, for
any ε > 0 we can find a point yε ∈ Σ ∩ B(x, r) such that

dist(yε, x+Hz) ≥ sup
Σ∩B(x,r)

dist(·, x+Hz)− ε ≥ βΣ(x, r)r − ε.

On the other hand, we have by |yε − z| ≤ |yε − x|+ |x− z| ≤ 3
2r

dist(yε, z +Hz) ≤
1

2
Ktp(z)|yε − z|2 ≤ Ktp(z)

9

8
r2

so that we obtain

9

8
r2Ktp(z) ≥ dist(yε, z +Hz)

≥ dist(yε, x+Hz)− |x− z|
≥ βΣ(x, r)r − ε− βΣ(x, r)r/2,

which upon letting ε→ 0 leads to

Ktp(z) ≥ 4

9
βΣ(x, r)/r.

Estimating the energy as

E ≥
ˆ

Σ∩B(x,βr/2)
Ktp(z)p dH m(z)

≥
(

4

9

)p
(βΣ(x, r))pr−pH m(Σ ∩ B(x, βr/2)) ≥

(
4

9

)p(1

2

)m
AΣr

m−p(βΣ(x, r))p+m,

which gives the desired estimate for C = 4 >
(

9
4

)p/(p+m)
2m/(p+m).

Corollary 3.4 (C1,κ estimates, first version). Let Σ ⊂ Rn be an m-fine set and set K(1)(·) :=
KG[Σ](·) and K(2)(·) := Ktp[Σ](·). If

ˆ
Σ
K(i)(z)p dH m(z) ≤ E <∞

holds for i = 1 or i = 2. Then Σ is an embedded closed manifold of class C1,κi , where

κ1 =
p−m

p(m+ 1) + 2m
, κ2 =

p−m
p+m

.
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Moreover we can find a radius R = R(n,m, p,AΣ,MΣ, E, diam Σ) and a constant K =
K(n,m, p,AΣ,MΣ, E, diam Σ) such that for each x ∈ Σ there is a function

fx : TxΣ =: P ∼= Rm → P⊥ ∼= Rn−m

of class C1,κi , such that fx(0) = 0 and Dfx(0) = 0, and

Σ ∩ Bn(x,R) = x+
(

Graph fx ∩ Bn(0, R)
)
,

where Graph fx ⊂ P × P⊥ = Rn denotes the graph of fx, and

‖Dfx‖C0,κi (Bm(0,R),R(n−m)×n)
≤ K.

Proof. The first non-quantitative part follows from our estimates on the β-numbers in Proposition 3.1
and 3.2 in combination with [5, Proposition 9.1], cf. Proposition 2.15 of the previous section. However,
direct arguments (as in [16, Corollary 3.18] for the global Menger curvature KG, and in [29, Section
5] for the global tangent-point curvature Ktp), lead to the full statement of that corollary including the
uniform estimates on the Hölder-norm of Dfx and on the minimal size of the surfaces patches of Σ
that can be represented as the graph of fx. Let us give the main ideas here for the convenience of the
reader.

Assume without loss of generality that x = 0 and write κ := κi for any i ∈ {1, 2} depending on
the particular choice of integrand K(i). We know from Proposition 3.1 or 3.2, respectively, that there
is a constant C1 = C1(AΣ, E,m, p) such that

β(r) := βΣ(0, r) ≤ C1r
κ for all r ∈ (0,diam Σ]. (3.26)

Since Σ ∈ F (m) we have

θ(r) := θΣ(0, r) ≤MΣC1r
κ for all r ∈ (0, diam Σ]. (3.27)

The Grassmannian G(n,m) is compact, so we find for each r ∈ (0,diam Σ] an m-plane Hx(r) ∈
G(n,m) such that

sup
z∈Σ∩B(x,r)

dist(z,Hx(r)) = β(r)r.

Taking an ortho-(r/3)-normal basis (v1(r), . . . , vm(r)) of Hx(r) for any such r ∈ (0,diam Σ] we
find by (3.27) for each i = 1, . . . ,m, some point zi(r) ∈ Σ such that

|zi(r)− vi(r)| ≤MΣC1r
κ+1; (3.28)

see Definition 1.1. Now there is a radius R0 = R0(AΣ, E,m, p,MΣ) > 0 so small that we have the
inclusion B(vi(r),MΣC1r

κ+1) ⊂ B(0, r/2) for each r ∈ (0, R0) and each i = 1, . . . ,m, which then
implies by (3.26) that

dist(zi(r), Hx(r/2)) ≤ C1r
κ+1 for all r ∈ (0, R0). (3.29)
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The orthogonal projections ui(r) := πHx(r/2)(vi(r)) for i = 1, . . . ,m, satisfy due to (3.28) and (3.29)

|ui(r)− vi(r)| ≤ |vi(r)− zi(r)|+ dist(zi(r), Hx(r/2)) ≤ (MΣ + 1)C1r
κ+1.

Hence there is a smaller radius 0 < R1 = R1(AΣ, E,m, p,MΣ) ≤ R0 such that for all r ∈ (0, R1)
one has

C1r
κ < (MΣ + 1)C1r

κ <
1√
2
− 1

4
, (3.30)

so that Proposition 2.6 is applicable to the (r/3, 0, 0)-basis (v1(r), . . . , vm(r)) of V := Hx(r) and
the basis (u1(r), . . . , um(r)) of U := Hx(r/2) with ϑ := C1r

κ. (Notice that condition (2.14) in
Proposition 2.6 is automatically satisfied since ε = δ = 0 in the present situation.) Consequently,

<)(Hx(r), Hx(r/2)) ≤ C4C1r
κ for all r ∈ (0, R1). (3.31)

Iterating this estimate, one can show that the sequence ofm-planes (Hx(r/2N )) is a Cauchy sequence
in G(n,m), hence converges as N → ∞ to a limit m-plane, which must coincide with the already
present tangent plane T0Σ at x = 0, and the angle estimate (3.31) carries over to

<)(TxΣ, Hx(r)) ≤ Crκ for all r ∈ (0, R1) . (3.32)

Let y ∈ Σ be such that |y− x| = r/2 and set wi(r) = πHy(r)(vi(r)). We have zi(r) ∈ B(y, r), so

dist(zi(r), Hy(r)) ≤ βΣ(y, r)r ≤ C1r
κ+1 ,

hence |vi(r)− wi(r)| ≤ |vi(r)− zi(r)|+ dist(zi(r), Hy(r)) ≤ (MΣ + 1)C1r
κ+1 .

Applying once again Proposition 2.6 – which is possible due to (3.30) – we obtain the inequality

<)(Hx(r), Hy(r)) ≤ C4(MΣ + 1)C1r
κ = C̄|x− y|κ .

This together with (3.32) (which by symmetry also holds in y replacing x) leads to the desired local
estimate for the oscillation of tangent planes

<)(TxΣ, TyΣ) ≤ C|x− y|κ for all |x− y| ≤ R1/2, (3.33)

where C = C(E,AΣ,m, p,MΣ) and R1 = R1(E,AΣ,m, p,MΣ) do not depend on the choice of
x, y ∈ Σ.

Next we shall find a radius R2 = R2(E,AΣ,m, p,MΣ) such that for each x ∈ Σ the affine
projection

πx : Σ ∩ B(x,R2)→ x+ TxΣ

is injective. This will prove that Σ ∩ B(x,R2) coincides with a graph of some function fx, which is
C1,κ-smooth by (3.33).

Assume that there are two distinct points y, z ∈ Σ ∩ B(x,R1) such that πx(y) = πx(z). In other
words (y−z) ⊥ TxΣ. Since y and z are close to each other the vector (y−z) should form a small angle
with TzΣ but then <)(TzΣ, TxΣ) would be large and due to (3.33) this can only happen if one of y or z
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is far from x. To make this reasoning precise assume that |x−y| ≤ |x−z| and set Hx = Hx(|y−x|).
Employing (3.26) and (3.32) we get

|QTxΣ(y − x)| ≤ |QHx(y − x)|+ |QTxΣ(y − x)−QHx(y − x)|
≤ β(x, |y − x|)|y − x|+<)(TxΣ, Hx)|y − x| ≤ C|y − x|1+κ ≤ C|z − x|1+κ ,

where C depends only on E, AΣ, m and p. The same applies to (z − x) so we also have

|QTxΣ(z − x)| ≤ C|z − x|1+κ .

Next we estimate

|z − y| = |QTxΣ(z − y)| ≤ |QTxΣ(z − x)|+ |QTxΣ(y − x)| ≤ 2C|z − x|1+κ . (3.34)

Setting Hz = Hz(|y − z|) and repeating the same calculations we obtain

dist(y − z, TzΣ) = |QTzΣ(y − z)| ≤ C|y − z|1+κ .

This gives

<)(TxΣ, TzΣ) = ‖QTxΣ −QTzΣ‖ ≥ |QTxΣ(z − y)−QTzΣ(z − y)||z − y|−1

≥ (|z − y| − |QTzΣ(z − y)|) |z − y|−1 ≥ 1− C|y − z|κ .

On the other hand by (3.33) <)(TxΣ, TzΣ) ≤ C|x− z|κ . Hence, applying (3.34) we obtain

C|x− z|κ ≥ 1− C̃|y − z|κ ≥ 1− C̄|x− z|κ+κ2 ⇐⇒ |x− z| ≥
(
C + C̄|x− z|κ2

)−1/κ
.

This shows that if (y − z) ⊥ TxΣ then the point z has to be far from x. We set

R2 = min
(

1, (C + C̄)−1/κ
)

and this way we make sure that πx : Σ ∩ B(x,R2) → x + TxΣ is injective for each x ∈ Σ, hence
Σ ∩ B(x,R2) is a graph of some function fx : TxΣ ∩ B(0, R2)→ (TxΣ)⊥.

The oscillation estimate (3.33) leads with standard arguments (as, e.g., presented in [29, Section
5]) to the desired uniform C1,κ-estimates for fx on balls in TxΣ of radius R2 which depends on
E,AΣ, p,m,MΣ, but not on the particular choice of the point x on Σ.

Remark 3.5. The statement of Corollary 3.4 can a posteriori be sharpened: One can show that one can
make the constants R and K independent of MΣ. This was carried out in detail in the first author’s
doctoral thesis; see [16, Theorem 2.13], so we will restrict to a brief sketch of the argument here.
Assume as before that x = 0 and notice that β(r) = β(0, r) → 0 uniformly (independent of the
point x and also independent of MΣ according to (3.26)). Since at this stage we know that Σ is a
C1,κ-submanifold of Rn without boundary, it is clearly also admissible in the sense of [29, Definition
2.9]. In particular Σ is locally flat around each point y ∈ Σ – it is actually close to the tangentm-plane
TyΣ near y – and Σ is nontrivially linked with sufficiently small (n −m − 1)-spheres contained in
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the orthogonal complement of TyΣ. Let Hx(r) for r ∈ (0,diam Σ] be as in the proof of Corollary 3.4
the optimal m-plane through x = 0 such that

dist(y, x+Hx(r)) ≤ β(r)r for all y ∈ Σ ∩ B(0, r). (3.35)

One can use now the uniform estimate (3.26) (not depending on MΣ) to prove that there is a radius
R3 = R3(E,AΣ,m, p) such that the angle <)(T0Σ, Hx(r)) is for each r ∈ (0, R3) so small that, for
any given p ∈ Hx(r) ∩ B(0, R3), one can deform the linking sphere in the orthogonal complement
of T0Σ with a homotopy to a small sphere in p + Hx(r)⊥ without ever hitting Σ. Because of the
homotopy invariance of linking one finds also this new sphere nontrivially linked with Σ. This implies
in particular by standard degree arguments the existence of a point z ∈ Σ contained in the (n −m)-
dimensional disk in p+Hx(r)⊥ spanned by this new sphere; see, e.g. [29, Lemma 3.5]. On the other
hand by (3.35) Σ∩B(0, r) is at most β(r)r away fromHx(r) which implies now that this point z ∈ Σ
must satisfy |z− p| ≤ β(r)r. This gives the uniform estimate θ(r) ≤ Cβ(r) for all r < R3 and some
absolute constant C.

Now we know that the estimates in Corollary 3.4 do not depend on MΣ. This constant may be
replaced by an absolute one if we are only working in small scales. In the next section we show that
this can be further sharpened:R andK depend in fact only onm, p andE, but not on the constantAΣ.

3.2 Uniform Ahlfors regularity and its consequences

In this section, we show that the Lp-norms of the global curvatures KG and Ktp control the length
scale in which bending (or ‘hairs’, narrow tentacles, long thin tubes etc.) can occur on Σ. In particular,
there is a number R depending only on n,m, p and E, where E is any constant dominating ‖KG‖pLp
or ‖Ktp‖pLp , such that for all x ∈ Σ and all r ≤ R the intersection Σ ∩ Bn(x, r) is congruent to
Graph fx ∩ Bn(x, r), where fx : Rm → Rn−m is a C1,κi function (with small C1 norm, if one
wishes). Note that R does not at all depend on the shape or on other properties of Σ, just on its energy
value, i.e. on the Lp-norm of KG or of Ktp.

By the results of the previous subsection, we already know that Σ is an embedded C1 compact
manifold without boundary. This is assumed throughout this subsection.

The crucial tool needed to achieve such control over the shape of Σ is the following.

Theorem 3.6 (Uniform Ahlfors regularity). For each p > m there exists a constant C(n,m, p)
with the following property. If ‖KG‖Lp or ‖KG‖Lp is less than E1/p for some E <∞, then for every
x ∈ Σ

H m(Σ ∩ Bn(x, r)) ≥ 1

2
ωmr

m for all 0 < r ≤ R0, (3.36)

where R0 = C(n,m, p)E−1/(p−m) and ωm = H m(Bm(0, 1)).

The proof of Theorem 3.6 is similar to the proof of Theorem 3.3 in [28] where Menger curvature
of surfaces in R3 has been investigated. This idea has been later reworked and extended in various
settings to the case of sets having codimension larger than 1.

Namely, one demonstrates that each Σ with finite energy cannot penetrate certain conical regions
of Rn whose size depends solely on the energy. The construction of those regions has algorithmic
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nature. Proceeding iteratively, one constructs for each x ∈ Σ an increasingly complicated set S which
is centrally symmetric with respect to x and its intersection with each sphere ∂Bn(x, r) is equal to the
union of two or four spherical caps. The size of these caps is proportional to r but their position may
change as r grows from 0 to the desired large value, referred to as the stopping distance ds(x). The
interior of S contains no points of Σ but it contains numerous (n−m−1)-dimensional spheres which
are nontrivially linked with Σ. Due to this, for each r below the stopping distance, Σ ∩ Bn(x, r) has
large projections onto some planes in G(n,m). However, there are points of Σ on ∂S, chosen so that
the global curvature KG(x), or Ktp(x), respectively, must be & 1/ds(x).

To avoid entering into too many technical details of such a construction, we shall quote almost
verbatim two purely geometric lemmata from our previous work that are independent of any choice
of energy, and indicate how they are used in the proof of Theorem 3.6.

3.2.1 The case of global Menger curvature

Recall the Definition 2.11 of the class V (η, d) of (η, d)-voluminous simplices. The following propo-
sition comes from the doctoral thesis of the first author, see [16, Proposition 2.5].

Proposition 3.7. Let δ ∈ (0, 1) and Σ be an embedded C1 compact manifold without boundary.
There exists a real number η = η(δ,m) ∈ (0, 1) such that for every point x0 ∈ Σ there is a stopping
distance d = ds(x0) > 0, and an (m+ 1)-tuple of points (x1, x2, . . . , xm+1) ∈ Σm+1 such that

T = conv{x0, . . . , xm+1} ∈ V (η, d) .

Moreover, for all ρ ∈ (0, d) there exists an m-dimensional subspace H = H(ρ) ∈ G(n,m) with the
property

(x0 +H) ∩ Bn(x0,
√

1− δ2ρ) ⊂ πx0+H(Σ ∩ Bn(x0, ρ)) . (3.37)

Fixing δ = δ(m) ∈ (0,
√

1− 4−1/m) small enough, we obtain η = η(m) depending on m only.
This yields the following.

Corollary 3.8. For any x0 ∈ Σ and any ρ ≤ ds(x0) we have

H m(Σ ∩ B(x0, ρ)) ≥ (1− δ2)m/2ωmρ
m ≥ 1

2
ωmρ

m . (3.38)

Moreover, we can provide a lower bound for all stopping distances. For this, we need an elemen-
tary consequence of the definition of voluminous simplices:

Observation 3.9. If T = conv(x0, . . . , xm+1) ∈ V (η, d) then by (2.17)

K(x0, . . . , xm+1) ≥ (ηd)m+1

(m+ 1)!(d)m+2
=

ηm+1

(m+ 1)!d
. (3.39)

For η = η(m) and d = ds(x0) this yields

KG(x0) ≥ K(x0, . . . , xm+1) ≥ a(m)

ds(x0)
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for some constant a(m) depending only onm. By Proposition 2.12, we know that for simplices T̄ that
arise from T by shifting x0 by at most 1

8η
2d a similar estimate holds, possibly with a slightly smaller

a(m) – still, depending only on m. Thus,

KG(z) ≥ a(m)

ds(x0)
, for all z ∈ Σ ∩ Bn(x0, η

2d/8) . (3.40)

Using the assumption of Theorem 3.6 we now estimate

E ≥
ˆ

Σ∩Bn(x0,η2d/8)
KG(z)p dH m(z)

≥H m(Σ ∩ Bn(x0, η
2d/8))

(
a(m)

ds(x0)

)p
by (3.40)

≥ 1

2 · 8m
ωmη

2mds(x0)m−pa(m)p by Corollary 3.8.

Note that η ∈ (0, 1), so Corollary 3.8 is indeed applicable. Equivalently,

ds(x0)p−m ≥ c/E

for some c depending only on m and p. Upon taking the infimum w.r.t. x0 ∈ Σ (note that we use
p > m here!), we obtain

d(Σ) := inf
x0∈Σ

ds(x0) ≥
( c
E

)1/(p−m)
=: R0

An application of Corollary 3.8 implies now Theorem 3.6 in the case of KG.

3.2.2 The case of global tangent–point curvature

As we have already mentioned in the introduction, the Lp norm of the global tangent-point curvature
Ktp[Σ] can be finite for at most one choice of a continuous map H : Σ 3 x 7→ H(x) ∈ G(n,m).
Thus, from now on we suppose

H : Σ 3 x 7−→ TxΣ ∈ G(n,m) ,

since at this point we know already that Σ is a C1 submanifold of Rn (without boundary). The general
scheme of proof is similar to the case of global Menger curvature. Some of the technical details are
different and we present them below.

High energy couples of points and large projections

The notion of a high energy couple expresses in a quantitative way the following rough idea: if there
are two points x, y ∈ Σ such that the distance from y to a substantial portion of the affine planes
z + TzΣ (where z is very close to x) is comparable to |x − y|, then a certain fixed portion of the
‘energy’, i.e. of the norm ‖Ktp‖Lp , comes only from a fixed neighbourhood of x, of size comparable
to |x− y|.

Recall that QTzΣ stands for the orthogonal projection onto (TzΣ)⊥.
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Definition 3.10 (High energy couples). We say that (x, y) ∈ Σ×Σ is a (λ, α, d)–high energy couple
if and only if the following two conditions are satisfied:

(i) d/2 ≤ |x− y| ≤ 2d;

(ii) The set
S(x, y;α, d) :=

{
z ∈ Bn(x, α2d) ∩ Σ: |QTzΣ(y − z)| ≥ αd

}
satisfies

H m(S(x, y;α, d)) ≥ λH m(Bm(0, α2d)) = λωmα
2mdm .

We shall be using this definition for fixed 0 < α, λ � 1 depending only on n and m. Intuitively,
high energy couples force the Lp-norm of Ktp to be large.

Lemma 3.11. If (x, y) ∈ Σ × Σ is a (λ, α, d)–high energy couple with α < 1
2 and an arbitrary

λ ∈ (0, 1], then
Ktp(z) >

α

9d
(3.41)

for all z ∈ S(x, y;α, d).

Proof. For z ∈ S(x, y;α, d) and w ∈ Bn(y, α2d) we have

dist(w, z + TzΣ) = |QTzΣ(w − z)| = |QTzΣ(y − z) +QTzΣ(w − y)|
≥ αd− |w − y| by Definition 3.10 (ii)

>
αd

2
as α < 1

2 .

Moreover, |w− z| ≤ |x− y|+ |x− z|+ |w− y| < 2d+ 2α2d < 3d. Thus, by the above computation,

Ktp(z) = sup
w∈Σ

2 dist(w, z + TzΣ)

|w − z|2

≥ sup
w∈Σ∩Bn(y,α2r)

2 dist(w, z + TzΣ)

|w − z|2
>

αd

(3d)2
=

α

9d
.

This completes the proof of the lemma.

The key to Theorem 3.6 in the case of Ktp global curvature is to observe that high energy couples
and large projections coexist on the same scale.

Proposition 3.12 (Stopping distances and large projections). There exist constants η = η(m), δ =
δ(m), λ = λ(n,m) ∈ (0, 1

9) which depend only on n,m, and have the following property.
Assume that Σ is an arbitrary embeddedC1 compact manifold without boundary. For every x ∈ Σ

there exist a number d ≡ ds(x) > 0 and a point y ∈ Σ such that

(i) (x, y) is a (λ, η, d)–high energy couple;
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(ii) for each r ∈ (0, d] there exists a plane H(r) ∈ G(n,m) such that

πH(r)(Σ ∩ Bn(x, r)) ⊃ H(r) ∩ Bn
(
πH(r)(x), r

√
1− δ2

)
,

and therefore

H m(Σ ∩ Bn(x, r)) ≥ (1− δ2)m/2ωmr
m ≥ 1

2
ωmr

m

for all 0 < r ≤ ds(x).

For the proof of this lemma (for a much wider class ofm-dimensional sets than just C1 embedded
compact manifolds) we refer the reader to [29, Section 4].

Lemma 3.13. If Σ ⊂ Rn is an embedded C1 compact manifold without boundary, p > m and

E ≥
ˆ

Σ
Ktp(x)p dH m(x) ,

then the stopping distances ds(x) of Proposition 3.12 satisfy

d(Σ) = inf
x∈Σ

ds(x) ≥
( c
E

)1/(p−m)
=: R0 (3.42)

where c depends only on n, m and p.

Proof. Let λ and η be the constants of Proposition 3.12. Use this proposition to select a (λ, η, d)–high
energy couple (x, y) ∈ Σ× Σ. Let

S := S(x, y; η, ds(x))

be as in Definition 3.10 (ii). Applying Lemma 3.11 we estimate

E ≥
ˆ
S
Ktp(z)p dH m(z)

> H m(S)

(
η

9ds(x)

)p
by Lemma 3.11

≥ λωmη
2m+pds(x)m−p9−p by Definition 3.10 (ii).

This implies
ds(x)p−m > c/E

for a constant c depending only on n, m, p. As in the case of KG, upon taking the infimum of the left
hand side w.r.t. x ∈ Σ, we conclude the proof of the lemma.

Theorem 3.6 in the case of Ktp follows now immediately. By the lower bound (3.42) for stopping
distances and Proposition 3.12 (ii), the inequality

H m(Σ ∩ B(x, r)) ≥ (1− δ2)m/2ωmr
m ≥ 1

2
ωmr

m

holds for each x ∈ Σ and each r ≤ R0, since R0 ≤ d(Σ) ≤ ds(x).
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3.2.3 An application: uniform size of C1,κ-graph patches

Now, returning to the proofs of Propositions 3.1 and 3.2, we see that for all radii

r ≤ C(n,m, p)E−1/(p−m) = R0

the estimate H m(B(x, r)) ≥ AΣωmr
m can be replaced by (3.36), i.e. used with AΣ = 1/2. Thus,

for such radii the decay estimates in Propositions 3.1 and 3.2, and the resulting C1,κ-estimates do
not depend on AΣ or diam Σ at all. An inspection of the argument leading to Corollary 3.4 gives the
following sharpened version, with all estimates depending in a uniform way only on the energy.

Corollary 3.14 (C1,κ estimates, second version). Assume that Σ ⊂ Rn is an m-fine set and let
K(1)(·) := KG[Σ](·) and K(2)(·) := Ktp[Σ](·). If

ˆ
Σ
K(i)(z)p dH m(z) ≤ E <∞

holds for i = 1 or i = 2. Then Σ is an embedded closed manifold of class C1,κi , where

κ1 =
p−m

p(m+ 1) + 2m
, κ2 =

p−m
p+m

.

Moreover we can find a radiusR1 = a(n,m, p)E−1/(p−m) ≤ R0 and a constantK1 = K(n,m, p)
such that for each x ∈ Σ there is a function

fx : TxΣ =: P ∼= Rm → P⊥ ∼= Rn−m

of class C1,κi , such that fx(0) = 0 and Dfx(0) = 0, and

Σ ∩ Bn(x,R1) = x+
(

Graph fx ∩ Bn(0, R1)
)
,

where Graph fx ⊂ P × P⊥ = Rn denotes the graph of fx, and

‖Dfx‖C0,κi (Bn(0,R1),R(n−m)×n) ≤ K1E
κi/(p−m) .

As for Corollary 3.4 also here we do not enter into the details of construction of the graph
parametrizations fx. These are described in [29, Section 5.4] and in [16, Section 3].

Remark 3.15. Note that shrinking a(n,m, p) if necessary, we can always assume that

|Dfx(z1)−Dfx(z2)| ≤ K1E
κi/(p−m) ·Rκi1

= K1a(n,m, p)κiEκi/(p−m)E−κi/(p−m) = K1(m, p) · a(n,m, p)κi < ε0

for an arbitrary small ε0 = ε0(m) > 0 that has been a priori fixed.

29



3.3 Bootstrap: optimal Hölder regularity for graphs

In this subsection we assume that Σ is a flat m-dimensional graph of class C1,κi , satisfying
ˆ

Σ
K(i)(z)p dH m(z) <∞

for i = 1 or i = 2, recall our notation from before: K(1) := KG and K(2) := Ktp. The goal is to show
how to bootstrap the Hölder exponent κi to τ = 1−m/p.

Relying on Corollary 3.14 and Remark 3.15, without loss of generality we can assume that

Σ ∩ Bn(0, 20R) = Graph f ∩ Bn(0, 20R)

for a fixed number R > 0, where

f : P ∼= Rm → P⊥ ∼= Rn−m

is of class C1,κi and satisfies Df(0) = 0, f(0) = 0,

|Df | < ε0(m) on P (3.43)

for some number ε0 to be specified later on. The ultimate goal is to show that osc Bm(b,s)Df ≤ Csτ

with a constant C depending only on the local energy of Σ; cf. (3.50). The smallness condition (3.43)
allows us to use all estimates of Section 2 for all tangent planes TzΣ with z ∈ Σ ∩ Bn(0, 20R).

Let F : P → Rn be the natural parametrization of Σ ∩ Bn(0, 20R), given by F (ξ) = (ξ, f(ξ))
for ξ ∈ P ; outside Bn(0, 20R) the image of F does not have to coincide with Σ. The choice of ε0

guarantees
<)(TF (ξ1)Σ, TF (ξ2)Σ) < ε1(m) for all x1, x2 ∈ Bn(0, 5R) ∩ P , (3.44)

where ε1(m) is the constant from Lemma 2.8.
As in our papers [29, Section 6], [28] and [16], developing the idea which has been used in [24]

for curves, we introduce the maximal functions controlling the oscillation ofDf at various places and
scales,

Φ∗(%,A) = sup
B%⊂A

(
osc
B%

Df

)
(3.45)

where the supremum is taken over all possible closed m-dimensional balls B% of radius % that are
contained in a subset A ⊂ Bn(0, 5R) ∩ P , with % ≤ 5R. Since f ∈ C1,κ with κ = κ1 or κ = κ2 we
have a priori

Φ∗(%,A) ≤ C%κi , i = 1 or i = 2, (3.46)

for some constant C which does not depend on %,A.
To show that f ∈ C1,τ for τ = 1 −m/p, we check that locally, on each scale ρ, the oscillation

of Df is controlled by a main term which involves the local integral of K(i)(z)p and has the desired
form Cρτ , up to a small error, which itself is controlled by the oscillation of Df on a much smaller
scale ρ/N . The number N can be chosen so large that upon iteration this error term vanishes.
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Lemma 3.16. Let f , F , Σ,R > 0 and P be as above. If z1, z2 ∈ Bn(0, 2R)∩P with |z1−z2| = t > 0,
then for each sufficiently large N > 4 we have

|Df(z1)−Df(z2)| ≤ A(m)Φ∗(2t/N,B) + C(N,m, p)E
1/p
B tτ (3.47)

where B := Bm( z1+z2
2 , t) is an m-dimensional disk in P , τ := 1−m/p, and

EB =

ˆ
F (B)
K(i)(z)p dH m(z) (3.48)

is the local curvature energy of Σ (with i = 1 or i = 2, respectively) over B. In the case of global
tangent-point curvature Ktp one can use (3.47) with A(m) = 2.

Remark. Once this lemma is proved, one can fix an m-dimensional disk

Bm(b, s) ⊂ Bn(0, R) ∩ P

and use (3.47) to obtain for t ≤ s

Φ∗(t,Bm(b, s)) ≤ A(m)Φ∗
(
4t/N,Bm(b, s+ 2t)

)
+ C(N,m, p)M i

p(b, s+ 2t) tτ , τ = 1− m

p
, (3.49)

where

M i
p(b, r) :=

(ˆ
F (Bm(b,r))

K(i)(z)p dH m(z)

)1/p

for i = 1, 2.

We fix i and then a large N = N(i,m, p) > 4 such that A(m)(4/N)κi < 1/2. This yields A(m)j ·
(2/N)jκi → 0 as j →∞. Therefore, one can iterate (3.49) and eventually show that

osc
Bm(b,s)

Df ≤ C ′(m, p)M i
p(b, 5s) · sτ (3.50)

= C ′(m, p)

(ˆ
F (Bm(b,5s))

K(i)(z)p dH m(z)

)1/p

· sτ , τ = 1− m

p
.

Thus, in particular, we have the following.

Corollary 3.17 (Geometric Morrey-Sobolev embedding into C1,τ ). Let p > m and Σ ⊂ Rn be an
m-fine set ˆ

Σ
K(i)(z)p dH m(z) ≤ E <∞

for i = 1 or i = 2. Then Σ is an embedded closed manifold of class C1,τ , where τ = 1 − m/p.
Moreover we can find a radius R2 = a2(n,m, p)E−1/(p−m) ≤ R1, where a2(n,m, p) is a constant
depending only on n, m and p, and a constant K2 = K2(n,m, p) such that for each x ∈ Σ there is a
function

f : TxΣ =: P ∼= Rm → P⊥ ∼= Rn−m
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of class C1,τ , such that f(0) = 0 and Df(0) = 0, and

Σ ∩ Bn(x,R2) = x+
(

Graph f ∩ Bn(0, R2)
)
,

where Graph f ⊂ P × P⊥ = Rn denotes the graph of f , and we have

|Df(z1)−Df(z2)| ≤ K2

(ˆ
U(z1,z2)

K(i)
(
(z, f(z)

)p
dz

)1/p

|z1 − z2|τ (3.51)

for all z1, z2 ∈ Bn(0, R2) ∩ P , where

U(z1, z2) = Bm((z1 + z2)/2, 5|z1 − z2|) .

The rest of this section is devoted to the proof of Lemma 3.16 for each of the global curvatures
K(i). We follow the lines of [16] and [29] with some technical changes and necessary adjustments.

3.3.1 Slicing: the setup. Bad and good points.

We fix z1, z2 and the disk B = Bm( z1+z2
2 , t) as in the statement of Lemma 3.16; we have H m(B) =

ωmt
m. Pick N > 4 and let EB be the curvature energy of Σ over B, defined for i = 1 or i = 2 by

(3.48). Assume that Df 6≡ const on B, for otherwise there is nothing to prove.
Take

K0 :=
(
EB ·Nmω−1

m

)1/p
> 0 (3.52)

and consider the set of bad points where the global curvature becomes large,

Y0 := {ξ ∈ B : K(i)(F (ξ)) > K0t
−1+τ = K0t

−m/p} . (3.53)

We now estimate the curvature energy to obtain a bound for H m(Y0). For this we restrict ourselves
to a portion of Σ that is described as the graph of the function f .

EB =

ˆ
F (B)

K(i)(z)p dH m(z)

≥
ˆ
F (Y0)

K(i)(z)p dH m(z)

=

ˆ
Y0

K(i)(F (ξ))p

√
det
([ IdRm

Df(ξ)

]T [ IdRm

Df(ξ)

])
dξ

≥
ˆ
Y0

K(i)(F (ξ))p dξ

(3.53)
> H m(Y0)Kp

0 t
−m = EBH m(Y0)Nm

(
H m(B)

)−1
.

The last equality follows from the choice of K0 in (3.52). Thus, we obtain

H m(Y0) <
1

Nm
H m(B) = ωm

tm

Nm
, (3.54)
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and since the radius of B equals t, we obtain

Bm(zj , t/N) \ Y0 6= ∅ for j = 1, 2. (3.55)

Now, select two good points uj ∈ Bm(zj , t/N) \ Y0 (j = 1, 2). By the triangle inequality,

|Df(z1)−Df(z2)| ≤ |Df(z1)−Df(u1)|+ |Df(u2)−Df(z2)|
+ |Df(u1)−Df(u2)|

≤ 2Φ∗(t/N,B) + |Df(u1)−Df(u2)| . (3.56)

Thus, we must only show that for good u1, u2 the last term in (3.56) satisfies

|Df(u1)−Df(u2)| ≤ A(m)Φ∗(2t/N,B) + C(N,m, p)E
1/p
B tτ . (3.57)

This has to be done for each of the global curvatures K(i). (It will turn out that for Ktp one can use
just the second term on the right hand side of (3.57).)

3.3.2 Angles between good planes: the ‘tangent-point’ case

We first deal with the case ofKtp which is less complicated. To verify (3.57), we assume thatDf(u1) 6=
Df(u2) and work with the portion of the surface parametrized by the points in the good set

G := B \ Y0. (3.58)

By (3.54), G satisfies

H m(G) > (1−N−m)H m(B) =: C1(p,m) tm . (3.59)

To conclude the whole proof, we shall derive – for each of the two global curvatures – an upper
estimate for the measure of G,

H m(G) ≤ C2(p,m)K0
tm+τ

α
, (3.60)

where α := <)(H1, H2) 6= 0 and Hi := TF (ui)Σ denotes the tangent plane to Σ at F (ui) ∈ Σ for
i = 1, 2. Combining (3.60) and (3.59), we will then obtain

α < (C1)−1C2K0t
τ =: C3E

1/p
B tτ .

(By an elementary reasoning analogous to the proof of Theorem 5.7 in [29], this also yields an estimate
for the oscillation of Df .)

Following [29, Section 6] closely, we are going to prove the upper estimate (3.60) for H m(G).
By Corollary 3.14 and Remark 3.15

Σ ∩ Bn(F (u1), 20R) = F (u1) +
(

Graph f1 ∩ Bn(0, 20R)
)
,
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i.e, that portion of Σ near F (u1) ∈ Σ is a graph of a C1,κ2 function f1 : H1 := TF (u1)Σ→ H⊥1 with
|∇f1| < ε0(m)� 1. As G ⊂ B = Bm( z1+z2

2 , t) with zi ∈ Bn(0, 2R) ∩ P, t = |z1 − z2| ≤ 4R, and
ui ∈ Bm(zi, t/N) (see (3.55)), we have the inclusion

G ⊂ Bm(0, 6R) ⊂ Bm(u1, 6R+ 2R+ t/N) ⊂ Bm(u1, 10R),

and, as F is 2-Lipschitz, F (G) ⊂ Bn(F (u1), 20R), i.e., F (G) ⊂ x +
(

Graph f1 ∩ Bn(0, 20R)
)
.

Thus, since ε0(m) is small,

H m(F (G)) =

ˆ
πH1

(F (G))

√
det
([ IdRm

Df1(ξ)

]T [ IdRm

Df1(ξ)

])
dξ

<

ˆ
πH1

(F (G))

√
2 dξ =

√
2H m(πH1(F (G))).

Therefore,
H m(G) ≤H m(F (G)) <

√
2H m(πH1(F (G))),

so that (3.60) would follow from

H m
(
πH1(F (G))

)
≤ C4(m)K0

tm+τ

α
. (3.61)

To achieve this, we shall use the definition of Ktp combined with the properties of intersections of
tubes stated in Lemma 2.8. To shorten the notation, we write

1

Rtp(x, y;TxΣ)
≡ 1

Rtp(x, y)
, x, y ∈ Σ .

For an arbitrary ζ ∈ G and i = 1, 2 we have by (3.53)

1

Rtp(F (ui), F (ζ))
=

2
∣∣QHi(F (ζ)− F (ui))

∣∣
|F (ζ)− F (ui)|2

≤ Ktp(F (ui)) ≤ K0t
−1+τ .

Let Pi = F (ui) + Hi be the affine tangent plane to Σ at F (ui). Since F is Lipschitz with constant
(1 + ε0) < 2 and |ζ − ui| ≤ 2t,

dist(F (ζ), Pi) = dist(F (ζ)− F (ui), Hi) (3.62)

=
∣∣QHi(F (ζ)− F (ui))

∣∣ < 8K0t
1+τ =: h0

for ζ ∈ G, i = 1, 2. Select the points pi ∈ Pi, i = 1, 2, so that |p1 − p2| = dist(P1, P2). The
vector p2 − p1 is then orthogonal to H1 and to H2, and since G is nonempty by (3.59), we have
|p1 − p2| < 2h0 by (3.62).

Set p = (p1 + p2)/2, pick a parameter ζ ∈ G and consider y = F (ζ)− p. We have

y = (F (ζ)− F (u1)) + (F (u1)− p1) + (p1 − p),
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so that πH1(y) = πH1(F (ζ)− F (u1)) + (F (u1)− p1), and

|y − πH1(y)| = |(p1 − p) + F (ζ)− F (u1)− πH1(F (ζ)− F (u1))|
= |(p1 − p) +QH1(F (ζ)− F (u1))| .

Therefore, since |p − p1| ≤ h0 and by (3.62), |y − πH1(y)| < h0 + h0 = 2h0. In the same way, we
obtain |y − πH2(y)| < 2h0. Thus,

y

2h0
=
F (ζ)− p

2h0
∈ S(H1, H2),

where S(H1, H2) = {x ∈ Rn : dist(x,Hj) ≤ 1 for j = 1, 2} is the intersection of two tubes around
the planes Hj considered in Section 2.2. Applying Lemma 2.8 which is possible due to the estimate
(3.44) for <)(H1, H2), we conclude that there exists an (m− 1)-dimensional subspace W ⊂ H1 such
that

πH1(F (G)− p) ⊂ {x ∈ H1 : dist(x,W ) ≤ 2h0 · 5c2/α} . (3.63)

On the other hand, since F is 2-Lipschitz, we certainly have

F (G) ⊂ Bn
(
F (
z1 + z2

2
), 2t

)
and therefore

πH1(F (G)− p) ⊂ Bn(a, 2t), a := πH1(F (
z1 + z2

2
)− p). (3.64)

Combining (3.63)–(3.64), we use Lemma 2.9 for the plane H := H1 ∈ G(n,m), the set S′ :=
πH1(F (G)− p), and d := 2h05c2/α, to obtain

H m
(
πH1(F (G))

)
≤ 4m−1tm−1 · 20h0c2/α =: C4(m)K0

tm+τ

α
(3.65)

by definition of h0 in (3.62), which is the desired (3.61), implying (3.60) and thus completing the
bootstrap estimates in the case of the global tangent-point curvature Ktp.

3.3.3 Angles between good planes: the ‘Menger’ case

To obtain (3.57) for the global Menger curvature KG, one proceeds along the lines of [16], with a few
necessary changes.

The main difference betweenKtp andKG is that the control ofKtp directly translates to the control
of the angles between the tangent planes. In the case of KG an extra term is necessary. Namely, we
choose x1, . . . , xm ∈ P so that

|xi − u1| =
t

N
, i = 1, 2, . . . ,m

and the vectors xi − u1 form and ortho-ρ-normal basis of P with ρ = t/N ; see Definition 2.3.
Analogously, we choose y1, . . . , ym ∈ P close to u2. Next, setting as before Hj = TF (uj)Σ, we write

|Df(u1)−Df(u2)| . <)(H1, H2) (3.66)

≤ <)(H1, X) +<)(X,Y ) +<)(Y,H2) ,
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with the constant in (3.66) depending on m only, where

X = span (F (x1)− F (u1), F (x2)− F (u1), . . . , F (xm)− F (u1))

Y = span (F (y1)− F (u2), F (y2)− F (u2), . . . , F (ym)− F (u2))

are the secantm-dimensional planes, approximating the tangent ones. A technical but routine calcula-
tion, relying on the fundamental theorem of calculus (see e.g. [16, Proof of Thm. 4.3] or (for m = 2)
Step 4 of the proof of Theorem 6.1 in [28]), shows that if the constant ε0 = ε0(m) > 0 controlling
the oscillation of Df is chosen small enough then

<)(H1, X) +<)(Y,H2) ≤ C(m)Φ∗(2t/N,B) ,

and consequently

|Df(u1)−Df(u2)| ≤ A(m)Φ∗(2t/N,B) + C(m)<)(X,Y ) , (3.67)

whereC(m) comes from (3.66). Thus, it remains to estimate the angle between the secant planesX,Y
approximating the tangent ones H1, H2. The estimate of <)(X,Y ) is very similar to the computations
carried out in Section 3.3.2 for the global-tangent point curvature. Here is the crux of the argument.

We let G = B \ Y0 be the good set defined in (3.58). Shrinking ε0 = ε0(m) if necessary, we may
assume that

<)(X,Y ) ≤ ε1(m) (3.68)

where ε1(m) is sufficiently small. Then,

H m(G) ≤H m(F (G)) ≤ 2Hm(πX(F (G))) ,

and the strategy is to show a counterpart of (3.61), namely

H m
(
πX(F (G))

)
≤ C5K0

tm+τ

α
, α = <)(X,Y ) . (3.69)

Comparing this estimate with the lower bound (3.59) for the measure of G, one obtains

<)(X,Y ) . K0t
τ = const · E1/p

B tτ

which is enough to conclude the proof of Lemma 3.16 also in the case of the global Menger curvature
KG.

Now, to verify (3.69), we select a point ζ ∈ B = Bm( z1+z2
2 , t) with

|ζ − uj | ≈ |F (ζ)− F (uj)| ≈
t

2
, j = 1, 2

(one can arrange to have constants here close to 1 by the initial uniform smallness of ε0(m) in (3.43)).
Then, the (m + 1)-simplex T with vertices at F (u1), F (x1), . . . , F (xm), F (ζ) is of diameter ≈ t.
The face

fcm+1(T ) = conv
{
F (u1), F (x1), . . . , F (xm)

}
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is spanned by m nearly orthogonal edges F (xi)− F (u1), of length roughly t/N each, and therefore
H m(fcm+1(T )) ≈ tm. Thus, setting now P1 = F (u1) + X , and keeping in mind that u1 6∈ Y0 (see
(3.53)), we obtain by means of (2.16)

K0t
−1+τ ≥ KG(F (u1))

≥ K(F (u1), F (x1), . . . , F (xm), F (ζ)) ≈ tm dist(F (ζ), P1)

tm+2
.

Thus,
dist(F (ζ), P1) ≤ C(m)K0t

1+τ , (3.70)

and the same estimate holds for dist(F (ζ), P2) where P2 = F (u2) + Y . Thus, we have a counterpart
of (3.62) in the previous subsection. From that point we reason precisely like in Section 3.3.2, between
(3.62) and (3.65), where at one point we need to use (3.68). This completes the proof of Lemma 3.16
in the case of global Menger curvature KG.

3.4 W 2,p estimates for the graph patches

We now show that Corollary 3.17 combined with the result of Hajłasz, cf. Theorem 2.13, easily yields
the following.

Theorem 3.18 (Sobolev estimates). Let Σ ⊂ Rn be an m-fine set withˆ
Σ
K(i)(z)p dH m(z) ≤ E <∞

for i = 1 or i = 2. Then Σ is an embedded closed manifold of class C1,τ ∩W 2,p, where τ = 1−m/p.
Moreover we can find a radiusR3 = a3(n, n, p)E−1/(p−m) ≤ R2,where a3(n,m, p) is a constant

depending only on n,m, and p, and a constant K3 = K3(n,m, p) such that for each x ∈ Σ there is
a function

f : TxΣ =: P ∼= Rm → P⊥ ∼= Rn−m

of class C1,τ ∩W 2,p, such that f(0) = 0 and Df(0) = 0, and

Σ ∩ Bn(x,R3) = x+
(

Graph f ∩ Bn(0, R3)
)
,

where Graph f ⊂ P × P⊥ = Rn denotes the graph of f

Proof. It remains to show that the graph parametrizations are in fact in W 2,p. To this end, we fix
an exponent s ∈ (m, p) and apply Corollary 3.17 with p replaced by s, to obtain from (3.51) the
following estimate

|Df(z1)−Df(z2)|

.

(ˆ
Bm((z1+z2)/2,5|z1−z2|)

K(i)
(
(z, f(z))

)s
dz

)1/s

|z1 − z2|1−m/s

.

( 
Bm((z1+z2)/2,5|z1−z2|)

K(i)
(
(z, f(z))

)s
dz

)1/s

|z1 − z2|

.
(
G(z1) +G(z2)

)
|z1 − z2|
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where

G(z) =
(
MK(i)

(
F (z)

)s)1/s
for F (z) = (z, f(z)) ,

and Mh denotes the standard Hardy-Littlewood maximal function of h. Since p > s, we have
p/s > 1, so that (K(i) ◦ F )s is in Lp/s and by the Hardy–Littlewood maximal theorem G

s
=

M
(
(K(i) ◦ F )s

)
∈ Lp/s. Thus, G ∈ Lp. An application of Hajłasz’ Theorem 2.13 concludes the

proof of Theorem 3.18.

4 From W 2,p estimates to finiteness of both energies

In this section, we prove the implications (1)⇒ (2), (3) of the main result, Theorem 1.4. Let us begin
with a definition.

Definition 4.1. Let Σ ⊂ Rn. We say that Σ is an m-dimensional, W 2,p-manifold (without boundary)
if at each point x ∈ Σ there exist an m-plane TxΣ ∈ G(n,m), a radius Rx > 0, and a function
f ∈W 2,p(TxΣ ∩ Bn(0, 2Rx),Rn−m) such that

Σ ∩ Bn(x,Rx) = x+
(

Graph f ∩ Bn(0, Rx)
)
.

We will use this definition only for p > m. In this range, by the Sobolev imbedding theorem,
each W 2,p-manifold is a manifold of class C1.

Theorem 4.2. Let p > m and let Σ be a compact, m-dimensional, W 2,p-manifold. Then the global
curvature functions KG[Σ] and Ktp[Σ] are of class Lp(Σ,H m).

Remark 4.3. As already explained in the introduction, here we assume that Ktp is defined for the
natural choice ofm-planesHx = TxΣ. As we mentioned before, if Σ is aC1 manifold andHx 6= TxΣ
on a set of positive H m-measure, then the global curvature Ktp defined for Hx instead of TxΣ has
infinite Lp-norm.

4.1 Beta numbers for W 2,p graphs

We start the proof with a general lemma that shall be applied later to obtain specific estimates for KG
and Ktp in Lp(Σ).

Lemma 4.4. Let f ∈ W 2,p(Bm(0, 2R),Rn−m), where p > m and let Σ = Graph f . Then there
exists a function g ∈ Lp(Σ ∩ Bn((0, f(0), 2R),H m) such that for each a ∈ Σ ∩ Bn((0, f(0)), R)
and any r < R

βΣ(a, r) ≤ g(a)r .

Proof. Fix s ∈ (m, p). Then, f ∈W 2,s(Bm(0, 2R)). Since s > m we have the embedding

W 2,s(Bm(0, 2R)) ⊂ C1,α(Bm(0, 2R)),

where α = 1− m
s . Choose some point x ∈ Bm(0, R) and set as before

F (z) := (z, f(z)) and Ψx(z) := F (z)−DF (x)(z − x) for z ∈ Bm(0, 2R).
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Of course Ψx is in W 2,p(Bm(0, 2R),Rn) and therefore also in W 2,s(Bm(0, 2R),Rn). We now
fix another point y in Bm(x,R) and estimate the oscillation of Ψx. Set

U := Bm
(x+ y

2
, |x− y|

)
By two consecutive applications of the Sobolev imbedding theorem in the supercritical case (cf. [11,
Theorem 7.17]), keeping in mind that U is a ball of radius |x− y|, we obtain

|Ψx(y)−Ψx(x)| ≤ C(n,m, s)|y − x|1−
m
s

(ˆ
U
|DΨx(z)|s dz

)1/s

= C ′|y − x|
( 

U
|DΨx(z)|s dz

)1/s

= C ′|y − x|
( 

U
|DF (z)−DF (x)|s dz

)1/s

≤ C̃|y − x|
( 

U
|z − x|s−m

ˆ
U
|D2F (w)|s dw dz

)1/s

= C̄|y − x|2
( 

Bm(x+y
2
,|x−y|)

|D2f(w)|s dw

)1/s

≤ Ĉ|y − x|2M(|D2f |s)1/s(x) .

Here M denotes the Hardy-Littlewood maximal function and the constant Ĉ = Ĉ(n,m, s) depends
on n,m, and s. Since m < s < p we have p

s > 1 and |D2f |s ∈ Lp/s(Bm(0, 2R)). Hence we also
have M(|D2f |s) ∈ Lp/s(Bm(0, 2R)). Therefore M(|D2f |s)1/s ∈ Lp(Bm(0, 2R)).

To estimate the β number, note that

|Ψx(y)−Ψx(x)| = |F (y)− F (x)−DF (x)(y − x)| = |f(y)− f(x)−Df(x)(y − x)| .

Choose two points a ∈ Σ∩Bn(F (0), R) and b ∈ Σ∩Bn(F (0), 2R). Since Σ = Graph f there exist
x, y ∈ Bm(0, 2R) such that F (x) = a and F (y) = b.

Of course we have |y − x| ≤ |b− a|. Now we obtain

dist(b, a+ TaΣ) = dist(F (y), F (x) + TF (x)Σ)

≤ |F (y)− F (x)−DF (x)(y − x)|
= |Ψx(y)−Ψx(x)|
≤ Ĉ|y − x|2M(|D2f |s)1/s(x)

≤ Ĉ|b− a|2M(|D2f |s)1/s(πRm(a)) .

Since πRm is bounded we find together with the previous considerations that the function g(a) :=
ĈM(|D2f |s)1/s(πRm(a)) is of class Lp(Σ ∩ Bn(F (0), 2R),H m). Choose a radius r ∈ (0, R]. We
have

sup
b∈Σ∩Bn(a,r)

dist(b, a+ TaΣ) ≤ sup
b∈Σ∩Bn(a,r)

|b− a|2g(a) ≤ r2g(a) .
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Hence

βΣ(a, r) =
1

r
inf

H∈G(n,m)

(
sup

b∈Σ∩Bn(a,r)
dist(b, a+H)

)
≤ 1

r
sup

b∈Σ∩Bn(a,r)
dist(b, a+ TaΣ) ≤ g(a)r .

We now need to estimate the global curvatures in terms of β numbers. Combining these estimates
with the previous lemma, we will later be able to conclude the proof of Theorem 4.2.

4.2 Global Menger curvature for W 2,p graphs

Let us begin with an estimate for the global Menger curvature KG.

Lemma 4.5. Let Σ ⊂ Rn be a closed m-dimensional set. Choose m+ 2 points x0,. . . ,xm+1 of Σ; set
T = conv(x0, . . . , xm+1) and d = diam(T ). There exists a constant C = C(m,n) such that

H m+1(T ) ≤ CβΣ(x0, d)dm+1

and

K(x0, . . . , xm+1) ≤ CβΣ(x0, d)

d
.

Proof. If the affine space aff{x0, . . . , xm+1} is not (m + 1)-dimensional then H m+1(T ) = 0 and
there is nothing to prove. Hence, we can assume that T is an (m + 1)-dimensional simplex. The
measure H m+1(T ) can be expressed by the formula (cf. (2.16))

H m+1(T ) =
1

m+ 1
dist(xm+1, aff{x0, . . . , xm})H m(conv(x0, . . . , xm)) .

In the same way, one can express the measure H m(conv(x0, . . . , xm)) etc.; by induction,

H m+1(T ) ≤ 1

(m+ 1)!
dm+1 .

Hence, if βΣ(x0, d) = 1, then there is nothing to prove, so we can assume that βΣ(x0, d) < 1.
Fix an m-plane H ∈ G(n,m) such that

dist(y, x0 +H) ≤ dβΣ(x0, d) for all y ∈ Σ ∩ Bn(x0, d) . (4.1)

Set h := dβΣ(x0, d) < d. Without loss of generality we can assume that x0 lies at the origin. Let us
choose an orthonormal basis (v1, . . . , vn) of Rn as coordinate system, such that span{v1, . . . , vm} =
H . Because of (4.1) in our coordinate system we have

T ⊂ [−d, d]m × [−h, h]n−m .

Of course, T lies in some (m+ 1)-dimensional section of the above product. Let

V := aff{x0, . . . , xm+1} = span{x1, . . . , xm+1} ,
Q(a, b) := [−a, a]m × [−b, b]n−m ,

Q := Q(d, h)

and P := V ∩Q .
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Note that each of the sets V , Q and P contains T . Choose another orthonormal basis w1, . . . , wn of
Rn such that V = span{w1, . . . , wm+1}. Set

S := {x ∈ V ⊥ : |〈x,wi〉| ≤ h for i = 1, . . . ,m} .

Thus, S is just the cube [−h, h]n−m−1 placed in the orthogonal complement of V . Note that diamS =
2h
√
n−m− 1. In this setting we have

P × S =⊂ Q(d+ 2h
√
n−m− 1, h+ 2h

√
n−m− 1) . (4.2)

Recall that h = dβΣ(x0, d) < d. We estimate

H n(T × S) ≤H n(P × S)

≤H n
(
Q(d+ 2h

√
n−m− 1, h+ 2h

√
n−m− 1)

)
=
(
2d+ 4h

√
n−m− 1

)m(
2h+ 4h

√
n−m− 1

)n−m
< (2d+ 4d

√
n−m− 1)m(2h+ 4h

√
n−m− 1)n−m

= (2 + 4
√
n−m− 1)ndnβΣ(x0, d)n−m .

On the other hand we have

H n(T × S) = H m+1(T )H n−m−1(S)

= H m+1(T )2n−m−1hn−m−1

= 2n−m−1H m+1(T )dn−m−1βΣ(x0, d)n−m−1 .

Hence

2n−m−1H m+1(T )dn−m−1βΣ(x0, d)n−m−1 ≤ (2 + 4
√
n−m− 1)ndnβΣ(x0, d)n−m,

or equivalently

H m+1(T ) ≤ (2 + 4
√
n−m− 1)n2−(n−m−1)dm+1βΣ(x0, d) .

We may set C = C(n,m) = (2 + 4
√
n−m− 1)n2−(n−m−1). This completes the proof of the

lemma.

Since Σ is a compact W 2,p-manifold (p > m) we may cover it by finitely many balls, in which
Σ is described as a graph, such that Lemma 4.4 is satisfied in each of these graph patches with a
respective function g defined only on that patch. More precisely, we find a1, . . . , aN ∈ Σ with

Σ ⊂
N⋃
k=1

Bn(ak, R/2),

such that for each k = 1, . . . , N, one has

Σ ∩ Bn(ak, 2R) = ak + (Graph fk ∩ Bn(ak, 2R)) ,
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where fk ∈ W 2,p(Bm(0, 2R),Rn−m), and there is a function gk ∈ Lp(Σ ∩ Bn(ak, 2R),H m) with
the property that for each a ∈ Σ ∩ Bn(ak, R) and any r < R one has the estimate

βΣ(a, r) ≤ gk(a)r. (4.3)

Using a partition of unity subordinate to this finite covering, i.e., (ηk)
N
k=1 ⊂ C∞0 (Bn(ak, R/2)) with

0 ≤ ηk ≤ 1,
∑N

k=1 η = 1, we can extend the functions ηkgk to all of Σ by the value zero outside of
Bn(ak, R/2) for each k = 1, . . . , N, and define finally g ∈ Lp(Σ,H m) as

g =
N∑
k=1

ηkgk.

Now, for any x0 ∈ Σ there exists k ∈ {1, . . . , N} such that x0 ∈ Σ ∩ Bn(ak, R/2), so that
Bn(x0, R/2) ⊂ Bn(ak, R), and we conclude with (4.3) for any r < R

βΣ(x0, r) =

N∑
k=1

ηkβΣ(x0, r) ≤
N∑
k=1

ηkgk(x0)r = g(x0)r.

Consequently, by Lemma 4.5,

KG(x0) = sup
x1,...,xm+1∈Σ

K(x0, x1, . . . , xm+1)

≤ C sup
x1,...,xm+1∈Σ

βΣ(x0,diam(x0, . . . , xm+1))

diam(x0, . . . , xm+1)

≤ C sup
x1,...,xm+1∈Σ

g(x0) = Cg(x0) .

This leads to the following result.

Corollary 4.6. Let Σ be a compact, m-dimensional, W 2,p-manifold for some p > m. Then KG[Σ] ∈
Lp(Σ,H m).

4.3 Global tangent–point curvature for W 2,p graphs

The following simple lemma can be easily obtained from the definition of Ktp.

Lemma 4.7. Assume that Σ is a C1 embedded, compact m-dimensional manifold without boundary.
Then, for some R = R(Σ) > 0 we have

Ktp(x) .
1

R
+ sup
r<R

βΣ(x, r)

r
.

Proof. Choose R > 0 so that for each point x ∈ Σ the intersection Σ ∩ Bn(x, 3R) is a graph of a C1

function f : TxΣ → (TxΣ)⊥ with oscillation of Df being small. Fix x ∈ Σ. Set F (z) := (z, f(z))
for z ∈ P = TxΣ. As before, we write

1

Rtp(x, y;TxΣ)
≡ 1

Rtp(x, y)
, x, y ∈ Σ .
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It is clear that for |x− y| ≥ R we have Rtp(x, y) ≥ R/2 by definition. Thus

Ktp(x) ≤ 2

R
+ sup
|x−y|<R

1

Rtp(x, y)
.

It remains to estimate the last term. Now, if x = F (ξ) and y = F (η) ∈ Σ ∩ Bn(x,R) with

|y − x| = |F (η)− F (ξ)| ≈ |η − ξ| ≈ ρj ≡
R

2j
, j = 0, 1, , 2, . . . ,

then
1

Rtp(x, y)
=

2 dist(y, x+ Tx1Σ)

|y − x|2
.
βΣ(x, ρj)

ρj

with an absolute constant. The lemma follows.

Combining the above lemma with Lemma 4.4, we conclude immediately that Ktp ∈ Lp for W 2,p-
manifolds with p > m. The proof of the implications (1)⇒ (2), (3) of Theorem 1.4 is now complete.
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[24] Paweł Strzelecki, Marta Szumańska, and Heiko von der Mosel, Regularizing and self-avoidance effects of
integral Menger curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010), no. 1, 145–187.

[25] Paweł Strzelecki and Heiko von der Mosel, On a mathematical model for thick surfaces, Physical and nu-
merical models in knot theory, Ser. Knots Everything, vol. 36, World Sci. Publ., Singapore, 2005, pp. 547–
564.

[26] , Global curvature for surfaces and area minimization under a thickness constraint, Calc. Var.
Partial Differential Equations 25 (2006), no. 4, 431–467.

[27] , On rectifiable curves with Lp-bounds on global curvature: Self-avoidance, regularity, and mini-
mizing knots., Math. Z. 257 (2007), 107–130.

[28] , Integral Menger curvature for surfaces, Adv. Math. 226 (2011), 2233–2304.

[29] , Tangent-point repulsive potentials for a class of non-smooth m-dimensional sets in Rn.
Part I: Smoothing and self-avoidance effects, 2011, arXiv:1102.3642; J. Geom. Anal., accepted, DOI:
10.1007/s12220-011-9275-z.

[30] , Tangent-point self-avoidance energies for curves, J. Knot Theory Ramifications 21 (2012), no. 5,
28 pages.

[31] Tatiana Toro, Surfaces with generalized second fundamental form in L2 are Lipschitz manifolds, J. Dif-
ferential Geom. 39 (1994), no. 1, 65–101.

[32] , Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J. 77 (1995),
no. 1, 193–227.

44



SŁAWOMIR KOLASIŃSKI
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