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GEOMETRIC SOBOLEV-LIKE EMBEDDING USING
HIGH-DIMENSIONAL MENGER-LIKE CURVATURE

SEAWOMIR KOLASINSKI

ABsTRACT. We study a modified version of Lerman-Whitehouse Menger-like curvature de-
fined for (m + 2) points in an n-dimensional Euclidean space. For 1 < 1 < m + 2 and
an m-dimensional set ¥ C R"™ we also introduce global versions of this discrete curvature, by
taking supremum with respect to (m—+2—1) points on X. We then define geometric curvature
energies by integrating one of the global Menger-like curvatures, raised to a certain power p,
over all [-tuples of points on . Next, we prove that if ¥ is compact and m-Ahlfors regular
and if p is greater than the dimension of the set of all I-tuples of points on X (i.e. p > ml),
then the P. Jones’ S-numbers of ¥ must decay as " with » — 0 for some 7 € (0,1). If ¥
is an immersed C'' manifold or a bilipschitz image of such set then it follows that it is
Reifenberg flat with vanishing constant, hence (by a theorem of David, Kenig and Toro)
an embedded C*™ manifold. We also define a wide class of other sets for which this assertion
is true. After that, we bootstrap the exponent 7 to the optimal one aw = 1 — ml/p showing
an analogue of the Morrey-Sobolev embedding theorem W27 C C*. Moreover, we obtain
a qualitative control over the local graph representations of X only in terms of the energy.

INTRODUCTION

Menger curvature is defined for three points xg, x1, x2 in R™ as follows

47‘[2 N(zo, z1,
c(x07x1,$2): ( ( 0,1, 2)) 7
w0 — 21[|21 — 22w — 0

where H' denotes the I-dimensional Hausdorff measure and A(xo, . .., 2;) is the convex hull of
the set {xg,...,2;}. Using the sine theorem one easily sees that c(xg,z1,z2) is just the inverse
of the radius of the circumcircle of A(xq, 1, 22). Let ¥ C R? be a closed, Lipschitz curve with
arc-length parameterization T', i.e. T' : S, — R? is such that v = I'(Sz) and |I/] = 1 a.e. -
here S;, = R/LZ denotes the circle of length L. We set

CO[’Y] = sup C($0,$1,$2), cl[’Y](‘TO) = Ssup C(x07x17x2)7
T0,T1,T2E€7Y T1,T2€7Y
c2[v|(wo, 71) = sup c(wo, r1,72) and c3[y|(wo, T1,72) = c(z0, 71, 72) .
Tr2EY

Using these quantities we define

Aly] =coly]™! and fori=1,2,3 M(v) :/ ] dH',
(n)?
where ()" is the Cartesian product of i copies of . Gonzalez and Maddocks [7] suggested
that these functionals can serve as knot energies, i.e. energies which separate knot types by
infinite energy barriers. Gonzalez, Maddocks, Schuricht and von der Mosel [6] showed that
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whenever cp[y] < oo then v is an embedded (without self-intersections) manifold of class
Cll = W2, The functionals M;,, M?, and ./\/l;’, poses a similar property. For ¢ = 1,2,3
if M;(W) < oo for some p > i then 7 is an embedded manifold of class C11=#/P (see the articles
by Strzelecki, Szumariska and von der Mosel [2223] and by Strzelecki and von der Mosel [24]).
Furthermore, in [24] the authors proved that M},(y) is finite if and only if v is an image of
a W?2P function. Later Blatt [2] showed that for i = 2,3 and p > i the energy M;(y) < 0
if and only if ~ belongs to the Sobolev-Slobodeckij space WP where s = 1 — %. Note

that, W'tsP(R) C C1~¥/P(R) whenever p > i, so these results deliver geometric counterparts
of the Sobolev-Morrey embedding.

For p below the critical level (i.e. p < i) one cannot expect that finiteness of M;,(’y) implies
smoothness. Scholtes [20] showed that if 7 is a polygon in R? then M;(v) < oo if and only if
p < i. For a 1-dimensional Borel set E C R? a famous result of David and Léger [I5] says that
M3 (E) is finite if and only if E is rectifiable. This was a crucial step in the proof of Vitushkin’s
conjecture characterizing removable sets E for bounded analytic functions.

There are some generalizations of these results to higher dimensions. Lerman and White-
house [I6[I7] suggested a few possible definitions of discrete curvatures of Menger-type. They
used these curvatures to characterize uniformly rectifiable measures in the sense of David
and Semmes [4]. In this article we use a modified version (having different scaling) of one
of the quantities introduced in [16].

Our research has been motivated directly by the work of Strzelecki and von der Mosel [25],
where the authors work with 2-dimensional surfaces in R3. They define the discrete curvature
of four points xg, z1, z2, r3 € R? by the formula

Hg(A(x()) X1, T2, $3))
H2(0 N(xg, 1, T2, x3)) diam(zg, T1, T2, 23)2

Ksvam (zo, 21, 22, 73) =
For ¥ C R? a compact, closed, connected, Lipschitz surface they also define

In [25] the authors prove that if Mg”dM(E) < FE < oo for some p > 8 = dim(X*), then

¥ has to be an embedded manifold of class C1'=8/P with local graph representations whose
domain size is controlled solely in terms if £ and p. This additional control of the graph
representations allowed them to prove [25] Theorem 1.5] that any sequence (3;);en of com-
pact, closed, connected, Lipschitz surfaces containing the origin and with uniformly bounded
measure and energy, i.e. Mg”dM(Ej) < E and H%*(X;) < A for each j € N, contains a sub-

sequence Xj,, which converges in C' topology to some C1=8/P compact, closed, connected
manifold. This in turn allowed them to solve some variational problems with topological
constraints (see [25, Theorems 1.6 and 1.7]).

Similar regularity results were also obtained by Strzelecki and von der Mosel [26] for yet
another energy

2
tp _ —p m m — |$ - y|
EL () /E/ERtp(m,y) dHy' dH,', where Ry (z,y) S dist(y — 2. T,

and T,% is the tangent space to ¥ at x. The quantity Re,(z,y) is called the tangent-point
radius, because it measures the radius of the sphere tangent to X at x and passing through y.
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If ¥ is a closed, connected, Lipschitz surface with 5;,17 (X) < oo for some p > 2m, then
Y e obl-Cm)/p,
In this paper we define energy functionals for m-dimensional subsets ¥ of R™ (we always

assume m < n) and we study regularity of sets with finite energy. For m+2 points xg, ..., Tm+1
in R"™ we set (cf. |16}, §6.1.1])

Hm+1(A(x07 e 7‘Tm+1))
diam(xg, . .., Tymyq)™H2

and forp>0andl=1,2,...,m+ 2 we defind]

5;)(2) = /El sup  K(xgy...,Tm+1)? dHZ})l,...,xl,l )
xTy,.

L1 €D

IC(‘T07 s 7‘Tm+1) =

We prove that these functionals can be called geometric curvature energies, i.e. for sets X
of relatively little smoothness, finiteness of the energy guarantees both embeddedness and
higher regularity.

Of course, the condition 5;,(2) < oo cannot guarantee that ¥ is a manifold (even for large p)
just for any m-dimensional set 3. The main issue is that 5;,(2 \A) < SIlJ(E) for any set A,
so creating holes in ¥ decreases the energy. Hence, we need to work with a restricted class
of sets. We say that X is locally lower Ahlfors reqular if

(Ahl) ARAp > 0 A > 0Ve € X Vr < Ran Hm(z ﬂB(w,T)) > Apapr™.

Here B(x,r) denotes the n-dimensional open ball of radius r centered at z. We also need
a variant of the P. Jones’ beta numbers introduced in [I0] and the bilateral beta numbers,
which originated from Reifenberg’s work [19] and his famous topological disc theorem (see [21]
for a modern proof). We define

1
57%(33,7“) =2 inf sup  dist(z,x + H)
" HeG(n,m) L esnB(e,r)

and 62 (z,r) = ! inf  dy(XNB(x,r), (x + H) NB(z,7)),

T HeG(n,m)
where dy(E, F) = supdist(y, F') + sup dist(y, E)
yek yeF

is the Hausdorff distance and G(n,m) denotes the Grassmannian of m-dimensional linear
subspaces of R". The [-number measures the flatness of ¥ in a given scale in a scaling
invariant way. The #-number measures additionally the size of holes in that scale. Using these
notions we can formulate our first

Proposition 1. Let ¥ C R™ be a compact set satisfying (BRI and let I € {1,...,m + 2}.
If 5;,(2) < E < oo for some p > ml, then there exists a constant C'y = Cx(m, 1, p) such that

E \=
Vr < Ram Vo € X Ba(x,r) < Ca <l—> ra ,
Ani

where k = (p+ml)(m+ 1) and A =p —ml.

Applying the result of David, Kenig and Toro [3, Proposition 9.1] (cf. Proposition [[4]) we
then obtain

1f | = m + 2 there are m + 2 integrals and no supremum.
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Theorem 1. Let X C R"™ be a compact set satisfying (ERI) and such that
(9 5 5) EIR@Q >0 E]Mgg >1VreXVr< Rgﬁ 92(%,7’) < Mggﬂ%i(%ﬂ’) .
l : : 1,\/k
If £,(¥) < oo for some p > ml, then ¥ is a closed, embedded manifold of class C /5.
This motivates the following

Definition 1. We say that a set ¥ C R" is an m-fine set if it is m-dimensional, compact

and satisfies (BRI]) and (0 < f).

Examples of m-fine sets include closed m-dimensional Lipschitz submanifolds of R™ and
also images of maps ¢ : M — R™, where M is an abstract, closed C' manifold and ¢ is
an immersion. Other examples are described in Section

The condition is purely geometric but it is hard to understand what kind of behavior
it implies. It gives control over the size of holes in X but it does not imply that the topological
boundary of ¥ is empty. In [26) Definition 2.9] (cf. Definition B2) the authors considered
a class of admissible sets satisfying a different set of conditions. Their idea was to use the
topological linking number to prevent holes in ¥. Any admissible set in the sense of [26] with

finite Sll,-energy for some p > ml, satisfies the (# < f]) condition (see [I3, Theorem 4.15] for

the case | = m + 2), hence, by Theorem [I] it is a closed CYM 5 manifold.

Once we have estimates on the S-numbers (Proposition[I]), the regularity result (Theorem )
follows quite easily but the key point is that one can get a uniform (not depending on )
control over the local graph representations of X only in terms of the energy bound E and the
parameters m, [ and p. To show that this is true we first prove the following uniform, with
respect to X, estimate on the local lower Ahlfors regularity of X.

Theorem 2. Let ¥ C R" be an m-fine set. If SII,(E) < E < oo for some p > ml, then
IR = Ro(E,m, | m NIEN R
0= Ro(E,m,l,p) >0Vr c EVr <Ry H"(ENB(z,7r)) > (% W™

where wy, = H™(B(0,1) NR™) is the measure of the unit ball in R™.

Theorem [ together with Theorem 2] give us estimates on the S-numbers independent of X.
Knowing that ¥ is a compact, closed, C LA/k_submanifold of R, we prove that also the constant
Mpyg from the (f < f) condition can be replaced by an absolute constant. Then we obtain
estimates on the oscillation of tangent planes of 3 solely in terms of E, m, [ and p. This
allows to prove that the size of a single patch of ¥ representable as a graph of some function is
controlled solely in terms of E, m, [ and p. Next we bootstrap the exponent % to the optimal

onea=1-— %l (see [I4] and [I] for the proof that this is indeed optimal).

Theorem 3. Let X C R™ be an m fine set. If 5;)(2) < E < oo for some p > ml, then

Y is a closed CY®-manifold. Moreover, there exist two constants R, = Ry(E,m,l,p) > 0
and Cy = Cy(E, m,1,p) > 0 such that

Vo € ¥ 3F, € OY(T, %, (T,X)") S NB(x, Ry) = Graph(F,) N B(z, Ry)

and Vy,z € T, ||DFu(y) — DFp(2)]| < Cyly — 2|,
where Graph(F,) ={z e R": Jy € T, z=y+ F,(y)}.
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This work already lead to a few other results. In our joint work with Szumanska [I4] we have
m(m+1)
2
has infinite 8;’1+2-energy and we proved that for any a; > «g the graphs of C1®! functions

always have finite energy. Later this result was complemented by our joint work with Blatt [1],
where we have shown that a C'-submanifold of R™ has finite Eé-energy for some p > m(l —1)
andl € {2,...,m+2} if and only if it is locally a graph of a function in the Sobolev-Slobodeckij

space W1tsP where s = 1 — @. In another article [I2] written jointly with Strzelecki and

constructed an example of a function f € C1*([0,1]™), where g = 1 — , whose graph

von der Mosel, we have shown that an m-fine set ¥ C R" is a W2P-manifold if and only if it
satisfies the condition £ () < oo. The paper [I2] includes Theorem B for the &£-energy and

a counterpart of Theorem [3] for a modified version of the 5;,1) -energy, where one integration
was replaced by taking the supremum. In a forthcoming joint article with Strzelecki and von
der Mosel [11I] we also prove a compactness result similar to [25] Theorem 1.5] for the 5;)

n .
and & energies.

Organization of the paper. In Section [[l we describe the notation, we state precisely the
result of [3] about Reifenberg flat sets with vanishing constant and we prove some auxiliary
propositions about roughly regular simplices and about the metric on the Grassmannian.
In [[4] we also show that C?-manifolds have finite Sll,-energy for any p > 0. In Section 2l we
prove Proposition [[l and Theorem [ and we give some examples of m-fine sets. In Section [
we establish Theorem 2l For this we need to define another class of admissible sets and prove
some more auxiliary results about cones and homotopies inside cones. In Section [ we prove
a counterpart of Theorem [B] where « is replaced with A/k. In Section [f] we bootstrap the
exponent A/ to the optimal « =1 — m?l and consequently establish Theorem

1. PRELIMINARIES

1.1. Notation. We write S for the unit (n — 1)-dimensional sphere centered at the origin
and we write B for the unit n-dimensional open ball centered at the origin. We also use the
symbols S, =S, B, =B, S(z,r) =+ rS and B(z,r) = x + rB.

If v = (v1,...,0,) is a vector in R™, we write |[v| = /> |v;[? = /(v,v) for the standard
Euclidean norm of v. If A : R*¥ — Rl is a linear operator, we write |A|| = sup|y|=1 |Av| for
the operator norm of A.

The symbol G(n,m) denotes the Grassmann manifold of m-dimensional linear subspaces
of R™. Whenever we write U € G(n,m) we identify the point U of the space G(n,m) with
the appropriate m-dimensional subspace of R”. In particular any vector w € U is treated as
an n-dimensional vector in the ambient space R™ which happens to lie in U C R".

If A is any set, then we write idg : A — A for the identity mapping. Let H € G(n,m).
We use the symbol 7 to denote the orthogonal projection onto H and WIJ; = [ — 7y to denote

the orthogonal projection onto the orthogonal complement H-+. We write aff{xg, ..., x,,} for
the smallest affine subspace of R™ containing points xg, ...,z € R", i.e.
aff{zg,...,xm} = x0 + span{z1 — xo,..., Ty — To}.

Let T = A(xg,...,x). We set
o f¢,T = A(xo,...,Tji,..., k) - the i-th face of T,
e b;(T) = dist(x;, aff{zo,...,T;,...,zr} - the height lowered from z;,
® Hpin(T) = min{h;(T) : ¢ =0,1,...,k} - the minimal height of T.
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In the course of the proofs we will frequently use cones and “conical caps” of different sorts.
We define
e C(0,H) ={z € R": |75 (x)| > 0|z|} - the cone with "axis” H and "angle” 4,
e A(r,R) = Bg \ B, - the open shell (or the n-annulus) of radii r and R,
e C(6,H,r,R) = C(6, H)NA(r, R) - the conical cap with "angle” §, "axis” H+ and radii r
and R as the intersection of a cone with a shell.

Remark 1.1. We use the notation C' = C(z,y, 2) to denote that C' depends solely on x, y
and z. The symbols C, C , C, C are used to denote general constants, whose values may change
in different parts of the text. Subscripts in constants (like “Cjyp”) do not denote dependences but
are used to name the constant and distinguish it from other constants. Subscripted constants
always have global meaning and do not change.

1.2. Reifenberg flat sets. For convenience we introduce the following

Definition 1.2. Let ¥ C R"™ be any set. Let € ¥ and r > 0. We say that H € G(n,m)
is the best approzimating m-plane for ¥ in B(z,r) and write H € BAPy,(z,7) if the following
condition is satisfied

dy (S NB(x,r), (z + H) NB(x,r)) < 0% (x,7).
Since G(n, m) is compact, such H always exists, but it might not be unique, e.g. consider
the set ¥ = SU {0} and take x =0, r = 2.
Recall the definitions of B,% and 97% given in the introduction. In [3], the authors define the

and  numbers in a slightly different way using open balls instead of closed ones. This does not
change much since both definitions lead to comparable quantities (see [13, Proposition 1.35])

Definition 1.3 (cf. [3], Definition 1.3). We say that a closed set ¥ C R™ is Reifenberg-flat
with vanishing constant (of dimension m) if for every compact subset K C 3

li 6> =0.
2 Ol

The following proposition was proved by David, Kenig and Toro.

Proposition 1.4 (cf. [3], Proposition 9.1). Let 7 € (0,1) be given. Suppose 3 is a Reifenberg-
flat set with vanishing constant of dimension m in R™ and that, for each compact subset K C 3
there is a constant Ci such that

BE(x,r) < Cxr™ foreachx € K andr < 1.
Then ¥ is a CY7-submanifold of R™.

1.3. Voluminous simplices. Here we define the class of (1, d)-voluminous simplices, where
7 measures the “regularity” of a simplex. The curvature K of any such simplex is controlled
in terms of 7 and d. A very similar notion was used by Lerman and Whitehouse in [I6] § 3.1],
where these kind of simplices were called 1-separated. We derive estimates of the distance
by which we can move each vertex of an (7, d)-voluminous simplex without losing the lower
bound on the curvature. We will use this result to obtain a lower bound on the Sé—energy
in the proof of Proposition 2.1

Definition 1.5. Let T = A(xg,...,x) be a simplex in R” and let d € (0,00) and n € (0,1).
We say that T is (1, d)-voluminous if
diam(T) <d and BHyin(T) > nd.
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Remark 1.6. If T = AT is (n,d)-voluminous then
(nd)* k(T d* g
2 <HHT) < R hence K(T') > R

Let us recall the definition of the outer product:

Definition 1.7. Let w1, ..., w; be vectors in R"™. We define the outer product wy N --- A wy
to be the vector in ]RG), whose coordinates are exactly the l-minors of the (n X [)-matrix
(wl, ‘e ,wl).

Remark 1.8. A standard fact from linear algebra says that the length |w;A- - -Aw;| of the outer
product of wy, ..., w; is equal to the [-dimensional volume of the parallelotope spanned by
wy, ..., w;. In particular |wy A -+ Awy| < |wq| - Jwa] - - Jwgl.

Proposition 1.9. Let Ty = ATy = A(xo,...,xk) be an (n,d)-voluminous simplex in R™.
There exists a number g, = sk(n) € (0,1) such that for any simplex Ty = ATy = A(yo, - -+, Yk)
satisfying |x; — y;| < sgd for each i = 1,... k the following estimate

3k k 5,k 30"
(1) —H"(To) < H(T1) < =H"(To) holds, hence also K(T1) >

4 4 akld”
Proof. Let ¢ € (0,1) be some number and let 71 = (yo, ..., yr) be such that |z; — y;| < Jd for
each i =1,...,k. We set v; = x; — x¢ and w; = (y; — yo) — v;, where i = 1,... k.

1
/ﬁ' (vl+w1)/\ /\(’Uk—i-wk)’

1
~

HH(T) =
(i Ao Avg) F (wp Avg Ao Avg) + (v Awg Ao Avg) ...

..+(w1/\w2/\v3/\.../\vk)+...—|—(w1/\wg/\wg/\.../\wkﬂ.

Whenever we take an outer product of j vectors from the set {wy,...,w;} and (k — j) vectors
from the set {vy,...,vx} we obtain a vector of length at most d*~7(¢d)’. Hence we can write

k
(w1 Avg Ao Avg) + .o+ (w1 Awa A A w) §Z<>d’fgﬂ—d’f((1+g) -1),
‘]:

which gives  H*(To) — d"((1+¢)F — 1) < H¥(Ty) < HM(To) +d" (1 +S)% —1).
Since Ty is (1, d)-voluminous, it satisfies H*(T) > & (nd)*. We set

1
k\ &
/AN
(2) Sk (1 + 4k'> 1,
so that d*((1 4 )F — 1) < IH®(Ty). Thus, if |z; — yi| < od, then we obtain the desired
estimate 3H*(Ty) < H¥(T1) < SH¥(Ty). O

Remark 1.10. Let z,s € R and s > 0. When |z| ~ 0, the function (1 + z)° behaves
asymptotically like 1 4 sz, hence there exists a constant Cc = C.(k) > 1 such that

1
(3) vn € (0,1) ank <g(n) <Caf < 1.
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1.4. The Sif,—energy for smooth manifolds. Observe that K(aT') = 2C(T) for any o > 0,
so our curvature behaves under scaling like the original Menger curvature c. If AT is a regular
simplex (meaning that all the side lengths are equal), then K(T') ~ —-— ~ R(T)~!, where
R(T) is the radius of a circumsphere of 7. For m = 1 one easily sees that we always have
K(T) < ¢(T) = R7Y(T). In dimension m = 2 we also have K(T) < 47Kguan (T) for any T
and K(T') ~ Kgpan (T') if T is a regular simplex.

We emphasis the behavior on regular simplices because small, close to regular (or volu-
minous) simplices are the reason why SII,(E) might get very big or infinite. For the class
of (n, d)-voluminous simplices T" the value C(T) is comparable with yet another possible defi-
nition of discrete curvature (cf. [I7), §10])

o hmin(A T) o 1 hmin(A T)
- diam(7)2  diam(7) diam(7T) ’

K'(T)

which is basically ﬁ(ﬂ multiplied by a scale-invariant "regularity coefficient” %?T? This
last factor prevents K’ from blowing up on simplices with vertices on smooth manifolds.

It occurs that one cannot define k-dimensional Menger curvature using integrals of R~!.
This "obvious” generalization of the Menger curvature fails because of examples (see [25]
Appendix B|) of very smooth embedded manifolds for which this kind of curvature would

be unbounded. For the curvature X we have the following

Proposition 1.11. If M C R" is a compact, m-dimensional, C* manifold embedded in R™
then the discrete curvature K is bounded on M™% 2. Therefore SIZJ(M) is finite for every p > 0
and every l € {1,...,m + 2}.

Lemma 1.12. Let ¥ C R" be any set and let T = (xg, ..., Tmy1) € Y2 We set T=AT
and d = diam(T). There exists a constant Cxg = Cxp(m,n) such that we have

)
H™(T) < Cxpf(zo,d)d™  and consequently K(T) < C;cgw .
Proof. B Without loss of generality we can assume that o = 0. If the vectors {z1, ..., Zm11}

are not linearly independent, then H™!(T) = 0 and there is nothing to prove.
Let x1,...xm41 be linearly independent and let W denote the (m + 1)-dimensional vector
space spanned be these vectors. Set

S={seW:|s| <= (xo,d)d}.
Then, the set T + S is isometric with T x S and the following holds
(4)  HYT+S)=H""T(T)H"""1S) = wpom ™ TH(T)d" "' 8 (0,d)" "1
Using compactness of the Grassmannian we can find a vector space V' € G(n, m) such that

sup |y, (y)| = B (wo, d)d.
yeSNB(z0,d)

Observe also that the mapping @ : G(n,m) — R™ given by Q(V) = Py (y) is continuous for
any choice of y € R™. In consequence, we get the estimate

Yy € SN B(wo,d) |my:(y)| < B (20, d)d.

2The author wishes to thank Simon Blatt for significantly simplifying this proof while we were working

on [IJ.
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The vertices of T lie in ¥ N B(zg,d) and T is convex, so we also have
Vte T |ri(t)] < BE(20,d)d.

Let y€ T+ S and let t € T and s € S be such that s + ¢ = y. Using the triangle inequality
we see that

v ()] < lyl < (1+ 55,0, d))d
and |77 (y)| < |7 ()] + |7y (5)] < 26, (w0, d)d..

Hence, T + S is a subset of

Z ={yeR": |my(y)| < 2d, |ri(y)| < 265(0,d)d} .
and we obtain
(5) HY T +S) <HY(Z) = Wnwn—m2"BE(0,d)""™d" .
Combining @) and (Bl) we obtain the desired estimate. O
Corollary 1.13. Let X C R™ be any set and let T = (xg,...,Tm+1) € Ymt2 There exists

a constant Cpg = Cpg(n,m) such that if AT is (n,d)-voluminous then the parameters n and
d must satisfy

0 < CpaBE (w0, d) 77T .

Proof. Recalling Remark [L6 we have the estimate H™ (A T) > ((m+1)1)~(nd)™* !, which,
1 1
combined with Lemma [I2} leads to n < ((m + 1)!Cxg) m+1 B2 (wg, d) m+1. O

Proof of Proposition [I.11. Since M is a compact C?-manifold, it has a tubular neighborhood
M.=M+B.={x+y:x€M,yc B.}

of some radius € > 0 and the nearest point projection p : M. — M is a well-defined, continuous
function (see e.g. [5] for a discussion of the properties of the nearest point projection mapping).
To find e one proceeds as follows. Take the principal curvatures ki, ..., Ky of M. These are
continuous functions M — R, because M is a C? manifold. Next set

e = sup max{|ki|,...,|km|}-
xeM

Such maximal value exists due to continuity of x; for each j = 1,...,m and compactness
of M.
We will show that for all »r < ¢ and all x € ¥ we have

0 BE(.1) S oot

Next, we apply Lemma and get the desired result.

Choose 7 € (0,¢]. Fix some point z € ¥ and pick a point y € T, M+ with |z —y| = . Note
that y belongs to the tubular neighborhood M, and that p(y) = x. Hence, the point z is the
only point of M in the ball B(y,¢). In other words M lies in the complement of B(y, ). This
is true for any y satisfying y € T, M+ and |z — y| = ¢, so we have

MQR"\U{E(y,s):yJ_TxM, ly—a|=¢} .
Pick another point # € ¥ N B(z,7). We then have
(7) ze B, \|J{Bl.e):y LTM, |y—a|=c} .

Using (@) and simple trigonometry, it is ease to calculate the maximal distance of Z from
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xz+ T, M

Ficure 1. All of M N E(xﬂ“) lies in the grey area. The point Z lies in the complement
of B(y, ¢) and inside B(x,r) so it has to be closer to T, M than z.

the tangent space T, M. Let z be any point in the intersection dB(z,7) N dB(y,e). Note that
points of M N B(x, ) must be closer to T, M than z. In other words

(8) Ve e MNB(z,r) dist(z, T,M) < dist(z, T, M).

This situation is presented on Figure [l Let « be the angle between T, M and z and set
h = dist(z, T, M). We use the fact that the distance |z — x| is equal to 7.
2

i=al _ h Ll v
2¢  |z—x 2 2
This shows (@) and thus finishes the proof. 0

Remark 1.14. Note that the only property of M, which allowed us to prove Proposition [[.T1]
was the existence of an appropriate tubular neighborhood M.. One can easily see that Propo-
sition [T still holds if M is just a set of positive reach as defined in [5].

9) sina =

1.5. The metric on the Grassmannian. Recall that formally, G(n,m) is defined as the
homogeneous space
G(n,m) = 0O(n)/(O(m) x O(n —m)),
where O(n) is the orthogonal group; see e.g. Hatcher’s book [8] §4.2, Examples 4.53, 4.54 and
4.55] for the reference. We treat G(n,m) as a metric space with the following metric
Definition 1.15. Let U,V € G(n,m). We define the metric
dax(U, V) = |[mv = my || = sup |ro (w) = v (w)].
we

Note that this metric is different from the geodesic distance on the Grassmannian. However,
the topology induced by the metric dg, agrees with the standard quotient topology which
is the same as the topology induced by the geodesic distance.

Remark 1.16. Let [ : R® — R" denote the identity mapping. We will frequently use the
following identity without reference

dex(U,V) = |lny — vl = I = 7p — (I = 7)) = |7 — 7.
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Definition 1.17. Let V € G(n,m) and let (v1,...,vy) be the basis of V. Fix some radius
p > 0 and a small constant ¢ € (0,1) We say that (vy,...,v,,) is a pe-basis if

Vi,j e {1,...,m} (8] —e)p® < [(vi,v;)| < (6] +e)p”
Here 5{ denotes the Kronecker delta.

Proposition 1.18. Let (v1,...,vy) be a pe-basis of V € G(n,m) with constants p = py > 0
ande =¢g € (0,1). Let (u1,...,un) be some basis of U € G(n,m), such that |u;—v;| < Ipg for
some ¥ > 0 and for each i =1,...,m. There exist constants Cp. = Cpe(m) and €, = €,-(m)
such that whenever eg < €, then

da: (U, V) < Cpe.
Lemma 1.19. Let (v1,...,vm) be a pe-basis of V. € G(n,m) with constants p = py = 1

and ¢ = ¢y € (0,1). There exists an orthonormal basis v1,...,0n of V and a constant
Cys = Cys(m) such that |v; — 0;] < Cysep.
Proof. Set
i—1 ~
. U1 A\ A ~ . Vg
1 g 54 ;@Z,vﬂvw v =v; —s; and O i
We proceed by induction. For i = 1, we have [0; — v1| = |1 — |v1]| < &p. Assume that for
i=1,...,i0 — 1 we have |0; — v;| = Ceq for some constant C' = C(i). It follows that
i0—1
|Ui0 - zN}io| = |Si0| < Z |<Uiovvj>| + |<Ui07{)j - Uj>| < O(i0)€0
j=1

and 1 —(C(io) + L)eo < [vig| — [8io] < [Dig] < [vig| + [8io] <1+ (C(io) + 1)eo
hence |vi, — Diy| < |vig — Vig| + |0iy — Vip| < (2@(2’0) + 1)eg . O

Lemma 1.20. Let (01,...,0m) be an orthonormal basis of V€ G(n,m) and let U € G(n,m)
be such that |m(9;)| < V. There exists a constant Cr = Cr(m) such that d; (U, V) < Crd.

Proof. Without loss of generality, we can assume that ¢ < 1. If 9 > 1 then we can set C; = 2
and there is nothing to prove. Set u; = 7y 0;. Since (0;,0;) = 0 for i # j, we have
(ui, uj) = <7T£]"LA)Z',7T(J]_ZA1]‘> and 55 — 9% < [(ug,uj)| < 55 + 92,

SO U1, ..., Up is a pe-basis with p = 1 and € = ¥2. From Lemma [[.T9 there exists an orthonor-
mal basis 4y, ...,y such that [u; — ;| < Cys9?. Hence [9; — ;| < Cys9? + 19 < (1 + Cys)0.
We calculate

(10) de, (U, V) = su[S) |y (w) — 7y (w)| = Sug Z(w,&ﬁﬂi — (w, 0;)0;
we we i=1
< supz |<w,ﬁl>(&2 — @2)| + |<w, (ﬂl — ZA}Z)>ZA12| < 2m(1 + 093)19 . O

wEeS i—1

Proof of Proposition [ 18 Dividing each v; by pg, we get a pe-basis with p = 1. Hence we can
assume that pgp = 1. Without loss of generality we may also assume that ¢ < 1. Indeed, we
always have the trivial estimate da, (U, V) < 2, so if ¥ > 1 we can set C). = 2.
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Let 01,..., 0, be the orthonormal basis given by Lemma [[.T9 applied to vy, ..., v,,. Then

|mizti| < |7 (05 — vi)| + |[mros] < [0 — vildae (U, V) + v — ui| < Cyscodar (U, V) + 9

for each i =1,...,m. We set €, = €,.(m) = %(Cﬂcgs)_l and we assume €9 < €,.. Applying
Lemma [I.20] we obtain the estimate
den(U,V) < CxChocodes (U.V) + Crd) = dex(UV) < —T 9. O
1-— CWCgSaE(]

2. GEOMETRIC MORREY-SOBOLEV EMBEDDING

In this section we prove Theorem [Il which is a geometric counterpart of the Morrey-Sobolev
embedding W2P(RF) € CM1=F/P for p > k. We also give some examples of m-fine sets to
which Theorem [l applies.

2.1. Proof of Theorem [1l

Proposition 2.1. Letl € {1,2,...,m+ 2} and p > ml. Assume ¥ C R™ satisfies (ERI)) and
also SIlJ(E) < E <oo. Let Ty = (z0,...,Zme1) € X2 If Tog = ATy is (n,d)-voluminous
with d < Ry, then n and d must satisfy

Cpa Al N\ E\Y*
11 d> <177Ahl> 77“/)‘ or equivalently n < <7> dM*
) E CndAﬁxhl
where Cpg = Cyq(m,1,p) is some constant, X =p —ml and k = (p +ml)(m + 1).
Proof. We shall estimate the Sll)—energy of 3. Recall that ¢,,41 < % was defined by (2)).

(12) co>E>E&\(T) = /l sup  KP(yo, -y Ymir) AHGE
Sy, Ym+1€X

> / / sup  KP(A(yoy -y Ym+1)) d?—[f’;é7___7yl71).
SNB(z0,5m+1d) SNB(z;—1,9m+1d) Yis--Ym+1E€EX

Proposition combined with Remark lets us estimate the integrand

( ( )) 3nm+1 p
swp KB mi) 2 (o)
yl7~~~7ym+162 + 4(m + 1)'d

Since ¥ satisfies (BRI]), we get a lower bound on the measure of the sets over which we integrate
H™(S OB (@i, 5ms1d)) > Ani(smird)™

Plugging the last two estimates into (I2]) and recalling (B we obtain

cf 3TN ! - 1)(m+1
E > (Aan(Sme1d)™) (m = Cya(m, 1, p) Al d™PyFrmm+l). O
Proposition 2] is interesting in itself. It says that whenever the energy of ¥ is finite, we
cannot have very small and voluminous simplices with vertices on . It gives a bound on the
"regularity” (i.e. parameter 1) of any simplex in terms of its diameter d and we see that 7
goes to 0 when we decrease d. Now we are ready to prove Proposition [l
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Proof of Proposition[d. Fix some point z € X and a radius r € (0, Ran). Let T = AT =
A(zo, ..., Tm+1) be an (m + 1)-simplex such that z; € XN B(z,r) for i =0,1,...,m + 1 and
such that T has maximal H™-measure among all simplices with vertices in ¥ N B(z,7).

H™(T) = max{H" (A}, ..., Thyir)) s 75 € 2N B(2,7)} .

The existence of such simplex follows from the fact that the set ¥ N B(x,r) is compact and
from the fact that the function T+ H™TY(A T) is continuous with respect to g, ..., Tmi1.

Rearranging the vertices of T we can assume that hyin (T) = by41(T), so the largest m-face
of T is A(xo,...,zy). Let H = span{zy — xg,..., %y — o}, so that xg + H contains the
largest m-face of T. Note that the distance of any point y € X NB(z,r) from the affine plane
xo + H has to be less then or equal to iy (T) = dist(zy,+1, 20 + H). If we could find a point
y € XNB(z,r) with dist(y, zo + H) > hmin(T), than the simplex A(xzg, ..., 2m,y) would have
larger H™+!-measure than T but this is impossible due to the choice of T.

Since x € ¥ NB(x,r), we know that dist(z, 29 + H) < hmin(T), so we obtain

(13) Yy € SNB(x,r)  dist(y,z + H) < 2hmin(T).

Now we only need to estimate huin (T) = hyt1(T) from above. Of course T is (hmin(T)/(27), 2r)-
voluminous, so applying Proposition 2.1l we obtain

. 1/k
(14) min(T) < " l > (2r)M".
Putting (I3 and ([[4]) together we get
28 min (T) E N\YT E N\,
ﬁ,%(x,r) < ——+<4 <7> (27") /r = C(m7l7p) Y r /r : O
" CraAlp A

Having Proposition [l at our disposal we can easily prove Theorem [Il

Proof of Theorem [ We know already that £ (z,r) < C(m,l,p, Aan, E)r™M* for 7 < Rap.
We assumed (# < ), so X is Reifenberg flat with vanishing constant. We finish the proof
by applying Proposition [I.4] O

2.2. Examples of m-fine sets. Here we give a few examples of m-fine sets.

Example 2.2. Let M be any m-dimensional, compact, closed manifold of class C' and let
f: M — R™ be an immersion. Then the image ¥ = im(f) is an m-fine set. At each point
x € M, there is a radius R, such that the neighborhood U, C f~1(B(f(z), Ry)) of z in M
is mapped to the set V, = f(Uy) € B(f(x), R;) and is a graph of some Lipschitz function
®, : Df(x)TuM — (Df(x)T,M)*. If we choose R, small then we can make the Lipschitz
constant of @, smaller than some € > 0. Due to compactness of M and continuity of Df we
can find a global radius Ry, = min{R, : * € M }. Then we can safely set Aap = V1 — &2 and
My, = 4.

Example 2.3. Let ¥ be the van Koch snowflake in R?. Then ¥ is 1-fine but it fails to be
1-dimensional.

Example 2.4. Let m =1, n =2 and

3= D(—Qk)u{(t,o)eRQ:te [-1,1]} U GQk,
k=1 k=1
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e
—_

-1

Ficure 2. This set is 1-fine despite the fact that it has boundary points.

where
k
Qo=9([0,1] x [0,1]) and Q)= (Zg—j, _%> PSRN
j=1

See Figure [2 for a graphical presentation. Condition holds at the boundary points
(—1,0) and (1,0) of 3, because the S-numbers do not converge to zero with » — 0 at these
points. All the other points of X are internal points of line segments or corner points of squares,
so at these points condition is also satisfied. Hence, ¥ is 1-fine.

This example shows that condition does not exclude boundary points but at any
such boundary point we have to add some oscillation, to prevent S-numbers from getting too
small. The same effect can be observed in the following example

¥ =0([1,2] x [-1,1]) U{(z,zsin(L)) : 2 € (0,1]} .

xT

3. UNIFORM AHLFORS REGULARITY - THE PROOF OF THEOREM

Here we give the proof of Theorem 2l First we introduce the class of admissible sets, which
is tailored for proving the existence of many voluminous simplices (cf. Proposition BI8]) with
vertices on X. Proposition [3.I18]is crucial in the proof of Theorem 2l In the end we also show
how to make all the emerging constants depend solely on E, m, [ and p.

3.1. The class of admissible sets. In this section we introduce the definition of the class
A(d,m) of (0, m)-admissible sets - here § € (0,1) is some number. This definition is essentially
the same as [20) Definition 2.9] but it is more convenient for us to impose only local lower

Ahlfors regularity (BRIl instead of Condition H1 of [26 Definition 2.9].

Definition 3.1. Let I be a countable set of indices and assume there exist compact, closed,
m-dimensional manifolds M; of class C!, a set Z with H™(Z) = 0 and continuous maps
fi s M; — R"™ for ¢ € I, such that

S=JrM)uz.
el
Let N be an (n—m)-dimensional, compact, closed submanifold of R™. We say that X is linked
with N and write lko(X, N) = 1, if there exists an ¢ € I such that the map

F:M;xN—S"' F(wz) = Silw) == satisfies degy F' =1,
| fi(w) — 2|

where deg, is the topological degree modulo 2.
For the definition of the degree of a map we refer the reader to [9, Chapter 5, § 1].

Definition 3.2 (cf. [26] Definition 2.9). Let 6 € (0,1) and let I be a countable set of indices.
Let 3 be a compact subset of R™ satisfying (EhIl). We say that X is (d, m)-admissible and
write ¥ € A(d,m) if the following conditions are satisfied
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A1 Mock tangent planes and flatness. There exists a dense subset X* C ¥ of full
measure in ¥ (i.e. H"™(X \ £*) = 0) such that for each x € ¥* there is an m-plane
H = H, € G(n,m) and a radius 79 = ro(x) > 0 such that
In(y — )| < 6ly — x| for each y € B(z,ro) NX.

A2 Structure and linking. There exist compact, closed, m-dimensional manifolds M;
of class C', a set Z with H™(Z) = 0 and continuous maps f; : M; — R" for i € I,

such that
S=Jrdm)uz
iel
(15) and Vz € ¥ 1ko(X%,.7,) =1 where .7, =S (z,4r9) N (z+ HY).

Condition [Ad] ensures that at every point x € ¥* one can touch ¥ with an apropriate cone.
Condition [A2] says that at each point of X there is a sphere %, which is linked with 3. This
means intuitively, that we cannot move .¥, far away from 3 without tearing one of these sets.
Example shows that this condition is unavoidable for the theorems stated in this paper
to be true.

There are three especially useful properties of lks that we want to use.

Proposition 3.3 (cf. [26], Lemma 3.2). Let A CR"™ be a (6, m)-admissible set and let N be a
compact, closed (n—m—1)-dimensional manifold of class C1, and let N; = h;(N) for j = 0,1,
where h; is a C* embedding of N into R™ such that N; NS = (). If there is a homotopy
G:Nx[0,1]] - R"\ X,
such that G(—,0) = hg and G(—,1) = hq, then
ko (X, No) = ko (X, V7).

Proposition 3.4 (cf. [20], Lemma 3.4). Let ¥ C R"™ be a (0, m)-admissible set. Chosey € R"
and € € R such that 0 < e <r < 2¢ and dist(y, X) > 3e. Then

ko (X, 8(y,7) N (y+V)) =0

for each V- € G(n,n —m).
Proposition 3.5 (cf. [26], Lemma 3.5). Let ¥ C R™ be a (§, m)-admissible set. Assume that
for somey € R", r >0 and V € G(n,n —m) we have
Then the disk B(y,r) N (y + V') contains at least one point of .
Example 3.6. Let ¥ be any closed, compact, m-dimensional submanifold of R” of class C*.
Then ¥ € A(§,m) for any § € (0,1).

It is easy to verify that ¥ € A(J,m). Take M; = ¥ and f; = idps,. The set Z will be
empty, so 2% = 3. At each point x € 3 we set H, to be the tangent space T,3. Small spheres

centered at # € ¥ and contained in x + H;- are linked with 3; for the proof see e.g. [I8, pp.
194-195|. Note that we do not assume orientability; that is why we used degree modulo 2.

Example 3.7. Let X = Uf\il 3, where ¥; are closed, compact, m-dimensional submanifolds
of R™ of class C''. Moreover assume that these manifolds intersect only on sets of zero m-
dimensional Hausdorfl measure, i.e.

”H’”(EiﬁEj)zo fori;éj.
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Then ¥ € A(§,m) for any § € (0,1).

Remark 3.8. Any C'-manifold is (§,m)-admissible (cf. Example B.6) for any § € (0,1),
hence any m-fine set with finite Ezl,—energy for some p > ml is also (9, m)-admissible.

It turns out that any (J, m)-admissible set with finite Sllj—energy for some p > ml is also
m-fine. We will not use this fact in this article. The proof for the 8;’1+2-energy can be found
in [I3] Theorem 2.13].

If we do not assume finiteness of the Sll)—energy then these two classes of sets are different
and none of them is contained in the other.

Example 3.9. Let
5= ([0,1] x {0}) U ({1} x [0,1]) U ({(z,2?) : = € [0,1]}) S R®.
Then ¥ is (6, 1)-admissible for any § € (0,1) but it is not 1-fine. It does not satisfy (@ < )
at the points (0,0) and (1,1).
Now we give some negative examples showing the role of condition

Example 3.10. Let H € G(n,m) and let ¥ = 7y(S) = BN H. Then ¥ satisfies (ERII)
and condition [A] but it does not satisfy Hence, it is not admissible. Although X is
a compact, m-dimensional submanifold of R™ of class C', it is not closed.

Example 3.11. Let ¥ = SNR™*!. Of course ¥ is admissible as it falls into the case presented
in Example We want to emphasize that there are good and bad decompositions of ¥ into
the sum | f;(M;) from condition [E2

The easiest one and the best one is to set M; = ¥ and f; = idy;,. But there are other
possibilities. Set M7 = SNR™*! and My = SNR™*! and set

fl(xla L 7xm+l) - (‘Tla ey Tmyy ‘xm-i-l‘) )
f2(f1:1, L 7xm+l) - (‘Tla L 7xm7 _’xm—i-l’) 9
so that f; maps M; to the upper hemisphere and fo maps Ms to the lower hemisphere. This

decomposition is bad, because ([IH]) is not satisfied at any point.

3.2. Homotopies inside cones. In this section we prove a few useful facts about cones.
In the proof of Proposition B.I8 we construct a set F' by glueing conical caps together. Then
we need to know that we can deform one sphere lying in F' to some other sphere lying in F
without leaving F'. To be able to do this easily we need Propositions and B.17

Definition 3.12. Let H € G(n,m) be an m-dimensional subspace of R” and let 6 € (0,1) be
some number. We define the set

G(6,H) ={V € Gn,n—m):Yv eV |r5(v)| > d6lv|}.

In other words V' € ¢4(6, H) if and only if V' is contained in the cone C(6, H). If n = 3 and
m = 1 then H is a line in R? and the cone C(§, H) contains all the 2-dimensional planes V
such that sin(<(H,V)) > é.

Proposition 3.13 (cf. [I3] Proposition 4.2). For any two spaces U and V in 4 (5, H) there
ezists a continuous path v : [0,1] — 4(0, H) such that v(0) =V and y(1) = U.

Corollary 3.14 (cf. [13] Corollary 4.3). The path ~ from Proposition[313 lifts to a continuous
path 7 : [0,1] — O(n) in the orthogonal group.
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The proofs can be found in [I3] Section 4.1.1]

Corollary 3.15. Let H and 6 be as in Proposition[313. Let S1 and Sy be two round spheres
centered at the origin, contained in the conical cap C(8, H, p1,p2) and of the same dimension
(n —m —1). Moreover assume that 0 < p; < pa. There exists an isotopy

F: Sl X [07 1] - 6(57H7p17p2)7
such that F(—,0) = idg, and  F(S; x{1}) = 95;.

Proof. Let r1 and r9 be the radii of S; and S5 respectively. We have p; < ry,79 < po. Let
V1,V € G(n,n —m) be the two subspaces of R™ such that S; C V; and Sy C V5. In other
words S; = S,; NV; and Sy = S,, N V. Because S; and Sy are subsets of C(d, H), we know
that V4 and V5 are elements of ¢(0, H). From Proposition BI3] we get a continuous path ~
joining V4 with V5. By Corollary B.14] this path lifts to a path 4 in the orthogonal group
O(n). For z € S and t € [0, 1] we set

F(z,t) = 3(t)7(0)"'2.
This gives a continuous deformation of S = S,, NV} into S;, NVa2. Now, we only need to adjust
the radius but this can be easily done inside Va2 N A(p1, p2) so the corollary is proven. O

Proposition 3.16. Let H € G(n,m). Let S be a sphere perpendicular to H, meaning that
S =S(z,r)N (z+ HY) for some x € H and r > 0. Assume that S is contained in the conical
cap C(6, H, p1, p2), where py > 0. Fiz some p € (p1,p2). There exists an isotopy

F:S5x [0, 1] — (C((S,H,pl,pg),
such that  F(-,0) = idg and ~ F(Sx{1})=S,NnH™*.

P1

F1cure 3. When we move the center of a sphere to the origin, we need to control the radius
so that the deformation is performed inside the conical cap.

Proof. Any point z € S can be uniquely decomposed into a sum z = x +ry, where y € SN H*
is a point in the unit sphere in H+. We define

F(z+ry,t) = (1 =tz +yy/r? +[a]? — |1 - t)zf2.
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This gives an isotopy which deforms S to a sphere perpendicular to H and centered at the
origin (see Figure B)). Fix some z = z + ry € S. The sphere S is contained in C(¢, H), so it
follows that
mh(F )| _ VPFREIA 0P v |7h(:)]
|F(z,1)] VrE+|z)? IRVAEESIE 2|
This shows that the whole deformation is performed inside C(d, H). Next, we need to contin-
uously change the radius to the value p but this can be easily done inside H+N(B,,\B,,). O

Next, we give a sufficient condition on « and /3 assuring that C(a, P) N C(8, H) contains
another cone C(v, H) for some v € (0,1). This allows to construct homotopies of spheres
inside C(a, P) U C(8, H)

Proposition 3.17. Let a > 0 and § > 0 be two real numbers satisfying o + B < /1 — (32
and let Hy, Hy € G(n,m) be two m-planes in R™. Assume that

C(V1-a?, Hf ) NC(V/1— B2, Hi) # 0
Then for any € > 0 we have the inclusion
(16) C((a+B)/V/1— B2+ ¢ Hy) € Ce, Hy) .
In particular, if o+ B < (1 — B)\/1 — B2, then
Hy C C(a, Ho) NC(B, Hy) .

Proof. First we estimate the “angle” between Hy and Hp. Since the cones C(v/1 — a2, HOJ-)
and C(y/1— 527H1l) have nonempty intersection they both must contain a common line

L e G(n,1).

LCC(1—-a% Hy)NC(\/1— B2 HY).
Choose some point z € H; and find a point y € L such that z = 7g,(y). Since y €
C(y/1— 3%, Hyi") it follows that |73 (y)| < Bly|. Furthermore, by the Pythagorean theorem

2
Nzl

Because y also belongs to the cone C(v1 — a2, Hy) we have |7TIJ7_IO (y)| < dlyl|, so we obtain

> = |mm, W) + |7m, @) < |2* + B2[yl*, hence [y| <

L 1 L L
1w, (2)| < 7, (W] + |75, (2 = )| < 75, ()] + 12 — o

(17) = by )] + I, ()] < aly] + Bly] < —2EP

Ve

|| for all z € H; .

Choose some € > 0 and let

zeC (%4‘6,}[0) , SO ]ﬂﬁo(az)] > (\71%—5524-6) |z .

If € is small enough, then such x exists by the assumption that o+ 3 < /1 — 32. For bigger ¢
the inclusion C((« + B)/v/1 — B2 + €, Hy) C C(e, Hy) is trivially true. From the triangle
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inequality
\/T—Bz\xl < |5, (@)] < |7, (73, ()] + |75, (7, ()]

< |mg, ()| + I, (o ()]

a+
N

Because g, (z) € Hy and because of estimate (7)) we have

T, (T)| 2 —— —_—
()] 2 =
3.3. The construction of voluminous simplices. For any xg € X* Proposition 318 stated
below, ensures the existence of d = d(xp) > 0 and an (7, d)-voluminous simplex with vertices
on ¥ N B(zg,d) and also that at any scale below d our set X has big projection onto some

affine m-plane. The reasoning used here mimics |25 Proposition 3.5|. Note that, finiteness of
the Sll)—energy is not used in the proof.

hence |my;, (z)] > ] + elz] = |z, (ma, ()]

] + e|z] - |7 ()] > el O

Proposition 3.18. Let § € (0,1) and ¥ € A(5, m) be an admissible set. There exists an ny =
no(0,m) > 0 such that for every point xy € ¥* there is a stopping distance d = d(xg) > 0
and a (m + 1)-tuple of points (x1,72,...,Tme1) € ™! such that T = A(zo,..., Tmi1)
is (no, d)-voluminous. Moreover, for all p € (0, %d) there exists an m-dimensional subspace
H = H(xg,p) € G(n,m) with the property

(18) (xo + H)NB(z0, V1 —0%p) C mporm (X NB(x0,p)) .
Corollary 3.19. For any x¢ € X* and any p < %d(azo) we have
H™(ENB(z0,p)) > (1 — 627 wpp™.

Proof. The orthogonal projection 7,y is Lipschitz with constant 1 so it cannot increase the
H™-measure. From ([I8) we know that the image of ¥ N B(xo, p) under 7,4 contains the
ball (z9 + H) NB(xo, V1 — 62p). The measure of that ball equals (1 — 62)F wy,p™. O

Proof of Proposition[3.18 Without loss of generality we can assume that xzg = 0 is the origin.
To prove the proposition we will construct finite sequences of

e compact, connected, centrally symmetric sets fy C F; C ... C Fy,
e m-dimensional subspaces H; CR" for i =0,1,..., N,
e and of radii pg < p1 < -+ < pnN.

ri=vV1—05p;.

The above sequences will satisfy the following conditions

For brevity, we define

e the interior of Fj is disjoint with X, i.e.
(19) YNint F; =0,
e the radii grow geometrically, i.e.

(20) Pi+1 > 2pi
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e for each ¢ > 0 the set Fj,1 contains a large conical cap, i.e.
(21) C(8, His1, 2pis pit1) C Figr

e all spheres S centered at H; N B,,, perpendicular to H; (i.e. S C HZJ- + p for some
p € R™) and contained in F; are linked with ¥, i.e.

(22) Va;eHiﬂBmVs>0(S:S(a;,s)ﬂ(a;—i—Hf)gE- = 1k2(z,5):1).

Let us define the first elements of these sequences. We set Hy = H,,, po = 0 and Fy = 0.
Next, we set

Hy=Hy, pp=inf{s>0:C(5,Hp0,s)NE#0} and F, =C(5, H1,0,p1).

Directly from the definition of an admissible set, we know that p; > 0, so the condition (20)) is
satisfied for ¢ = 0. Conditions (I9) and (2I]) are immediate for ¢ = 0. Using Proposition [3.10]
one can deform any sphere S from condition ([22)) to the sphere .7, defined in of the

definition of A(d,m). This shows that (22) is satisfied for i = 0.
We proceed by induction. Assume we have already defined the sets F;, subspaces H; and

radii p; for i = 0,1,...,1. Now, we will show how to continue the construction.
Let (e1,e2,...,ey) be an orthonormal basis of H;. We choose m points lying on ¥ such
that

x; € XN B(rre;, 6pr) N (Hi + rre;)
(23) and in particular x; € B(xo,2pr) for i€ {0,1,...,m}.

Condition ([22) together with Proposition ensure that such points exist. The m-simplex
R = A(zg, 21, ..., xy,) will be the base of our (m + 1)-simplex T. Note that

diam(R) <4p; and =g, (R)= A(0,77e1,71€2,...,71€m), hence H™(R) > %
Recall that g = 0 and set P = span{x,zg,..., 2z, }. It suffices to find one more point

Tm+1 € X such that the distance dist(x,4+1, P) > 7ps for some positive 7. Indeed, if we set
T = A(xg, ..., Tm+1), we have

(m + 1)H™(T) - npr(m+ 1)H™(R)
max{H™(fe,T)} bt — (4p1)™wm

i(l—0%)%
W Amtlm!

(24) hmin(T) =

> (4p1)

Choose a small positive number hg = ho(8) < 3 such that
(25) 5+ 2ho6 < (1 — 2hod)/1 — (2h00)2.

This is always possible because when we decrease hg to 0 the left-hand side of (25) converges
to 0 < 1 and the right-hand side converges to 1. We need this condition to be able to apply
Proposition B.I7] later on.

Remark 3.20. Note that if § < %, we can set hg = % because then

o

§+2hod <& and (1 —2hgd)\/1— (2hod)? > 3¥I° > &

=]

There are two possibilities (see Figure M)
(A) there exists a point 2,41 € £ N A(3pr,2pr) such that

diSt(l‘m_H, P) 2 hoé,{)[ s
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(B) X is contained in a small neighborhood of P, i.e.
S0 A(3p1,2p1) C P+ Brgsp, -

2pr

(A) B)

FI1GURE 4. The two possible configurations.

If case occurs, then we can end our construction immediately. The point x,, 1 satisfies
Tm+t1 € B(xo,2pr) and  dist(zy41, P) > hodpr -
Hence, recalling (24]), we may set

2\
(26) T =A(xo,-s¥mt1), N=I, m= %—Jjn); and d = d(zo) = 4p; .
If Caseoccurs, then our set X is almost flat in A(% p1,2pr1) so there is no chance of finding

a voluminous simplex in this scale and we have to continue our construction. Let

® H1+1 =P,

e pri1 =inf{s > p; : C(4, P, pr,s) N X # (0} and

o Fr .1 =FrU (C((S, P, %p],p[+1).
We assumed so it follows that

(27) Ve Xn A(%p[,Zp[) |7T#(:E)| < hodpr < 2hgd|z| < 0|x].

This means that C(4, P, %p1,2p1) does not intersect ¥ and we can safely set Hy, 1 = P. It
is immediate that pri1 > 2p; so conditions ([I9), (20) and (2I]) are satisfied. Now, the only
thing left is to verify condition (22)).

We are going to show that all spheres S contained in F7iq of the form

S =S(x,r)N(x+ Pt), forsomezre PNB

TI+1

are linked with . By the inductive assumption, we already know that spheres centered
at Hy N B,,, perpendicular to Hr and contained in Fr are linked with 3. Therefore, all we
need to do is to continuously deform S to an appropriate sphere centered at Hy and contained
in F7 in such a way that we never leave the set Fyi1 (see Figure [).

2pr
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F1Gure 5. First we move the center of S to x¢. Then we rotate S so that it is perpendicular
to Hr. Finally we change the radius so that it is between %p1,1 and py.

We know that Fjiq contains the conical cap C = C(0, P, %pj, pPI+1), SO we can use Propo-
sition .16l to move S inside C, so that it is centered at the origin.
From (27) we get

2 A(Lpr,2p1) CR™\ C(2hod, P) € C(v/1 — (2hod)?, PL) .

Using this and our inductive assumption we obtain

S NAGprpr) € C(V1—62,Hf ) NC(y/1 - (2ho0)2, PF).

We have two cones that have nonempty intersection and we chose hg such that (25) holds,
so we can apply Proposition BI7 with o = § and 8 = 2hd. Hence the intersection C(d, Hy) N
C(6, P) contains the space Hi-. Therefore

Hi NA(3pr.pr+1) € CO, P, 3p1, pre1) N Fr .

Using Corollary we can rotate S inside C, so that it lies in H+. Then we decrease the
radius of S to the value e.g. % prE (% pr—1, pr). Applying the inductive assumption we obtain
condition ([22) for i = I + 1.

The set X is compact and p; grows geometrically, so our construction has to end eventually.
Otherwise we would find arbitrary large spheres, which are linked with ¥ but this contradicts
compactness. ]

3.4. The proof of Theorem [21
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Proof of Theorem @ From Theorem Dlwe already know that 3 is an embedded, C*#-smooth
manifold without boundary. Hence, it is also (J,m)-admissible for any § € (0,1) (cf. Exam-
pleB.6) and ¥* = X. Set § = %, then Corollary gives us Theorem [2l where Ry can be any
number less than d(X) = inf, ex d(x0). Hence, it suffices to show that d(X) can be bounded
below independently of X.

From Proposition 2] we know that d(X) must satisfy (1) with n = 7 defined by (26]).
Hence, we already have a positive lower bound on d(X). We only need to show that it does
not depend on Apy.

Fix a point z¢ € ¥ such that d(zg) < (14¢)d(X) for some small € € (0,1). Proposition B8]
gives us an (1o, d(z¢))-voluminous simplex A(zq, . .., Zp11). Recall that ¢,41 < + was defined
by ). For each i =1,2,...,m + 1 we have

sm+1d(20) < Gy (1+e)d(X) <
Hence, applying Corollary we get
15m
4m
lrf/%we can repeat the calculation from the proof of Proposition 21l replacing Aap with

~m—Wm, to obtain

H™ (XN B(2i, Gmiad(0))) = W (Sm1(20))™ -

m ! m+1 p
EZ( i’i wm(§m+1d(l’0))m> (W) = C(m, 1, p)d(wo)™ .

Therefore
(28) Ld(2) = L lim (1+)d(D) > Ld(ze) > C(m,1,p)E > = Ry. 0

e—0t

3.5. Removing the dependence on My and Rgg. In this section we show that if 3 is
m-fine with finite Efj—energy, then the constants Myg and Rgg from Theorem [ can be chosen
depending solely on E, m, [ and p.

Proposition 3.21. Let ¥ C R" be an m-fine set such that 5;)(2) < E < oo for some p > ml.

Then there exists Ry = Ri(E,m,l,p) such that 3 satisfies (ERIl) and (0 < 0] with constants

Mgg =5, Rgg = Rani = Ry and Apn = Y2 wn,.

Proof. From Theorem [ and Theorem [ we already know that ¥ is (i,m)—admissible with
¥* = ¥ and satisfies (ARIl) with Rap = Ro and Aap = —Vi;:’lmwm. Hence, by Proposition [II
we also have

Vi< RyVz€X B(x,7) < C(m,l,p)E%r% .
Fix a point zg € ¥ and a radius r < Ry. Choose some m-plane P € G(n, m) such that

(29) Yy € SN B(xo,r) |7h(y — x0)| < B(z0,7).

For brevity we set 3 = 2832 (xg,r) and v = @. Inspecting the proof of Proposition B.18 we

can find ¢ € N such that p; < r < pj+1. We set H = H;. Let y € R be any point such that

y — 9 € H and |y — z9| = yr. We see that S(y, 1r) N (y + H') is linked with ¥, hence (cf.

Proposition B5) there exists 2 € SN B(y, 1r) N (y + H*). Note that vr < |z — 20| < 7, so
|75 (2 — o) cBr_B

1
~ 2 - c((1-2)2,Pt)nCy, HY).
S o= hence (s-m) €C((1- %)% PY) €O, HY)
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To apply Proposition 317 we need to ensure the condition

) Viega-9i- (5 = s (0-pyh- (5 - Vi),

Substituting ¥ = g in (30) and recalling that v = @ we obtain the following inequality
1
(31) \I/S(l—\ll)\/l—\lﬂ—z.

Note that if ¥ — 0 then the right-hand side converges to %. Let ¥ be the smallest, positive
root of the equation ¥ = (1 — W)y/1 — U2 — 1. Then any ¥ € (0, ¥y) satisfies [BI). Recall
that %6 = > (x,7) < C(m,1,p)EY*r "% 5o to ensure condition (B) it suffices to impose the
following constraint

T X
(32) rgmin{<ﬁ>AETl,Ro} = Ri(E,m,l,p).

Now, for such r we can use Proposition B.I7 to obtain

H*CC(},H)nC(%,P).

FIGURE 6. If 8 is small enough, then the cone <C(7—*3 P) contains H* and we can continuously

transform S1 into Ss inside the conical cap (C( . Lry, 7).

We set C = z¢ + C(i,H, %pi,piﬂ) and S; = S(zg,7) N (xo + H+) € C. Observe that
CNY = () and lky(S7,X) = 1. Using Corollary B.I5 we rotate Sy into Sy = S(zq,7)N (xo+ PL)
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(see Figure [@) inside (C(g, P,rv,r). Note that for z € ¥ such that |z — z¢| > yr we have

mp(z — o) Br_B
v —xo| T Ar v’

hence the conical cap (C(g, P, 77‘,7‘) does not intersect X and the resulting sphere Ss is still
linked with 3. Next we decrease the radius of S5 to the value Sr obtaining another sphere
S3 = S(z0, Br) N (zo + P*) which is also linked with X.

We can translate S3 along any vector v € P with |v] < /1 — 8%r without changing the

linking number. This way we see that for any point w € (zo + P) N B(xq, /1 — B2r) there
exists a point z € ¥ such that |z —w| < fr.

For any other point w € (zg + P) with /1 — 3%r < |w — x¢| < r we set

W =w— (w—zo)[w — | (1 = /1 - B)r,
so that |w — x¢| < /1 — ?r. Then we find z € ¥ such that | — z| < fr and we obtain the

estimate

lz—w| <|z—w|+|0—w| <Br+(1—+1-75%)r

3 >
=r|5+ < 2Br =46, (x,r)r.
( 14 /1-—p? (@)
This implies that dy (3 N B(zo,7), (xo + P) NB(zo,r)) < 582 (xg,r). Therefore the infimum
over all H € G(n,m) must be even smaller, so 02 (zg,7) < 582 (zq,7) for any r < Reg = Ry
and we can safely set Myg = 5. U

4. UNIFORM ESTIMATES ON THE LOCAL GRAPH REPRESENTATIONS

For the sake of brevity we introduce the following notation

i L
Ty = TT,% and Ty =TT, 5

where € ¥. The main result of this section is

Theorem 4.1. Let XX C R™ be an m-fine set. If 5;,(2) < E < oo for some p > ml, then 2

is a closed C'**-manifold (by Theorem ) and there exist constants Ry, = Ry.(E,m,1,p)
and Cy, = Cre(E,m,1,p) such that for all x € ¥ there exists a function Fy : T, — (T,X)+
of class CYM* such that

(X —2z)NBg,, ={(y, Fr(y)) e R":y € T, X} N Bp,,
and Yy,z € T,X ||DF.(y) — DF.(2)|| < Cxxcly — z\% .

To prove this theorem we fix a point z € ¥ and for each radii » > 0 we choose an m-plane
P(x,7). Then we use the fact that 0 (,7) < Mpsfs(x,7) together with Proposition [ to
show that P(x,r) converge to the tangent plane 7,3, when r — 0. This also gives a bound
on the oscillation of T,,%. Then we derive Lemma [4.8] which says that at some small scale we
cannot have two distinct points y and z of X such that the vector v = (y — z) is orthogonal
to T:>. Any such vector v would be close to the tangent plane 7,% and this would violate
the bound on the oscillation of tangent planes proved earlier. From here, it follows that there
exists a small radius Ry, such that ¥ N B(z, Ry.) is a graph of some function F,, which is
of class C'*/* by Theorem [l
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In the sequel of this section we always assume that X satisfies hypothesis of Theorem E.11

4.1. Estimates on the oscillation of tangent planes. Combining Propositions B2T] and [
we see that

(33) Vr<RiVzeX 65(x,r) <565 (x,r) < 5C(m,l,p)Exrs |

Let Ry = ﬁl(E,m,l,p) € (0, Ry] be such that SC(m,l,p)E%r% < % for all r < Ry, so
Ry = CoE~Y/* for some Cy = Co(m,1,p).

Lemma 4.2. Choose a point x € X and fix some ro < Ri. Choose another point y €
SNB(z, 3r0) and somery € (319,70 — |z — y|]. Let Hy € BAPy,(2,79) and Hy € BAP,(y,11).
Then there exists a constant Cpp, = Crp(m,l,p) such that

dar(Ho, Hy) < Crp EM*rf .

OJJOQ/

F1cUure 7. The existence of z € ¥ is guaranteed by the condition . This allows us to
estimate dar(Ho, H1).

Proof. Set By = B2 (x,r0) and 81 = B (y,r1). Note that 71 < Ry, so 561 < %. Let v € Hy
be any vector of length |v| = ri(1 —53;). Since 0> (y,71) < 5831, there exists a point z €
XN B(y +v,581m1). Hence |(y +v) — 2| < 5By (see Figure [M). Note that B(y + v,58171) C
B(y,r1) € B(x, 7). Therefore dist(z,x+Hp) = \ﬂﬁo (z—x)| < Boro and we obtain the estimate
|78, (V)] < |75, ((y — @) + )| + |7, (y — )|
<|((y = 2) +v) = (z = @) + |75, (2 — 2)| + |75, (y — @)]
< 5B1r1 + Boro + Boro < 7CE1/HT5+>\/H .



SOBOLEV EMBEDDING USING MENGER CURVATURE 27

Since v was chosen arbitrarily we get the following estimate for any unit vector e € H1 NS

1+)\//£ 4r1+)\/n
+ <7cpVr_0___ <qopteo
‘WHO( )‘ 7"1(1 — 5ﬁ1) - 3r1

Recall that 71 > 4r¢, so we have g, (€)] < %CEI/“TS‘/H. Applying Proposition [LI8 we get
dex(Ho, ) < C(m, 1,p)Cpe (m) B/ """ O

Lemma 4.3. Choose a point z € . For each r < Ry fix an m-plane P(r) € BAPy(x,7).
There exists a limit lim,_,o P(r) = T,X € G(n,m) and it does not depend on the choice
of P(r) € BAPy(z,r).

Proof. Set pr = 27 Ry and for each k choose P, € BAP.(z,pr). Set Bx = B (x, pr). We will
show that {P(r)},_p, satisfies the Cauchy condition. Fix some 0 < s <t < pg and find two
natural numbers a < b such that pp11 < s < pp and pet1 <t < pg.

Applying Lemma with x =y, 1o = p; and r; = %7‘0 = pj+1 We obtain

da(Pj, Pjs1) < CEY%p A/H
Setting rg = pp and 1 = s or rg = p, and r; =t we also get
dae(P(s), P,) < CEY"p)" and  de,(P(t), P.) < CEV5p)/" .

Using these estimates we can write

dar(P(r), P(s)) < dax(P +ZdGr Pji1) + dei(By, P(s))
b—a
< CEI/H )\/n _i_zp)\/’i El/n )\/n 1 +Z2 VRV - C’(m,l,p)El/“pé‘/“,
7=0

which shows that the Cauchy condition is satisfied, so P(r) converges in G(n,m) to some
m-plane, which must be the tangent plane T,3. ]

Corollary 4.4. There exists a constant Cy, = Cy,(m, 1, p) such that for all x € X, all v < R:
and all H € BAPy (x,r) we have

der (TS, H) < Cy BV Fp?/n

Corollary 4.5. There exists a constant Cy, = Cyp(m,l,p) such that for all x € ¥ and all
y € YN B(z, R1) we have

dist(y, z + TuX) = |15 (y — x)| < Cop BY " |y — x| TV
Proof. Choose an m-plane H € BAP,(z, |y — x|). Using ([83) and Corollary 4] we get
7 (y = 2)| < |7y — 2)| + |y (wu(y — )]
< |y — alB(a, ly — z)) + |y — 2|Co BV "y — V"
< CtpEl/K|y—l‘|1+>\/H. ]
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Lemma 4.6. There exists a constant Cy = Cy(m,l,p) such that for all x € ¥ and for all
y € N B(z, $R1) we have

dae (T2, T,%) < CyEY"|x — yM*.

Proof. Let y € ¥NB(x, %Iél) Set ro = 2|z —y| and r; = |r—y|. Choose any Hy € BAP,(z,79)
and any H; € BAP,(y,71). From Lemma we have

da(Ho, Hy) < CEY /™
On the other hand Corollary 4] says that
dar(ToS, Ho) < C BV} and  de,(T,S, Hy) < CypEM /"
Putting these estimates together we obtain

dae (T3, T,Y) < de (TS, Ho) + dar(Ho, Hy) 4 dar(Hy, T,X) = CEYR |z —yME . O

4.2. Uniform estimates on the size of maps. Combining Corollary d.5and Lemma [£.Glone
can see that if we have two distinct points y, z € ¥ such that y —z L T, ¥ and |y — 2| < |z —y|
then the tangent plane 7, must form a large angle with the plane 7,3. Such situation can
only happen far away from = because of the bound on the oscillation of tangent planes.

Remark 4.7. Let © = «(m) = 155. Lemma[.Gallows us to find a radius Ry =C(m,l,p)E~Y* ¢

(0, Ry] such that whenever |z — y| < Ry for some z,y € 3, then der (T2, T,%) < .

Lemma 4.8. Choose any point x € X. There exists a radius Ro = C(m,l,p)E‘l/)‘ € (O,Rg]
such that if y,z € SNB(z, $Ry) and (y—=z) L T, X, then necessarily max{|z—y|, |z—z|} > Ro.

Proof. Let Cy), be the constant from Corollary Choose two points y,z € ¥ such that
(z —y) L T,% and max{|z — y|, |z — 2|} < 1R1(CoClp)~*. Without loss of generality we can
assume that |z — z| < |z —y| < 1, hence

v = 2V < o=y < Ry -yl < CoB T~y
First we estimate the distance |y — z| using Corollary
(34) ly — 2 = |7 (y — 2)| < |ma (y — @) + |y (2 — 2))|
< CopBYR(Jy — x| "FVF 4 | — 2|MTMR) < 20,,Cole — y| < Ry

Hence we can use Corollary once again to estimate the distance between z and T . Using
the definition of dg, we may write

(35) dae(To 2, %) > |2 — y| Hme(z —y) — my(z = y)| = |z =yl |my (2 — v)
> |z =yl (I2 = ol - Imp (2 — 9)])
> |z =y ™ (|2 =yl = Cop B[z — y| %)
=1— CpBY5|z —yM~.

On the other hand Lemma gives us

(36) dar (T2, T,%) < CuBY"|x — yM*.
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Putting these two estimates together we have
1 — CopEYR 2 — yM* < deu(To 2, TyS) < CuBY" |z — y|M*

soby @) 11— CypBEY"(20,Colz — y|M*) < CuBEY* |x —yM*,

hence |z —y| > C(m,1,p)E~YA.
We set Ry = %min{Rg(COCtp)_l,CA'(m,l,p)E_l/)‘}. O
Corollary 4.9. For each x € ¥ and each y € X NB(x, Ry) the point y is the only point in the
intersection ¥ N (y + T, X4) N B(x, Ry). Therefore (X — x) NBr is a graph of the function
(37) F,:D(z) = T, NBg, defined by

Fy(w)+w=(2—2z)N(w+ T2 NBg,,
where D(x) = 7,(X NBg,) C TpX. By Theorem [ the function Fy is of class CYM%.
Fix a point o € ¥. We define the parameterization
(38) ¢:D(0) = XNB(o,Ry) by () =0+ Fy(x)+x.
Recall our convention, that when we write 7,> we always mean the appropriate subspace
of R™. For x € D(0) we set
-1 1 -t 1 1
Lx = (ﬂ-O’Tip(x)E> : TOE — Tw(x)z and Kx = (7‘(’0 ’Tw(z)2l> : TOE — T¢(x)2 .

Observe that these mappings are well defined since Ry is not greater than Ry defined in
Corollary @7, which ensures that dg; (763, Tiy(2)%) < ¢ Observe that for any unit vector

v € Tyy)X we have |Qov| = |Tov — Tyyv| < ¢, hence [mv| = [v — Qov| > 1 — 1. This shows

that the norms ||L,||7,x and |[Ky||7, 5. are less or equal to (1 —¢)~!.

Remark 4.10. Recall that ¢ < 3. For 2 € D(0) and h € T, we have (cf. [I3, Lemma 3.15|)
DF,(x)h = Lyh — h = Qo(Lyh) and Dep(z)h = L;h,
1
hence || DF,(z)| < i <1 and [[De(2)| < T, < 2.
Remark 4.11. For all x € D(0) we have || Dy(z)| < 2 and in consequence |p(z) — p(0)| <
2|z — o|. Hence T,X N E%M C D(o).

Lemma 4.12. Let C,. be the constant from Proposition I8 For any x,y € D(0) we have
HD(P(x) - Dgo(y)H < 4dGr(T<p(:c)27 Tgo(y)z)
and dGr(Tcp(:c)Ea Tcp(y)z) < Cpa”DQD(x) - DCP(?J)H :
Proof. We want to estimate
[Dp(x) — Do(y)l| = |DFo(x) — DFo(y)|| = [|La — Ly|| -
Let h € S and set u = L, (h) and v = L,(h). Note that u — v € T,X" so we can write
|La(h) = Ly(h)] = [u = v| = [Ku(mg (u—0))| < 2y (u—v)| = 2|y (v)]
< 2fvlder (Tp@) 5 Ty 3) < ddar(Tp@) 2, Ty X) -

To prove the second part of Lemma [L12] we will use Proposition [[LI8 Let (eq,...,e,) be
some orthonormal basis of T,3. For each i = 1,...,m set u; = Dp(x)e; and v; = Dp(y)e;.
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Then (u1,...,un) is a basis of T,y¥ and (v1,...,vy) is a basis of T,
fori,j =1,...,m and i # j we have

()X By Remark [L.10]

1
1<yl < T < 20 and  [(us,uj)| = [(DF,(x)e; +e;, DF,(x)ej +ej)| < 3¢.

These estimates show that (uq, ..., u,,) is a pe-basis of T ()2 with p = 1 and € = 3t. Moreover
ui = vil = |Dp(x)e; — Dp(y)ei| < [[Dep(z) = De(y)ll -
Since 3t = 31%%5 < €,c we can use Proposition [[LI§ to obtain
dar(Tp2) 2 Tp)2) < Cpel|Dp(x) — Dp(y)]| - O
Proof of Theorem [4.1 Combining Lemma with Lemma we get
IDF,(x) — DFy(y)|| = |[De(x) — De(y)|| < 4CuEY*|z — yM*

for all z,y € D(0) = 7,(X N Bgr,) C T,X. Since 7, is continuous and ¥ N Bg, is compact,
the function F, : D(0) — T,%+ can be extended to a function F, : T,% — T,%+ without
increasing its Holder norm and in such a way that {(y, F,(y)) : v € T,X \ D(0)} N Bg, = 0.
Hence we may set

Rye = Ry = C(m,l,p)E"% and Oy, = 4CyEx . 0

5. OPTIMAL HOLDER REGULARITY

In the previous paragraph we showed that X is a closed manifold of class CHAE but Ak
was not an optimal exponent. Now we shall prove that for any o € ¥ the map F, is of class
CH® where a = 1 — %l. For this purpose we employ a technique developed by Strzelecki,
Szumanska and von der Mosel in [23].

The key to the proof of Theorem Blis Lemma 5l Tt says that the oscillation of Dy on a ball
of radius r can be bounded above by the oscillation of Dy on a ball of radius r/N, where N
is some big number, plus a term of order r*. If we choose N big enough, then, upon iteration,
the first term disappears and the sum of the second terms is still of order r.

To prove Lemma Bl we choose two points z,y € D(o) and we set r = |z — y|. From
Lemma we know that the oscillation of D¢ is comparable with the oscillation of T,,)X.
We choose points g, ..., Zm, and Yo, . .., Ym near x and y respectively, such that {z; — xo}",
and {y; — yo}/*, form a roughly (up to an error of order %, where k is some big number)
orthogonal bases of T,%. Moreover |z; — zg| ~ r/N and |y; — yo| = r/N. In the scale we are
working in, we always have ||[Depl|| < 1+ ¢, so {p(x;) — o(z0) ", and {¢(yi) — p(yo)}", are
also roughly (up to an error of order % + ¢) orthogonal and span some m-dimensional secant
spaces X and Y respectively. If we choose the points ¥, .. ., ¥ appropriately, then the “angle”
dcr(X,Y) can be estimated by 7. The error we make when we pass from dg; (7,5, Tip(y)) t0
der(X,Y) is comparable with the oscillation of Dy on balls of radius r/N.

To choose “good” points yo, . . . , Y, we first define the set of “bad parameters” B(zg, ..., x;_2),
i.e. such z € D(0) that the integrand

Kip(xo, .. x1-9,2) = sup K(o(xo), - oy o(@i—2), 2,1y -+ s Pmt1)
Pls-Pm+1€3
is big. From finiteness of £.(3), we derive the conclusion that the measure of B(xq, ..., z_2)
has to be smaller than the measure of a ball of radius r/(kN), hence close to each g there
exists y which does not belong to B(xo,...,x;—2). From the fact that K ,(xo,...,21_2,9)
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is small, we derive an estimate on the distance of ¢(y) from p(xg) + X, which in turn gives
the estimate dg,(X,Y) S r?.

In the sequel of this section we always assume that X satisfies hypothesis of Theorem 1]
o € 3 is fixed, ¢ is given by ([B8) and [ is a fixed number from the set {1,2,...,m + 2}.

5.1. Bootstrapping the Holder exponent. Let S C D(0) be any set and r < %RM. We
define the oscillation of ¢ on S as follows

©(r, 5) = sup {[|Dp(x) — Dp(y)l| : 2,y € S, |z —y| <7}
For x,y € T,> we set
D, =T,5NB,, D(z,r)=z+D, and D(z,y) =D, + 5L CT,S.
and we define
Mya,p) = (EL(¢(D(a.p)))"  and  Ej(z,y) = € (D (x,y)).
Note that if we set [Jo(x)| = /det((Dp(z))!Dp(z)) and

ICl,cp(:E(]v"')xl—l) = sup ’C((;D(:EO)V"790(:171—1)7]917---7pm+1)7
plv~~~,pm+1€2

==

Kip(xo, .., x1—1)P |Jo(zo)|- - [Jp(wi—1)| dxo - -+ daj—q .

[D(z,y)]"

Lemma 5.1. For all k > kg = 100/€,. and N > No = 8 there exist constants C; = C1(m)
and Cy = Cy(m,l,p, k, N) such that for all x,y € Dig,
6 K

(39)  then Ell,(x,y):/

z—y| § 1 a
(40) IDg() = D)l < Cr0 (2552, D, y) ) + CE(w, y)v |z — y|°
Using this lemma we can prove Theorem [Bl

Proof of Theorem [ Fixsomea € D 1R, and a radius R € (0, 3—16RM]. Taking the supremum
on both sides of [{Q) over all z,y € D(a, R) satisfying |x —y| < r < R we obtain the estimate
®(r,D(a, R)) < C1® (%,ﬁ(a, R+ 7‘)) + C’gMII,(a, R+ r)r®.

Choose any j € N. Iterating the above inequality j times we get
_ o 71 o \!
®(r,D(a, R)) < C{® (2]N_3r, D(R + T‘j)) + CoMy(a, R+ rj)r® Z <N—‘13‘> ,
=0
where r; = r Z{:_ol 2'N—! < 2r. Recall that we know a priori that ¢ is C1*-smooth, so we
can estimate the first term on the right-hand side by
O (2N 91, D(a, R+ 1j)) < C\ 2NN TINmphs
j—1
which gives  ®(r,D(a, R)) < Oy (CLN"M®)IpM 5 4 CQM;,(CL, 3R)r* Z(ClN_a)l
for each j € N. To ensure that the first term disappears and that the secol;)i term converges
when j — oo we need to know the following

(41) Ci2MEN"ME <1 and CIN"® < 1.
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Since C; = Ci(m), we can find N = N(m,l,p) > Ny for which condition (Il is satisfied.
Passing with j to the limit j — co we obtain the bound

®(r,D(a, R)) < CoM}(a,3R) > (CLN~*)'r® = C(m,1,p) M} (a, 3R)r".
=0
Hence, for any z,y € ES%RM, taking a = xTer and r = R = |z — y| we get

|De(x) — Do(y)|| < C(m, 1, p) M, (%52, 3|z — yl) |z — y|*. O

Proof of Lemmal5dl Let us fixz,y € D1p . Since [z —y| < %RM and @ < %RM, we have
6 K

D(z,y) C ]D)%RM. Let zg,...,x1—9 € D(z,y). We define the sets of bad parameters

= (EN)™
B(zo,...,T1-2) = {z € D(x,y) : ICl,cp(xO, co g, 2)P > m

Eé(w,y)}

Recalling ([B9) and using the fact that |J¢| > 1 we can estimate the measure of B(xo, ..., z;—2)
as follows

Eé(x,y) > / / Kio(xo,...,21-2,2) dz dxg - - - dx;—o
[D(x,y)]' =t S B(w0,...,x12)
-1 -1 (kN)™
> Wh, ‘x—y‘m( )%m(%(.’zo,...,xl_g))mEp(.f’y)
m |$ - y| "
(42) —  H"(B(zo,...,x1-2)) < W N .
Fix an orthonormal basis (eq,...,e,) of T,X. Fori=1,...,m we set
To =T, zi =g + Ete;, Yo=Y and gi = o + Ze;
Estimate (42]) shows that we can find
__ _ €T —
yOv"'vym6©(x7y)\%($07"'7xl—2)7 such that |y2_y2| = | k‘Ny|

for each 1 =0,...,m. We set
X = span{p(z;) — ¢(z0)}iZ1 and Y = span{e(yi) — ¢(yo) il -
Using Lemma we obtain

(43)  [|1Dg(x) = De(y)ll < [[Dp(x) — Do)l + [|Dp(z0) — De(yo)ll + |1 De(yo) — De(y)l

<20 (53, D(.,)) + 4de(Tpen) B Ty 2)

<20 (B, D(2,9)) + 4 (Tyay) S X) + 4dae (X, Y ) + 4 (Y, Ty )

For each ¢ = 1,...,m, from the fundamental theorem of calculus we have
1
o= ple) = plan) = [ & (ploo+ tai = a0))

1
- /0 (Dip(o + t(zs — 20)) — Depliwo)) (s — o) dt + Dip(izo) (s — o)

=0; +w;.
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Observe that wy, ..., wy, forms a basis of T, )% and vy,..., vy, forms a basis of X. Using
the above estimate we see that

lvi — wi| = |og| < @ (|2 — 20|, D(,y))|x; — 20| = @<|m§y|7©($ay))m—fvm7

Let a; = x; — 20 = |:ch|eZ and b; = Fy(x;) — F,(xz0). Then v; = a; +b;. From Remark 110 we
know that |b;| < 2¢|a;| = ‘gojg‘epe, hence

|z — y|2 i €pe 6/216 |z y| €pe 6%5
2\ %~ 55 gz ) S v vl = e +bisay + b)) < 5] o ez |

Applying Proposition [[LI8 we come to

(44) dGr(Tgo(xo)EaX) < Cpaq)(‘x;/y‘a@(*%y)) :
We estimate dgy (7,2, Y) in a similar way. For i = 1,...,m we define v;, w;, a; and b;
as follows

a; = Yi — Yo bi = Fo(y:) — Fo(vo) s

v = (i) —@(yo) = a; +b; and  w; = Do(yo)(yi — vo) ,

so that Y = span{vy,...,0,,} and T,

o(yo) = = span{wWi, ..., Wn, }. Again, using the fundamental
theorem of calculus, we get

Recall that k > 100/€,.. It is easy to verify that

e —yP (8 eyl 8
S _ < . . < 4 —
N2 5@ k — ‘<a27a]>‘ — N2 5@ + k )

which implies that |b;| < 2¢]a;| < ‘;05 ]\Z;‘epa Therefore

2 2
r—Yy j R _ 7 = N r—1Yy j
200 (61— ) < 10150 = as + By + B < P (5 1 )

and we can apply Proposition [[LI8 once more obtaining

(45) dar(Ty(y) =, Y) < 26,0 (2252, (3, ).

Combining estimates (@3], (@) and ([@3]) and using Lemma .12 we get

(46) |De(x) — De(y) | < Ca(m)@ (2, B, y) ) +4der (X, V).

Hence, we only need to estimate dg;(X,Y).
Observe that for each z € D(z,y) \ B(zo,...,z1—2) we have

(kN)™P

Kio(zo,...,21-2,2) < ————F (x,y)l/p.
’ Wil |w = ylmise
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Directly from the definition of K , we also have

Kip(xo, ..., 21-2,2) = K(p(x0), ..., p(Tm), p(2))
_ H™(A(p(x0), - - plem)) dist(p(2), p(x0) + X))
(m + 1) diam(p(zo), - - ., (), p(2))™+2

S H (Ao, - ) dist(p(2), p(wo) + X) _ dist(p(2), p(z0) + X)
- (m + 1) 2z — y)™+2 (m + 1)INm2m+2[g — y|2~
Hence
: ! 1/p 1-ml |z —y|
dlSt(gD(Z),gO(xo)+X) SC(mJapakaN)Ep(xay) ‘.Z'—y‘ P T
We have shown already that o1, ..., 7, forms a pe-basis of Y with p = ‘x;,y‘ and € = €.
Moreover, since y; ¢ B(zo,...,x;_2), we have
dist(v;, X) = |mx0i| < dist(e(yi), p(wo) + X) + dist(p(y0), p(20) + X)
< 20(m L.k, N) L) 7o — 5 2

Thence, by Proposition [[LI8] the following holds
der (X, Y) < Clm,1,p, b, N)Eb(a,y) Pl =y~
Together with (6]) this gives ([@0) and Lemma [5.1]is proven. O
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