
ar
X

iv
:1

30
3.

43
77

v1
  [

m
at

h.
A

P]
  1

8 
M

ar
 2

01
3

HERTZ POTENTIALS AND ASYMPTOTIC PROPERTIES OF MASSLESS

FIELDS

LARS ANDERSSON, THOMAS BÄCKDAHL, AND JÉRÉMIE JOUDIOUX

Abstract. In this paper we analyze Hertz potentials for free massless spin-s fields on the
Minkowski spacetime, with data in weighted Sobolev spaces. We prove existence and pointwise
estimates for the Hertz potentials using a weighted estimate for the wave equation. This is then
applied to give weighted estimates for the solutions of the spin-s field equations, for arbitrary
half-integer s. In particular, the peeling properties of the free massless spin-s fields are analyzed
for initial data in weighted Sobolev spaces with arbitrary, non-integer weights.

1. Introduction

The analysis by Christodoulou and Klainerman of the decay of massless fields of spins 1 and
2 on Minkowski space [10] served as an important preliminary for their proof of the non-linear
stability of Minkowski space [11]. The method used in [10] was based on energy estimates using
the vector fields method, see [19]. This approach was extended to fields of arbitrary spin by Shu
[32]. The approach of [11] to the problem of nonlinear stability of Minkowski space was later
extended by Klainerman and Nicolo [22] to give the full peeling behavior for the Weyl tensor
at I.

The vector fields method makes use of the conformal symmetries of Minkowski space to derive
conservation laws for higher order energies, which then via the Klainerman Sobolev inequality
[21] give pointwise estimates for the solution of the wave equation. An analogous procedure is
used for the higher spin fields in the papers cited above. This procedure gives pointwise decay
estimates for the solution of Cauchy problem of the wave equation and the spin-s equation, for
initial data of one particular fall-off. The conditions on the initial data originate in the growth
properties of the conformal Killing vector fields on Minkowski space, which are used in the
energy estimates.

Let Hj
δ
be the weighted L2 Sobolev spaces on R

3. We use the conventions1 of Bartnik [4].
Consider the Cauchy problem for the wave equation

◻φ = 0, (1.1)

φ∣
t=0 = f, ∂tφ∣t=0 = g.

Then, for j ≥ 2 one has the estimate [19]

∣φ(x, t)∣ ≤ C<u>−1/2<v>−1(∥f∥j,−3/2 + ∥g∥j−1,−5/2) (1.2)

where <u> = (1 + u2)1/2, u = 1

2
(t − r) and v = 1

2
(t + r). On the other hand, if one considers the

wave equation (1.1) on the flat 3+1 dimensional Minkowski spacetime as a special case of the
conformally covariant form of the wave equation

(∇a∇a +R/6)φ = 0,
the condition on the initial data which is compatible with regular conformal compactification is

∂ℓf = O(r−2−ℓ), ∂ℓg = O(r−3−ℓ) (1.3)

Since we shall use the 2-spinor formalism, we work here and throughout the paper on Min-
kowski space with signature + −−−. Making use of standard energy estimates in the conformal
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compactification of Minkowski space, one arrives after undoing the conformal compactification,
at

∣φ(x, t)∣ = O (<u>−1<v>−1) (1.4)

see the discussion in [17, §6.7]. In particular, there is an extra r−1/2 falloff in the condition (1.3)

on the initial data as well as an additional factor <u>−1/2 decay in the retarded time coordinate
u in (1.4) compared to (1.2).

Let us now consider the case of higher spin fields. Let 2s be a positive integer and let φA...F
be a totally symmetric spinor field of spin s, i.e with 2s indices. The Cauchy problem for a
massless spin-s field is

∇A′AφA...F = 0,
φA...F ∣t=0 = ϕA...F .

For s ≥ 1, the Cauchy datum ϕA...F must satisfy the constraint equation

DABϕAB...F = 0
where DAB is the intrinsic space spinor derivative on Σ, see section 4.1. The spin 1

2
case does

not have constraints.
One of the main differences in asymptotic behavior between a massless scalar field satisfying

a wave equation and a massless higher spin field is the existence of a hierarchy of decay rates
for the different null components of the field along the outgoing null directions. This was first
pointed out by Sachs in 1961 [31].

Let oA, ιA be a spin dyad aligned with the outgoing and ingoing null directions ∂v , ∂u, and
let φi be the scalars of φA...F , defined by

φi = φA1...AiBi+1...B2s
ιA1⋯ιAi⋯oBi+1⋯oB2s

One says that φA...F satisfies the peeling property if the components φi satisfy

φi = O(ri−2s−1),
along outgoing null geodesics.

In [29], Penrose gave two arguments for peeling of massless fields on Minkowski space. The
first, cf. [29, §4], makes use of a representation of the field in terms of a Hertz potential of order
2s, i.e. the field is written as a derivative of order 2s of a potential satisfying a wave equation.
Penrose assumes that the Hertz potential decays at a specific rate along outgoing null rays. He
then infers the peeling property from this decay assumption.

The second approach presented by Penrose, cf. [29, §13], is based on the just mentioned fact
together with the conformal invariance of the spin-s field equation. Solving the Cauchy problem
in the conformally compactified picture, as was discussed for the wave equation in [17, §6.7],
and taking into account the effect of the conformal rescaling, one recovers the peeling property
for the solution of the massless spin-s equation on Minkowski space. Based on this analysis,
Penrose conjectured that peeling for fields at I should be a generic property of asymptotically
simple space-times.

The estimate proved in [10] for the spin-1 or Maxwell field, can be stated in the present
notation as

∣φi(t, x)∣ ≤ C<u>1/2−i<v>i−3∥ϕAB∥j,−5/2, for =1,2
while for the component φ0 one has

∣φ0(t, x)∣ ≤ Cr−5/2∥ϕAB∥j,−5/2
along outgoing null rays. Thus, this result does not give the peeling property for all components
of φAB , which is due to the fact that the norm ∥ϕAB∥j,−5/2 is not compatible with the conformal
compactification of Minkowski space. Similarly for the spin-2 case, the result in [10] gives

peeling for φi, i = 2,3,4 for initial data in Hj

−7/2, while peeling fails to hold for φi, i = 0,1. On
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the other hand, the condition on the initial datum which is compatible with a regular conformal
compactification, and which hence also gives peeling, is for a spin-s field

∂ℓϕA...F = O(r−2s−2−ℓ) (1.5)

In this paper we shall follow an approach outlined by Penrose in [29, §6] to give a weighted
decay estimate for spin-s fields of arbitrary, half-integer spin s. The result proved here admits
conditions on the initial data which include the ones considered in [10, 32], as well as conditions
which are compatible with peeling, but also general weights. The results of this paper clarify
the relation beween the condition on the inital datum and the peeling property of the solution
the spin-s field equation. In this paper we shall make use of some estimates for elliptic equations
in weighted Sobolev spaces, and for technical reasons these are not compatible with the integer
powers or r as in (1.5).

The method we shall use is based on the notion of Hertz potentials. For background, see
Stewart [35], Fayos et al. [14] and references therein, see also Benn et al. [6]. Since Minkowski
space is topologically trivial, there is no obstruction to representing a Maxwell field on Minkow-
ski space in terms of a Hertz potential. However, this general fact does not provide estimates
for the potential. In this paper we prove the necessary estimates not only for the Maxwell field
but for fields with general half-integer spins.

To introduce the method we consider the spin-1 case, i.e. the Maxwell field on 3+1 dimen-
sional Minkowski space. With our choice of signature, the metric on the spatial slice is negative
definite.

The Maxwell field is a real differential 2-form Fab which is closed and divergence free. For
convenience we consider the complex self-dual form

Fab = Fab − i ∗ Fab,
which corresponds to a symmetric 2-spinor φAB via

Fab = φABǫA′B′ . (1.6)

In terms of Fab, the Maxwell equation is simply

(dF)abc = 0. (1.7)

Let ξa = (∂t)a be the unit normal to the Cauchy surface Σ = {t = 0}. Given a complex 1-form
Ea on Σ, with divergence zero there is a unique solution of the Maxwell equation such that

(Fabξb)∣Σ = Ea.
Now let Hab be an anti-self-dual 2-form which solves the wave equation

◻Hab = 0, (1.8)

where ◻ = dd∗ + d∗d is the Hodge wave operator, and d∗ = ∗d∗ is the exterior co-derivative.
Defining the form Fab by Fab = dd∗Hab, (1.9)

we have using (1.8) that Fab is self-dual, and solves the Maxwell equation. The formHab is called
a Hertz-potential for Fab. Since we are working on Minkowski space, the wave equation (1.8) is
just a collection of scalar wave equations for the components of Hab, and hence the solution to
(1.8) for given Cauchy data can be analyzed using results for the scalar wave equation. Thus,
if we are able to relate the Cauchy data for the Maxwell field Fab to the Cauchy data for Hab,
we may use the Hertz potential construction to prove estimates for the solution of the Maxwell
field equation, starting from estimates for the wave equation.

Let the complex 1-form Ka be the “electric field” corresponding to Hab,
Ka = Habξb.

A calculation shows that if Fab is defined in terms of Hab by (1.9), the Cauchy data for (1.8) is
related to the Cauchy data for Fab by

Ea = − ∗ d ∗ dKa + i ∗ d∂tKa, (1.10)
3



where in the right hand side we restrict Ka and ∂tKa to Σ, and d,∗ act on objects on Σ. The
constraint equation d∗Ea = 0 holds automatically for Ea given by (1.10).

Now, in order to prove estimates for the Maxwell equation with data Ea ∈ Hj
δ
, satisfying

d∗E = 0, it is sufficient to show that for any such Ea, there exists a 1-form La ∈Hj+1
δ+1 such that

Ea = i ∗ dLa. (1.11)

Then taking Hab to be a solution of (1.8) with Cauchy data

Hab∣t=0 = 0, (∂tHabξb) ∣t=0 = La,
gives a solution to the Maxwell equation via (1.9). Estimates for the wave equation can thus
be applied to give estimates for the solution of the Maxwell field equation.

The operator ∗d acting on one forms, which appears in (1.10) and (1.11) is simply the curl
operator. This is a special case of the operator Á2s,

(Á2sφ)AB...F =D(AGφB...F )G,
acting on space spinors of half-integer spin s, see Definition 2.11 below. Below in Proposition 4.7,

we shall prove that for non-integer weights δ > −4, ∗d ∶ Hj+1
δ+1 → ker d∗ ∩Hj

δ
is a surjection, and

the estimate

∥La∥j+1,δ+1 ≤ C∥Ea∥j,δ (1.12)

holds, for some constant C. However, for δ < −4 the operator ∗d is not a surjection to ker d∗,
i.e. the space of solutions to the Maxwell constraint equation, but to a subspace of finite
codimension, which we characterize, see section 4.3. This result is based on ideas from Hodge
theory, in particular we make use of the fact that the operators d, ∗d, d∗ form an elliptic
complex, closely related to the de Rahm complex, see section 3. In Proposition 4.7 we give
the proof for the spin-1 case in terms of space spinors. This gives an outline for the treatment
of the general spin-s case which is given in Proposition 4.8. The latter result is based on a
generalization of the above mentioned elliptic complex to higher spin fields and on expressions
of powers of the Laplacian in terms of the corresponding operators.

It is instructive to consider two special cases. First we consider the case Ea ∈ ker d∗ ∩Hj

−5/2
which corresponds to the case considered in [10]. In this case, the Cauchy data for the Hertz

potential is in Hj+2
−1/2 ×Hj+1

−3/2. Since the Laplacian ∆ = dd∗ + d∗d is a surjection Hj+2
−1/2 → H

j

−5/2
it is straightforward to show using the fact that the ranges of d and ∗d are L2 orthogonal,

and d∗ ∗ d = 0, that ∗d is a surjection H
j+1
−3/2 → ker d∗ ∩Hj

−5/2. Secondly, we consider the case

Ea ∈ ker d∗∩Hj

−7/2 where full peeling holds. In this case, the Cauchy data for the Hertz potential

is in H
j+2
−3/2 ×Hj+1

−5/2. The relevant fact about the Laplacian is now that ∆ ∶ Hj+2
−3/2 → H

j

−7/2 is

Fredholm with cokernel consisting of constant forms. Since a constant form ξa is automatically
closed, it is also exact, ξa = df for some f . Hence, the cokernel of ∆ is automatically L2-

orthogonal to kerd∗ ∩Hj

−7/2. Using this fact, it follows that ∗d ∶ Hj+1
−5/2 → ker d∗ ∩Hj

−7/2 is a

surjection.
The argument for the higher spin case follows the same outline. However in that case, for

spin s, one must consider a power of the Laplacian ∆⌊s⌋ and a decomposition of this in terms
of fundamental operators introduced in section 2.3.

The existence of a solution to (1.11) with an estimate (1.12) is then used together with a

weighted estimate for the solution of the wave equation with initial (f, g) ∈Hj
δ
×Hj−1

δ−1 for non-
integer δ. As we have not found a sufficiently general result in the literature, in particular which
covers the range of weights δ > −1 which we need for the applications to the Hertz potential in
the range where full peeling fails to hold (including the situation considered in [10]), we prove
the required result in section 5. This result consists of a direct estimate for the solution of the
wave equation, using the representation formula. For δ < −1 we have in the exterior region

∣φ(t, x)∣ ≤ C<v>−1<u>1+δ (∥f∥3,δ + ∥g∥2,δ−1) ,
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see Proposition 5.2.
The core of the paper is the proof of the existence of a Hertz potential for all massless fields;

this Hertz potential has the form:

φA...F = ∇AA′ . . .∇FF ′χA′...F ′ , where ◻ χA′...F ′ = 0 (1.13)

For the spin-1, or Maxwell case, equation (1.13) takes the form

φAB = ∇AA′∇BB′χA′B′ , where ◻ χA′B′ = 0
which is equivalent, when written in terms of differential forms, to equations (1.7) and (1.8),
via the correspondence (1.6).

The main result of the paper, see Theorem 7.1, combines the analysis of the Hertz potential
Cauchy data in weighted Sobolev spaces with the weighted estimate for the solution of the wave
equation to provide a weighted estimate for the solution to the massless spin-s field equation.
The peeling properties of the spin-s field with initial data in weigted Sobolev spaces are analyzed
in detail. Here it is important to note that the detailed decay estimates for the components of
the massless spin-s field φA...F relies on the interplay between the Hertz potential χA

′...F ′ which
behaves according as a solution of the wave equation. The decay properties of the components
of φA...F comes about due to their relation to the derivatives of χA

′...F ′ in terms of a null tetrad.

Overview of this paper. In section 2 we state our conventions and recall some basic facts
about elliptic operators on weighted Sobolev space. In particular we introduce the Stein-Weiss
operators divergence â, curl Á and the twistor operator Ö for higher spin fields, as well as a
fundamental higher order operator G originating in the 3+1 splitting of the Hertz potential
equation. In section 3 we use these to introduce a generalization of the deRham sequence
for spinor fields. The problem of constructing initial data for the Hertz potential is solved in
section 4, and this then gives the existence of Hertz potentials. In the analysis of the initial
data for the Hertz potential we make use of the space spinor formalism, see section 4.1. The
weighted estimate for the wave equation is given in section 5, and the resulting estimates for the
spin-s fields is given in section 6. The main result is stated in section 7. Appendix A contains
some results on G used in the analysis of the elliptic complex introduced in section 3 as well as
for the construction of the Hertz potential in section 4.

2. Preliminaries

2.1. Conventions. In this paper, we will only work on Minkowski space time. The spinor
formalism with the conventions of [30] is extensively used. For important parts of the paper,
3+1 splittings of spinor expressions are performed. The space spinor formalism as introduced in
[34] is therefore used. In this case, the conventions of [3] are adopted. We will always consider

the space spinors on the t = const. slices of Minkowski space with normal τAA′ = √2∇AA′t.
Observe that a negative definite metric on the slices is used.

The Minkowski space-time (R4, ηαβ) is endowed with its standard connection ∇a = ∇AA′ .
The time slice {t = 0} is endowed with the connection Da =DAB defined by:

DAB = τ(AA′∇B)A′
where τAA′ is the timelike vector field defined above. Its relation to the connection of the
ambient space-time is given by

∇AA′ = 1√
2
τAA′∂t − τBA′DAB .

The following set of spinors are then defined:

Definition 2.1. Let Sk denote the set of symmetric valence k space spinor fields on R
3.

Definition 2.2. Let P<δk denote the set of spinor fields in Sk spanned by constant spinors with
polynomial coefficients of degree < δ.

Observe that with δ ≤ 0, P<δk is just the trivial space {0}.
5



2.2. Analytic framework. We introduce in this section the analytic framework which is nec-
essary to understand the propagation of the field as well as the geometric constraints. We
will use the conventions of Bartnik [4]. Even though Bartnik’s paper only gives statements for
functions, we can easily extend this to space spinors on the flat space.

We recall first the standard norms, coming from the Hermitian space spinor product:

Definition 2.3. The Hermitian space spinor product is defined via

⟨ζA...F , φA...F ⟩ = ζA...F φ̂A...F ,
where φ̂A...F = τAA′ . . . τFF ′φA′...F ′ and τAA′ = √2∇AA′t. The pointwise norm of a smooth φA...F
is defined via

∣φA...F ∣2 = φA...F φ̂A...F .
The pointwise norm of the derivatives of the smooth spinor φA...F on R

3 is given by

∣DaφA...F ∣2 = δabDaφA...F D̂bφ
A...F ,

where δab is the standard Euclidean metric on R
3. The norm of higher order derivatives is

defined similarly.

Remark 2.4. The identity
DABφ̂A...F = −D̂ABφA...F

holds, due to the reality of the operator DAB.

Definition 2.5. The L2-norm of a smooth spinor field in R
3 is defined by:

∥φA...F ∥2 = (∫
R3

∣φA...F ∣2dµR3)
1

2

,

where dµR3 is the standard volume form on R
3. The L2-norm is also defined for derivatives in

the same way using the pointwise definition above.

If u is a real scalar, its japanese bracket is defined by:

<u> = (1 + u2) 12 .
The weighted Sobolev norms, necessary to describe the asymptotic behavior of initial data at
space-like infinity, are defined by:

Definition 2.6 (Weighted Sobolev spaces). Let δ be a real number and j a nonnegative integer.
The completion of the space of smooth spinor fields in S2s with compact support in R

3 endowed
with the norm

∥φA...F ∥2j,δ =
j∑
n=0
∥<∣x∣>−(δ+ 3

2
)+nDnφA...F ∥2

2
,

is denoted by Hj
δ
(S2s).

Remark 2.7. ● For δ = −3/2, the weighted space H0−3/2(S2s) is the standard Sobolev

spaces L2(S2s).● The derivatives decay faster (or grow slower, accordingly to the sign of δ) than the spinor
field.

Many well-known properties can be proved about these spaces – see for instance [4, Theo-
rem 1.2] for more details. The only property, crucial to obtain the pointwise estimates, is the
following Sobolev embedding ([4, Theorem 1.2, (iv)], in the specific case of the dimension 3):

Proposition 2.8. Let δ be a real number and j ≥ 2 an integer. Then, any spinor field in

H
j
δ
(S2s) is in fact continuous and there exists a constant C such that, for any φA...F in Hj

δ
(S2s)

∣φA...F (x)∣ ≤ C<∣x∣>δ∥φA...F ∥2,δ,
and, in fact,

∣φA...F (x)∣ = o (<∣x∣>δ) as <∣x∣>→∞.
6



We finally recall the following properties of elliptic operators, restricting ourself to the case
of the powers of the Laplacian. The result stated is a combination of the standard results in
[4, 27, 8, 18].

Proposition 2.9. Let j, l be non-negative integers such that j ≥ 2l, s ≥ 0 be in 1

2
Z and δ be in

R ∖Z. The formally self-adjoint elliptic operator of order 2l:

∆l
2s ∶Hj

δ
(S2s)Ð→H

j−2l
δ−2l(S2s)

satisfies:

● its kernel is a subset of P<δ2s ; in particular, ∆l
2s is injective when δ < 0;● its co-kernel is a subset of P<−3−δ+2l

2s ; in particular, ∆l
2s is surjective when δ > 2l − 3.

Furthermore, the following closed range estimates holds: there exists a constant C such that,
for all spinor fields in Hj

δ
(S2s),

min
ψA...F ∈ker(∆l

2s
)∩Hj

δ
(S2s)

(∥φA...F + ψA...F ∥j,δ) ≤ C∥∆l
2sφA...F ∥j−2s,δ−2s.

Remark 2.10. ● In the range of weights [−1,0], the operator ∆ is both injective and
surjective.● The use of the closed range estimate usually comes with an infimum (see [18, Theo-
rem 5.2]). Since this infimum corresponds to the distance to the kernel ker(∆l

2s), which
is closed, this infimum is in fact attained.

● We recall here that, due to its self-adjointness, the co-kernel of ∆l
2s in H

j−2l
δ−2l(S2s) is

L2-orthogonal to the kernel of ∆l
2s in the dual space H−j+2l−3−δ+2l(S2s).● The dimension of the spaces can be computed explicitly – see for instance [25]. However,

for our purpose, we do not need to know the dimension.

2.3. Fundamental operators.

Definition 2.11. Let φA1...Ak
∈ Sk, that is φA1...Ak

= φ(A1...Ak). Let DAB be the intrinsic Levi-
Civita connection. Define the operators âk ∶ Sk → Sk−2, Ák ∶ Sk → Sk and Ök ∶ Sk → Sk+2
via

(âkφ)A1...Ak−2
≡DAk−1AkφA1...Ak

,

(Ákφ)A1...Ak
≡D(A1

BφA2...Ak)B ,(Ökφ)A1...Ak+2
≡D(A1A2

φA3...Ak+2).
These operators will be called divergence, curl and twistor operator respectively.

We suppress the indices of φ in the left hand sides. The label k indicates how many indices
it has. The importance of these operators comes from the following irreducible decomposition
which is valid for any k ≥ 1

DA1A2
φA3...Ak+2

= (Ökφ)A1...Ak+2
− k
k+2ǫA1(A3

(Ákφ)A4...Ak+2)A2

− k
k+2ǫA2(A3

(Ákφ)A4...Ak+2)A1
+ 1−k

1+k ǫA1(A3
(âkφ)A4...Ak+1

ǫAk+2)A2
.

This irreducible decomposition follows from [30, Proposition 3.3.54]. Contraction with ǫs and
partial expansion of the symmetries give the actual coefficients.

Lemma 2.12. The symbol σx(Ák) of Ák is Hermitian and has only real eigenvalues.

Proof. By definition we have

(σx(Ák)φ)A1...Ak
≡X(A1

BφA2...Ak)B ,
where XAB is real, i.e. X̂AB = −XAB. For arbitrary ξA1...Ak

and ζA1...Ak
, we have

⟨(σx(Ák)ξ)A1...Ak
, ζA1...Ak

⟩ =XA1

BξA2...AkB ζ̂
A1...Ak = ξA2...AkBX̂

C1B ζ̂C1

A2...Ak

= ⟨ξA1...Ak
, (σx(Ák)ζ)A1...Ak

⟩.
7



Hence, the symbol σx(Ák) is Hermitian and, by the spectral theorem, it has only real eigenvalues.
�

The operators âk, Ák and Ök are special cases of Stein-Weiss operators. We refer to [7] and
references therein for general properties of this class of operators.

2.3.1. Important higher order operators. The most important higher order operator is clearly
the Laplacian ∆ ≡DABD

AB. Observe that we are using a negative definite metric on R
3 which

affects the definition of ∆. When the Laplacian acts on a spinor field φA...F in Sk, we will often
use the notation (∆kφ)A...F , where k indicates the valence of φA...F .

Definition 2.13. Define the order k − 1 operators Gk ∶ Sk → Sk as

(Gkφ)A1...Ak
≡
⌊k−1

2
⌋

∑
n=0
( k

2n + 1)(−2)−nD(A1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kφ)Ak−2n...Ak)B1...Bk−2n−1

.

The first operators are

(G1φ)A ≡ φA,
(G2φ)AB ≡ 2D(ACφB)C = 2(Á2φ)AB ,
(G3φ)ABC ≡ 3D(ADDB

FφC)DF − 1

2
(∆3φ)ABC

= 1

3
(Ö1â3φ)ABCD + 4(Á3Á3φ)ABC ,

(G4φ)ABCD ≡ 4D(AFDB
HDC

LφD)FHL − 2D(AF (∆4φ)BCD)F
= 2(Ö2â4Á4φ)ABCD + 8(Á4Á4Á4φ)ABCD.

These operators naturally appear in Proposition 4.1. The most important properties of these
operators are âkGk = 0 and GkÖk−2 = 0, which is valid for any k ≥ 2. The main idea to prove
this is to use that âkGk and GkÖk−2 contains derivatives of the kind DA

CDBC = 1

2
ǫAB∆. For a

complete proof see Proposition A.3. The operators Gk also commute with Ák; this is proven in
Proposition A.1.

To relate these operators with elliptic theory, we express appropriate powers of the Laplacian
in terms of the Gk operators as

(∆k
2kφ)A1...A2k

= (Ö2k−2F2k−2â2kφ)A1...A2k
− (−2)1−k(G2kÁ2kφ)A1...A2k

, (2.1a)

(∆k
2k+1φ)A1...A2k+1

= (Ö2k−1F2k−1â2k+1φ)A1...A2k+1
+ (−2)−k(G2k+1φ)A1...A2k+1

, (2.1b)

where the operators F2s are defined via

(F2sφ)A1...A2s
= 2−2s

⌊s⌋∑
n=0

⌊s⌋−n∑
m=0
( 2s + 2

2n + 2m + 2
)(−2)n

×D(A1

B1⋯DA2n

B2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2n

(∆⌊s⌋−n
2s φ)A2n+1...A2s)B1...B2n

.

The first operators are

(F0φ) = φ,
(F1φ)A ≡ 3

2
φA,

(F2φ)AB = 7

4
(∆2φ)AB − 1

2
D(ACDB)DφCD.

See Lemma A.4 in the appendix for the proof of (2.1a) and (2.1b).
The operator Á2 is the spinor equivalent to the operator ∗d acting on 1-forms. The tensor

equivalent of the operator G4 is the linearized Cotton-York tensor acting on symmetric trace-free
2-tensors. In the following section, a more detailed description of these relations is given.
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3. Integrability properties of spinor fields

A crucial part of this work relies on integrability properties for spinors. In the case of spin
1, these integrability properties are well known since it corresponds to standard integrability
properties of 1-forms. For spin 2, one has to resort to a generalization of the de Rham theory
to trace free 2-tensors, which happened to have been studied in the context of conformal defor-
mation of flat structure by Gasqui and Goldschmidt [16], whose results were extended by Beig
[5]. On R

3, we prove a generalization of these elliptic sequences for arbitrary spin.
We present here the general picture of this integrability result for smooth spinors. It is well

known that for 1-forms the integrability conditions is given by the following elliptic complex

C∞(R3,R) d
Ð→ Λ1 ⋆d

Ð→ Λ1 d∗

Ð→ C∞(R3,R),
whose spinorial equivalent is

S0
Ö0
Ð→ S2

Á2
Ð→ S2

â2

Ð→ S0. (3.1)

Gasqui and Goldschmidt were interested in the conformal deformation of a metric on a 3-
manifold M .

Definition 3.1. The deformation gt of a metric g0 is said to be conformally rigid if there exist
a family of diffeomorphisms φ⋆t and of functions ut such that:

φ⋆t g0 = eutgt.
The infinitesimal equation corresponding to this definition is given by the conformal Killing

equation:

LXg0 −
1

3
Trg0(LXg0)g0 = h (3.2)

where X a vector field on M and h is a trace free 2-tensor. The spinor equivalent of this
equation is given by

2D(ABXCD) = hABCD.
Solving (3.2) requires that the 2-tensor h satisfies the constraint equation. This is stated in [16,
Theorem 6.1, (2.24)] and the following proposition in [5]:

Theorem 3.2 (Gasqui-Goldschmidt). If (M,g) is a conformally flat 3-dimensional manifold,
then the following is an elliptic complex

Λ1(M) L
Ð→ S2

0(M,g) RÐ→ S2

0(M,g) div
Ð→ Λ1(M),

where Λ1(M) is the space of 1-form over M , S2
0(M,g) is the space of symmetric trace free

2-tensors and

(LW )ab = D(aWb) −
1

3
gabD

cWc

(div t)a = 2gbcDctab

and
R(ψ)ab = ǫcdaD[cσd]b where

σab =D(aDcψb)c − 1

2
∆ψab −

1

4
gabD

cDdψcd.

Remark 3.3. ● A consequence of this proposition is that equation (3.2) is integrable pro-
vided that

R(h)ab = 0.
● In terms of spinors, the operator Rab reads

Rab =RABCD = − i

2
√
2
G4.
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The spinorial equivalent of this sequence is the following elliptic complex

S2
Ö2
Ð→ S4

G4
Ð→ S4

â4

Ð→ S2. (3.3)

We now state, using the fundamental operators Ö2s−2, G2s and â2s, a generalization of the
elliptic complexes (3.1) and (3.3) for arbitrary spin:

Lemma 3.4. The sequence

S2s−2 Ö2s−2
Ð→ S2s

G2s
Ð→ S2s

â2s
Ð→ S2s−2,

is an elliptic complex.

Proof. In view of Proposition A.3, the sequence is a differential complex. It is therefore enough
to check that the symbol sequence is exact, i.e. for x ∈ R3,

T ⋆xS2s−2
σx(Ö2s−2)
Ð→ T ⋆x S2s

σx(G2s)
Ð→ T ⋆xS2s

σx(â2s)
Ð→ T ⋆xS2s−2

This follows from the vanishing properties stated in Proposition A.3 and the expression of
powers of the Laplacian in these operators, i.e. (2.1a) and (2.1b).

As we are working only with constant coefficient operators, we use σ(⋅) for the symbols in
the rest of the proof in order to avoid clutter. We first notice that the relation â2sG2s = 0
(Proposition A.3) implies:

im(σ(G2s)) ⊂ ker(σ(â2s)).
Similarly, the relations G2sÖ2s−2 = 0 implies:

im(σ(Ö2s−2)) ⊂ ker(σ(G2s))
We then notice that the symbol of the Laplacian ∆k

2s is an invertible symbol which is in the
center of the algebra of symbols since its expression is

σ(∆k
2s) = r2kI.

Furthermore, using the relations stated in Lemma A.4, we have

(∆s
2sφ)A1...A2s

= (Ö2s−2F2s−2â2sφ)A1...A2s
− (−2)1−s(G2sÁ2sφ)A1...A2s

for s ∈ Z, (3.4)

(∆s− 1

2

2s+1φ)A1...A2s+1
= (Ö2s−2F2s−2â2sφ)A1...A2s

+ (−2)− 1

2
−s(G2sφ)A1...A2s

for s ∈ 1
2
+ Z.

Assume now that the spin is an integer. The proof in the case when the spin is a half integer
is left to the reader (the proof is almost identical). Let Y be an element of ker(σ(â2s)). Using
formula (3.4), we get:

Y = σ(∆s
2s)−1σ(∆s

2s)Y
= σ(∆s

2s)−1 (σ(Ö2s−2)σ(F2s−2)σ(â2s) − (−2)1−sσ(G2s)σ(Á2s))Y
= −(−2)1−sσ(∆s

2s)−1σ(G2s)σ(Á2s)Y
Since G2s and Á2s commute according to Lemma A.1 and since the symbol of the Laplacian
commutes with all other symbols, we consequently get

Y = −(−2)1−sσ(G2s)σ(∆s
2s)−1σ(Á2s)Y,

that is to say that Y belongs to the image of σ(G2s). If we now assume that Y is in ker(σ(G2s)).
Using formula (3.4), we get

Y = σ(∆s
2s)−1σ(∆s

2s)Y
= σ(∆s

2s)−1 (σ(Ö2s−2)σ(F2s−2)σ(â2s) − (−2)1−sσ(G2s)σ(Á2s))Y.
Since G2s and Á2s commute (Lemma A.1) and since the symbol of the Laplacian commutes with
all other symbols, we get

Y = σ(Ö2s−2)σ(∆s
2s)−1σ(F2s−2)σ(â2s),

that is to say that Y belongs to the image of σ(Ö2s−2). �
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Using the ellipticity of the sequence, it is finally possible to prove the existence of solutions
of equations involving G2s and Ö2s. This theorem is a direct consequence of [33, Theorem 1.4]:

Proposition 3.5. For x in R
3, there exists an open neighborhood U of x such that the sequence

A(U,S2s−2) Ö2s−2
Ð→ A(U,S2s) G2sÐ→ A(U,S2s) â2s

Ð→ A(U,S2s−2),
is exact, where A(U,E) denotes the set of real analytic functions from U into E.

Remark 3.6. We in fact only need this result in the context of polynomials: the problem will
be to solve, for any real number δ:

Ö2s−2φ = ψ when ψ ∈ P<δ2s
and

G2sξ = ζ when ζ ∈ P<δ2s .
Theorem 3.5 ensures the local existence of solutions to these equations provided that:

G2sψ = 0 and â2sζ = 0.
By integration, these solutions are necessarily polynomials.

Proof. The proof of Theorem 3.5 is a direct consequence of the fact that the fundamental
operators Ö2s−2, G2s and â2s are operators with constant coefficients, which consist only of
higher order homogeneous terms. As a consequence, these operators are all sufficiently regular
in the terminology of [33] (since they have constant coefficients, cf. [33, Remark 1.16]) and
formally integrable (since they have only homogeneous terms of the highest possible order, cf.
[33, Remark 1.21]). Theorem 3.5 is then a direct consequence of [33, Theorem 1.4]. �

4. Construction of potentials

Consider a free massless spin-s field φA...F , i.e. a symmetric valence 2s spinor field on Min-
kowski space that solves

∇AA′φA...F = 0. (4.1)

In this section we investigate which spin-s fields can be represented by a potential of the form

φA...F = ∇AA′⋯∇FF ′χ̃A′...F ′, (4.2)

where ◻ χ̃A′...F ′ = 0, (4.3)

and at the same time estimate appropriate weighted Sobolev norms of χ̃A
′...F ′ in terms of

Sobolev norms of φA...F . To achieve this, a 3+1 splitting with respect to the surfaces t = const.
is performed and the standard elliptic theory is used to obtain the estimates (see for instance
[29, 36], where the standard analytic integration procedure is used).

4.1. Space spinor splitting. Now, we make a 3+1 splitting of the potential equation (4.2).

Let τAA′ = √2∇AA′t, which is covariantly constant. The operator DAB = τ(AA′∇B)A′ is valid
everywhere and it coincides with the intrinsic derivative on the slices t = const.. We therefore
can consider it as an operator both on the spacetime and on a slice. Also all other operators
defined for fields on R

3 extend in this way to operators on fields on Minkowski space. With this
view, we have the decomposition τB

A′∇AA′ =DAB + 1√
2
ǫAB∂t. Define

χA...F ≡ τAA′⋯τFF ′χ̃A′...F ′.
The equations (4.1) and (4.3) can be re-expressed as

∂tφA⋯F =√2DH(AφB...F )H =√2(Á2sφ)A⋯F , (4.4)

(â2sφ)C⋯F = 0 when s ≥ 1, (4.5)

∂t∂tχA⋯F = −∆2sχA⋯F . (4.6)
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For the spin 1

2
case, we immediately get

φA = (Á1χ)A + 1√
2
∂tχA = (G1Á1χ)A + 1√

2
(G1∂tχ)A.

This simple pattern in fact generalizes to arbitrary spin:

Proposition 4.1. The equation (4.2) together with (4.6) implies

φA1...A2s
= (G2sÁ2sχ)A1...A2s

+ 1√
2
(G2s∂tχ)A1...A2s

.

Remark 4.2. The property âkGk = 0 of the operators directly gives that the constraint (â2sφ)C⋯F =
0 is automatically satisfied for s ≥ 1.
Proof. See Proposition A.2 in the appendix for a proof. �

4.2. Uniqueness of solutions of the Cauchy problem for the massless free fields. A
key point which will be used later to prove the existence of a representation is the uniqueness
of the Cauchy problem for first order hyperbolic systems. For such a result, the reader can
refer either to [23] or [9, Appendix 4]. That the massless spin-s field equation has a first order
symmetric hyperbolic formulation follows immediately from Equation (4.4) and Lemma 2.12.

{ ∇AA′φA...F = 0,
φA...F ∣t=0 = ϕA...F . (4.7)

It is important to note that the initial datum ϕA...F for such a Cauchy problem has to satisfy a
geometric constraint (which will be in the sequel referred to as the constraint equation for the
initial datum) given by:

DABϕABC...F = (â2sϕ)C...F = 0 (4.8)

A key ingredient of the work is the uniqueness of the solution of the Cauchy problem (4.7):

Lemma 4.3. Consider a spinor field ϕA...F in L2

loc
(S2s). Then the Cauchy problem (4.7) admits

at most one solution.

Proof. This lemma is a direct consequence of the energy estimate. �

Remark 4.4. This lemma does not state existence of solutions to the Cauchy problem for
the massless free fields with initial datum in weighted Sobolev spaces. However, one can use the
representation theorem 4.9 to obtain existence of solutions of this Cauchy problem from standard
existence theorems for solutions of the wave equation with initial data in weighted Sobolev spaces.

As explained in the introduction, one of the purposes of the paper, and a key point to obtain
a decay result for massless fields, is to construct a Hertz potential χA

′...F ′ for the solution of the
Cauchy problem (4.7) such as

φA...F = ∇AA′⋯∇FF ′χ̃A′...F ′, (4.9)

where the potential χ̃A
′...F ′ satisfies the wave equation

◻χ̃A′...F ′ = 0.
The construction of the potential χ̃A

′...F ′ has to be made compatible with the standard decay
result for the solution of the wave equation and the easiest way to do so is to consider a Cauchy
problem of the potential itself. The problem is then consequently reduced to construct a set of
initial data for a Cauchy problem satisfied by the potential. This initial data for the Cauchy
problem for the Hertz potential have to be obtained from the initial datum of corresponding
massless field. This is done as follows.

It must now be noticed that, if the initial datum ϕA...F is a space spinor, the initial data
for a Cauchy problem for χ̃A

′...F ′ will have primed indices and will consequently not be space
spinors. This is why the spinor field χA...F , with lowered unprimed indices is introduced:

χ̃A
′...F ′ = τAA′⋯τFF ′χA...F

12



so that the initial data for χA...F are now space spinors and can be directly related, through
purely spatial operations, to the initial datum ϕA...F . Consider the Cauchy problem for the
wave equation: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

◻χA...F = 0,
χA...F ∣t=0 = ξA...F ,
∂tχA...F ∣t=0 =√2ζA...F ,

(4.10)

The construction of a potential can then be reduced to the construction of solutions to the
following equation relating the initial datum for the massless field and the initial data for the
potential:

Lemma 4.5. Let j ≥ 2 be an integer and ϕA...F be a spinor field in H
j
δ
(S2s) satisfying the

constraint equation DABϕA...F = 0.
Assume that there exist two spinor fields ξA...F ∈Hj+2s

δ+2s(S2s) and ζA...F ∈Hj+2s−1
δ+2s−1(S2s) satisfying

ϕA...F = (G2sÁ2sξ)A...F + (G2sζ)A...F .
Then the only solution to the Cauchy problem (4.7) for massless free fields is given by

φA...F = ∇AA′⋯∇FF ′χ̃A′...F ′,
where χ̃A

′...F ′ is obtained through the Cauchy problem (4.10) for χA...F with the initial data(ξA...F , ζA...F ).
Proof. Let

φ̃A...F = ∇AA′⋯∇FF ′χ̃A′...F ′.
It is a simple calculation to check that φ̃A...F satisfies the massless field equation of spin s (see

[29], for instance). Furthermore, the restriction of φA...F and φ̃A...F agree on {t = 0} and are

equal to ϕA...F which lies in Hj
δ
(S2s) and consequently in L2

δ(S2s). Using the uniqueness stated
in Lemma 4.3, we can conclude that both agree. �

4.3. Solving the constraints. In this subsection, we will investigate for which initial data we
can solve (4.5). We immediately see that ϕA...F has to be in the image of G2s. Therefore, we
can without loss of generality choose ξA...F = 0.

The main difficulty now is to obtain an estimate

∥ζA...F ∥j+2s−1,δ+2s−1 ≤ C∥ϕA...F ∥j,δ.
With an estimate like this, ∥ϕA...F ∥j,δ controls the initial data for χA...F which we evolve through
(4.10). This can be reduced to the standard scalar wave equation, for which we get decay
estimates. These decay estimates for the potential are then translated back to decay estimates
for the field φA...F .

For s = 1

2
, we immediately get the desired result by setting ζA = ϕA. For higher spin, we need

to make a more careful analysis.
We begin with a small lemma

Lemma 4.6. Assume that ϕA...F ∈ Hj
δ
(S2s) satisfies the constraint DABϕA...F = 0, and that

ηC...F ∈H1−2−δ(S2s−2). Then ϕA...F is L2 orthogonal to D(ABηC...F ) = (Ö2s−2η)A...F .
Proof. Let us now consider the 2-sphere S

2
r centered in the origin and of radius r and B

2
r the

corresponding ball and proceed with integration by parts as follows:

∫
B2
r

ϕA...F
̂D(ABηC...F )dµR3 = −∫

S2r

ϕA...Fn
AB η̂C...FdµS2r −∫

B2
r

DABϕA...F η̂
C...FdµS2r ,

where nAB is the outward pointing normal to the sphere S
2
r. The volume integral is vanishing

since ϕA...F satisfies the constraint equation. Due to Proposition 2.8, the boundary integral
behaves like:

∣∫
S2r

ϕA...Fn
AB η̂C...FdµS2r ∣ ≤ Cǫ(r)rδr−2−δr2 Ð→ 0 as r →∞

where ǫ(r) goes to zero as r grows to ∞. Hence, ϕA...F is L2 orthogonal to D(ABηC...F ). �
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4.3.1. The spin 1 case.

Proposition 4.7. Let δ be in R∖Z, j a positive integer, ϕAB in Hj
δ
(S2) such that DABϕAB = 0.

If δ < −4, we furthermore assume that ϕAB is L2-orthogonal to the space E1,δ, defined by;

E1,δ ≡ ((ker∆2) ∖ (ker Á2)) ∩L2−3−δ(S2).
Then there exist a spinor field ζAB ∈ Hj+1

δ+1(S2) and a constant C depending only on δ and j

such that

ϕAB = (G2ζ)AB,
∥ζAB∥j+1,δ+1 ≤ C∥ϕAB∥j,δ.

Proof. First we establish that ϕAB is orthogonal to ker∆2 ∩L2−3−δ(S2) by using the constraint
equation and the orthogonality to E1,δ.

For δ > −4, the set E1,s is empty because ker∆2 ∩ L2−3−δ(S2) only contains constant spinors
times polynomials with degree < −3 − δ < 1, i.e of maximal degree 0. They are therefore in the
kernel of the homogeneous first order operator Á2.

The set ker∆2 ∩ L2−3−δ(S2) is trivial if δ > −3; we consequently assume that δ < −3. Let

θAB be in ker∆2 ∩ ker Á2 ∩ L2−3−δ(S2). The field θAB is then in P<−3−δ2 and therefore smooth.
Furthermore it is curl-free (i.e. in ker Á2). Using the exact sequence (3.1):

S0
Ö0
Ð→ S2

Á2
Ð→ S2,

it can therefore be written as a gradient DABη = (Ö0η)AB = θAB.
Since θAB belongs to P<−3−δ

0
⊂ L2−3−δ(S2), η can be assumed to belong to P<−2−δ

2
⊂H1−2−δ(S2).

Then, by Lemma 4.6, ϕAB is L2-orthogonal to θAB .
Now, since ϕAB is orthogonal to E1,δ, we have that ϕAB is orthogonal to ker∆2 ∩L2−3−δ(S2).

The Laplacian ∆2 ∶ Hj+2
δ+2(S2)→ H

j
δ
(S2) is formally self-adjoint and has closed range and finite

dimensional kernel – see [8, 27, 24] for details. By Fredholm’s alternative there exists a θ̃AB ∈
H
j+2
δ+2(S2) such that ϕAB = (∆2θ̃)AB . The closed range gives an estimate (using Proposition 2.9):

min
ΥAB∈ker∆2∩Hj+2

δ+2
(S2)
∥θ̃AB +ΥAB∥j+2,δ+2 ≤ C∥ϕAB∥j,δ.

Now let θAB = θ̃AB +ΥAB achieving this minimum for a specific ΥAB. Hence, there exists a
constant C depending only on j and δ such that:

∥θAB∥j+2,δ+2 ≤ C∥ϕAB∥j,δ.
Now, we can re-express the Laplacian ∆2 as

ϕAB = (∆2θ)AB = −2(Á2Á2θ)AB + (Ö0â2θ)AB.
We know want to show that (Ö0â2θ)AB vanishes (for δ < 0) or can be shown to be in the image
of Á2 (for δ > 0).

By the constraint equation and commutations of the divergence and the Laplace operator,
we have:

0 = (â2ϕ) =DABϕAB =DAB (∆θAB) =∆ (DABϕAB) = (∆0â2θ).
Hence, (â2θ) ∈ ker∆0 ∩L2

δ+1(S0).
If δ < 0, we know that ker∆0 ∩ L2

δ+1(S0) only contains polynomials with degree < 1, i.e.
constants, which means that they are in the kernel of the gradient operator Ö0. Hence,

ϕAB = −2(Á2Á2θ)AB = −(G2Á2θ)AB
and we can therefore choose ζAB = −(Á2θ)AB, and we get

∥ζAB∥j+1,δ+1 ≤ ∥θAB∥j+2,δ+2 ≤ C∥ϕAB∥j,δ.
14



If δ > 0, we need to be more careful. Let Ω ≡ ker∆0 ∩ L2

δ+1(S0), i.e. the set of harmonic

polynomials with degree strictly smaller than δ + 1. Ö0(Ω) ⊂ L2

δ(S2) is also a finite dimensional
space of smooth fields. Since â2Ö0 =∆0, we have the following:

Ω ⊂ ker (∆0) ⊂ S0 Ö0
// Ö0 (∆0) ⊂ S2 â2

// {0} ⊂ S2

(Á2)−1 (Ö0 (ker (∆0))) ⊂ S2
Á2

OO

Using the integrability condition stated by the exact sequence (3.1), and more specifically by:

S2
Á2

Ð→ S2
â2

Ð→ S0,

we can define an a priori non unique linear mapping T ∶ Ö0(Ω)→ S2, such that T Á2 acts as the

identity on Ö0 (Ω). As a linear operator from the finite dimensional space Ö0(Ω) ⊂ Hj
δ
(S2) into

H
j+2
δ+2(S2) (endowed with their respective induced Sobolev norms), T is bounded and, therefore,

there exists a constant C, depending on the choice of the mapping T , such that

∥(T Ö0â2θ)AB∥j+1,δ+1 ≤ C∥(Ö0â2θ)AB∥j,δ,
(Á2T Ö0â2θ)AB = (Ö0â2θ)AB .

Now, let

ζAB = −(Á2θ)AB + (T Ö0â2θ)AB.
This gives the desired relations:

(G2ζ)AB = 2(Á2ζ)AB = −2(Á2Á2θ)AB + 2(Ö0â4θ)AB = ϕAB ,
∥ζAB∥j+1,δ+1 ≤ ∥θAB∥j+2,δ+2 +C∥(Öâ2θ)AB∥j,δ ≤ C∥ϕAB∥j,δ.

�

4.3.2. The spin s case.

Proposition 4.8. Let δ be in R∖Z, j a positive integer, ϕA...F in Hj
δ
(S2s) such that DABϕA...F =

0. Let m = ⌊s⌋, i.e. the largest integer such that m ≤ s. If δ < −2s − 2 we furthermore assume
that ϕA...F is L2-orthogonal to the space Es,δ, defined by;

Es,δ ≡ ((ker∆m
2s) ∖ (kerG2s)) ∩L2−3−δ(S2s).

Then there exist a spinor field ζA...F ∈Hj+2s−1
δ+2s−1(S2s) and a constant C depending only on δ and

j such that

ϕA...F = (G2sζ)A...F ,
∥ζA...F ∥j+2s−1,δ+2s−1 ≤ C∥ϕA...F ∥j,δ.

Proof. First we establish that ϕA...F is orthogonal to ker∆m
2s∩L2−3−δ(S2s) by using the constraint

equation and the orthogonality to Es,δ.

For δ > −2s − 2, the set Es,δ is empty because ker∆m
2s ∩ L2−3−δ(S2s) only contains fields in

P<−3−δ
2s ⊂ P<2s−1

2s , i.e. constant spinors times polynomials with maximal degree 2s − 2. They are
therefore in the kernel of the homogeneous 2s − 1 order operator G2s.

The set ker∆m
2s ∩ L2−3−δ(S2s) is trivial if δ > −3, so we assume that δ < −3. Let θA...F be in

ker∆m
2s ∩ kerG2s ∩ L2−3−δ(S2s) be arbitrary. We know that ker∆m

2s ∩ L2−3−δ(S2s) only contains

fields in P<−3−δ2s . Theorem 3.5 (followed by Remark 3.6) states that the sequence

P
−2−δ
2s−2

Ö2s−2
Ð→ P

−3−δ
2s

G2s
Ð→ P

−2s−2−δ
2s

is exact; as a consequence, there exists a spinor field ηC...F ∈ P−2−δ2s−2 such that

D(ABηC...F ) = (Ö2s−2η)A...F = θA...F .
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Since ηC...F belongs to P<−2−δ2s−2 , it is therefore in H1−2−δ(S2s−2). Then, by Lemma 4.6, ϕA...F is
orthogonal to θA...F .

Now, because ϕA...F is also orthogonal to Es,δ we have that ϕA...F is orthogonal to ker∆m
2s ∩

L2−3−δ(S2s). The operator ∆m
2s ∶ Hj+2m

δ+2m(S2s) → H
j
δ
(S2s) is formally self-adjoint and has closed

range and finite dimensional kernel – see [8, 27, 24] for details. By the Fredholm alternative,

there exists a θ̃A...F ∈ Hj+2m
δ+2m(S2s) such that ϕA...F = (∆m

2sθ̃)A...F . The closed range gives an
estimate (Proposition 2.9)

min
ΥA...F ∈ker∆m

2s
∩Hj+2m

δ+2m
(S2s)

∥θ̃A...F +ΥA...F ∥j+2m,δ+2m ≤ C∥ϕA...F ∥j,δ.
Now, let θA...F = θ̃A...F +ΥA...F achieving this minimum for a specific ΥA...F . Hence, there exists
a constant C, depending only on s, j and δ such that

∥θA...F ∥j+2m,δ+2m ≤ C∥ϕA...F ∥j,δ.
For integer spin we can express the ∆m

2s operator as

(∆m
2sθ)A...F = (Ö2s−2F2s−2â2sθ)A...F − (−2)1−m(G2sÁ2sθ)A...F .

For half integer spin we can express the ∆m
2s operator as 2s = 2m + 1

(∆m
2sθ)A...F = (Ö2s−2F2s−2â2sθ)A...F + (−2)−m(G2sθ)A...F .

We know want to show that (Ö2s−2F2s−2â2sθ)A...F vanishes (for δ < 0) or is in the image of
G2s (for δ > 0).

By the constraint equation and the commutation of the divergence and the Laplace operator,
we have

0 = (â2sϕ)C...F =DABϕA...F =DAB (∆m
2sθA...F ) =∆m

2s−2 (DABϕA...F ) = (∆m
2s−2â2sθ)C...F .

Hence, (â2sθ)C...F is in ker∆m
2s−2 ∩L2

δ+2m−1(S2s−2).
If δ < 0, we know that fields in ker∆m

2s−2 ∩L2

δ+2m−1(S2) are in P<2m−12 , i. e. they are spanned
by constant spinors times polynomials with maximal degree 2m − 2. They therefore belongs to
the kernel of the homogeneous order 2m−1 operator Ö2s−2F2s−2. Hence, (Ö2s−2F2s−2â2sθ)A...F = 0
and we get

ϕA...F = −(−2)1−m(G2sÁ2sθ)A...F ,
for integer spin, and

ϕA...F = (−2)−m(G2sθ)A...F ,
for half integer spin. For integer spin we can therefore choose ζA...F = −(−2)1−m(Á2sθ)A...F , and
we get

∥ζA...F ∥j+2s−1,δ+2s−1 ≤ ∥θA...F ∥j+2m,δ+2m ≤ C∥ϕA...F ∥j,δ.
For half integer spin we can choose ζA...F = (−2)−mθA...F , and we get

∥ζA...F ∥j+2s−1,δ+2s−1 = (−2)−m∥θA...F ∥j+2m,δ+2m ≤ C∥ϕA...F ∥j,δ.
If δ > 0, we need to be more careful. Let Ω ≡ ker(∆m

2s−2)∩ im(â2s)∩L2

δ+2m−1(S2s−2). We know
that it is a finite dimensional space of polynomial fields. Ö2s−2F2s−2(Ω) ⊂ L2

δ(S2s) is therefore

also a finite dimensional space in P<δ2s .
We notice then the following formula holds: since â2sG2s = 0 (cf. Proposition A.3), using the

expression of the powers of the Laplacian given in Lemma A.4, we get:

∆m
2s−2â2s = â2s∆

m
2s = â2sÖ2s−2F2s−2â2s.

As consequence, on Ω ⊂ im(â2s), the following relation holds:

â2sÖ2s−2F2s−2∣
Ω
=∆m

2s∣Ω = 0.
16



The relations between the considered operators can be summarized by:

Ω ⊂ ker (∆m
2s−2) ⊂ S2s−2 Ö2s−2F2s−2

// Ö2s−2F2s−2 (Ω) ⊂ S2s â2s
// {0} ⊂ S2s−2

(G2s)−1 (Ö2s−2F2s−2 (Ω)) ⊂ S2s
G2s

OO

Using the integrability condition stated by the exact sequence stated in Theorem 3.5 applied
to polynomials (cf. Remark 3.6), and more specifically using the following part of the exact
sequence coming from

S2s
G2s
Ð→ S2s

â2s
Ð→ S2s−2,

we can define an a priori non unique linear mapping T ∶ Ö2s−2F2s−2 (Ω) → S2s such that G2sT
is the identity operator on Ö2s−2F2s−2(Ω). As a linear operator on the finite dimensional space

Ö2s−2F2s−2(Ω) ⊂ Hj
δ
(S2s) into H

j+2s−1
δ+2s−1(S2s) (endowed with their respective induced Sobolev

norms), T is bounded and, therefore, there exists a constant C, depending on the choice of the
operator T , such that

∥(T Ö2s−2F2s−2â2sθ)A...F ∥j+2s−1,δ+2s−1 ≤ C∥(Ö2s−2F2s−2â2sθ)A...F ∥j,δ,
(G2sT Ö2s−2F2s−2â2sθ)A...F = (Ö2s−2F2s−2â2sθ)A...F .

Now, for integer spin we can therefore choose

ζA...F = (T Ö2s−2F2s−2â2sθ)A...F − (−2)1−m(Á2sθ)A...F .
This gives the desired relations:

(G2sζ)A...F = (Ö2s−2F2s−2â2sθ)A...F − (−2)1−m(G2sÁ2sθ)A...F
= (∆m

2sθ)A...F = ϕA...F ,
∥ζA...F ∥j+2s−1,δ+2s−1 ≤ C(∥θABCD∥j+2m,δ+2m + ∥(Ö2s−2F2s−2â2sθ)ABCD∥j,δ)

≤ C∥ϕABCD∥j,δ.
Now, for half integer spin we can choose

ζA...F = (T Ö2s−2F2s−2â2sθ)A...F + (−2)−mθA...F .
This gives the desired relations:

(G2sζ)A...F = (Ö2s−2F2s−2â2sθ)A...F (−2)−m(G2sθ)A...F
= (∆m

2sθ)A...F = ϕA...F ,
∥ζA...F ∥j+2s−1,δ+2s−1 ≤ C(∥θABCD∥j+2m,δ+2m + ∥(Ö2s−2F2s−2â2sθ)ABCD∥j,δ)

≤ C∥ϕABCD∥j,δ.
�

4.4. The representation theorem. This section aims at making a synthetic presentation of
the representation theorem of massless fields of arbitrary spin. We would especially like to
emphasize the fact that the discussion in the main result arises on the decay properties of the
initial datum for the Cauchy problem for the massless fields.

Theorem 4.9. Let s be in 1

2
N, δ be in R ∖ Z and j ≥ 2 an integer. We consider ϕA...F in

H
j
δ
(S2s) satisfying the constraint equation DABϕA...F = 0.

We furthermore assume that, for δ < −2s−2, ϕA...F is orthogonal to the finite dimensional spaces

(ker(∆⌊s⌋
2s ) ∖ ker(G2s)) ∩L2−3−δ(S2s).

Then there exists a spinor field ζA...F , solution of the equation:

ϕA...F = (G2sζ)A...F
17



satisfying the estimates: ∥ζA...F ∥j+2s−1,δ+2s−1 ≤ C∥ϕA...F ∥j,δ.
such that the unique solution of the Cauchy problem for massless fields (4.7) with the initial
datum ϕA...F is given by:

φA...F = ∇AA′ . . .∇FF ′χ̃A′...F ′ .
where the spinor field χA...F , defined by:

χA...F = τAA′⋯τFF ′χ̃A′...F ′
satisfies the Cauchy problem (4.10) for the wave equation with initial data (0, ζA...F ).
Remark 4.10. An important remark is that, for the weight considered in [10, 32] (δ = −5

2
for

spin 1 and δ = −7

2
for spin 2, respectively), all the fields can be represented by a Hertz potential.

Proof. The proof of this theorem is a direct consequence of Lemma 4.5, of Propositions 4.7 and
4.8. �

5. Estimates for solutions of the scalar wave equation with initial data with

arbitrary weight

This section contains the complementary results for the study of the decay of the solution of
the wave equation in the exterior using representation formulae for the Cauchy problem such
as the one stated in [19, 20] or in [2, 12] and the standard result of decay of weighted Sobolev
spaces given in Proposition 2.8.

In the following, one considers the Cauchy problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
◻φ = 0
φ∣t=0 = f ∈Hj

δ
(R3,C)

∂tφ∣t=0 = g ∈Hj−1
δ−1(R3,C).

(5.1)

The following representation formula then holds ([13] on flat space-time or [15, theorem 5.3.3]
for arbitrary curved background):

Lemma 5.1. The solution of the Cauchy problem 5.1 is given by the representation formula:

φ(t, x) = 1

4π
(∫

S2
t (g(x + tω) + ∂ωf(x + tω)) + f(x + tω)dµS2)

where S
2 is the unit 2-sphere and ∂ω has to be understood as being the derivation in the unit

outer normal direction ω.

The use of the representation formula stated in Lemma 5.1 and of Proposition 2.8 gives the
following result for solutions of the wave equation:

Proposition 5.2. Let j ≥ 3 and δ in R ∖ Z. Then the solution φ of the Cauchy problem (5.1)
decays as follows, in the exterior region, i.e. in the region t

3
≤ r ≤ 3t:

∣φ(t, x)∣ ≤ C (∥f∥3,δ + ∥g∥2,δ−1)
⎧⎪⎪⎨⎪⎪⎩
<v>−1<u>1+δ if δ < −1
<v>δ if δ > −1.

If, furthermore, (k, l,m) is a triplet of non-negative integers, j ≥ 3 + k + l +m, the following
pointwise inequality holds:

● if 1 + δ − k < 0, then:
∥∂ku∂lv /∇mφ∥ ≤ C<u>1+δ−k<v>−1−l−m (∥f∥3+k+l+m,δ + ∥g∥2+k+l+m,δ−1)

● if 1 + δ − k > 0, then:
∥∂ku∂lv /∇mφ∥ ≤ C<v>δ−l−m−k (∣∣f ∣∣3+k+l+m,δ + ∣∣g∣∣2+k+l+m,δ−1)

where ∂u = 1

2
(∂t−∂r) and ∂v = 1

2
(∂t+∂r) are respectively the outgoing and ingoing null directions.
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Remark 5.3. It must be noticed that these estimates are sharp: it suffices to take as a set of
initial data the smooth spherically symmetric functions:

f(r,ω) = <r>δ and g(r,ω) = <r>δ−1.
These functions will give rise to a solution of the wave equation which can be expressed directly
in terms of the hypergeometric function used in the proof and which is the sharpest upper bound
for the decay of the solution of the wave equation.

For the proof we will need some integral estimates.

Lemma 5.4. For any δ in R ∖ Z, we have the following integral estimates

∫
S2
<∣x + tω∣δ>dµS2 ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(<u>2 + <v>2) δ2 for δ > −1
C<u>δ+1<v>−1 ( <v>2

<u>2 + <v>2)
1+ δ

2

for δ < −1,
where C only depends on δ.

Remark 5.5. It has been assumed that δ does not belong to Z, for technical reasons. For the
weight δ = −1, we expect logarithmic terms.

Proof. Let (t, x) be fixed and consider the sphere S(x, t) of center x and of radius t. Let q be
a point of the sphere S(x, t). The coordinates of q is then given by (θ,φ) defined by:

● in the 2-plane containing the origin o, the point x and q, θ is the oriented angle:

θ = (x⃗q, o⃗q) ∈ (0, π);
● in the plane orthogonal to o⃗x and passing through x, one chooses a direction of origin.
The direction of the orthogonal projection of x⃗q on this plane is labeled by an angle φ
belonging to (0,2π).

The integral can now be rewritten as

∫
S2
<∣x + tω∣δ>dµS2 = ∫ π

0
∫ 2π

0

(1 + r2 + t2 − 2tr cos θ) δ2 sin2 φdθdφ
= π

2 ∫
π

0

(1 + r2 + t2 − 2tr cos θ) δ2dθ.
This integral can be re-expressed using the hypergeometric function:

∫
S2
<∣x + tω∣δ>dµS2 = π2(1 + r2 + t2) δ2 2F1 (2 − δ

4
,−δ

4
,1,

4r2t2

(1 + r2 + t2)2)
or, using the variables u and v:

∫
S2
<∣x + tω∣δ>dµS2 = 2− δ

2π2(<u>2 + <v>2) δ2 2F1 (2 − δ
4

,−δ
4
,1,1 − 4<u>2<v>2

(<u>2 + <v>2)2)
The hypergeometric function 2F1(a, b, c, z) is defined as:

2F1(a, b, c, z) = Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a + n)Γ(b + n)
Γ(c + n)

zn

n!
.

Γ being the Γ Euler function. We refer to [1, Section 15.1.1] for properties of this hypergeometric
function. The radius of convergence of the series is equal to 1 and the convergence is absolute
on the closed disc if

R(c − a − b) > 0.
For R(c) >R(b) > 0, the following integral representation holds

2F1(a, b; c, z) = Γ(c)
Γ(b)Γ(c − b) ∫

1

0

tb−1(1 − t)c−b−1(1 − tz)−adt,
Two cases are now distinguished: δ > −1 and δ < −1.
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For δ > −1, we immediately have, using the convergence properties on the boundary on the
disc of convergence.

∫
S2
<∣x + tω∣δ>dµS2 ≤ C(<u>2 + <v>2) δ2 ,

where the constant C is given by:

C = 2− δ
2π2

∞∑
n=0

RRRRRRRRRRR
Γ (2−δ

4
+ n)Γ (− δ

4
+ n)

Γ (2−δ
4
)Γ (− δ

4
)n!(n + 1)!

RRRRRRRRRRR
For δ < −1, the linear transformation [1, Equation 15.3.3] can be used:

2F1 (2 − δ
4

,−δ
4
,1,1 − 4<u>2<v>2

(<u>2 + <v>2)2) =

( 4<u>2<v>2
(<u>2 + <v>2)2)

δ+1
2

2F1 (2 + δ
4

,
4 + δ
4

,1,1 − 4<u>2<v>2
(<u>2 + <v>2)2)

The later considered hypergeometric function satisfies the absolute convergence criterium on
the unit disc so that:

∫
S2
<∣x + tω∣δ>dµS2 ≤ C<u>δ+1<v>−1 ( <v>2

<u>2 + <v>2)
1+ δ

2

,

where the constant is, this time, given by:

C = 21+ δ
2π2

∞∑
n=0

RRRRRRRRRRR
Γ (2+δ

4
+ n)Γ (−4+δ

4
+ n)

Γ (2+δ
4
)Γ (− δ

4
)n!(n + 1)!

RRRRRRRRRRR .
�

Remark 5.6. It is interesting to remark that the these inequalities actually provides us with
global inequalities for the decay of the wave equation, that is to say an inequality valid both on
the exterior and the interior regions.

Proof of Proposition 5.2. Using Proposition 2.8, one knows that if f ∈ Hj
δ
, g ∈ Hj−1

δ−1 , j ≥ 2 + n
and j ≥ 3 +m, there is constant C such that:

∣Dnf(y)∣ ≤ C<y>δ−n∥f∥2+n,δ
∣Dmg(y)∣ ≤ C<y>δ−1−m∥g∥2+m,δ−1.

Using the representation formula 5.1, one gets immediately:

∣φ(t, x)∣ ≤ C (∥f∥3,δ + ∥g∥2,δ−1)∫
S2
(<∣x + tω∣>δ + t<∣x + tω∣>δ−1)dµS2 .

We can use the estimate t ≤ (<u>2 + <v>2)1/2 and Lemma 5.4 to obtain global estimates for
solutions of the wave equation.

In the exterior region, where the value of ∣<u>/<v>∣ is bounded, this simplifies to the following
asymptotic behavior for the solution φ: there exists a constant C depending on δ and the Sobolev
embeddings constants such that, in the exterior region:

∣φ(t, x)∣ ≤ C (∥f∥3,δ + ∥g∥2,δ−1)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
<u>1+δ
<v> for δ < −1
<v>δ for δ > −1 (5.2)
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The same process can be applied to the derivatives of φ in the direction of u and v. The
integral representations of the derivatives are then

∂vφ(t, x) = 1

8π ∫S2 (t (∂rg(x + tω) + ∂ωg(x + tω)) + g(x + tω)
+t (∂r∂ωf(x + tω) + ∂2ωf(x + tω)) + ∂rf(x + tω) + ∂ωf(x + tω))dµS2 ,

∂uφ(t, x) = 1

8π ∫S2 (t (−∂rg(x + tω) + ∂ωg(x + tω)) + g(x + tω)
+t (−∂r∂ωf(x + tω) + ∂2ωf(x + tω)) − ∂rf(x + tω) + ∂ωf(x + tω))dµS2 .

Using Sobolev embeddings, one gets immediately:

∣∂vφ(t, x)∣ ≤ C (∥f∥4,δ + ∥g∥3,δ−1)∫
S2
(<∣x + tω∣>δ−1 + t<∣x + tω∣>δ−2)dµS2 ,

∣∂uφ(t, x)∣ ≤ C (∥f∥4,δ + ∥g∥3,δ−1)∫
S2
(<∣x + tω∣>δ−1 + t<∣x + tω∣>δ−2)dµS2 .

Again using Lemma 5.4, we get in the exterior region, for δ < 0:
∣∂vφ(t, x)∣ ≤ C

<u>δ
<v> (∥f∥4,δ + ∥g∥3,δ−1) (5.3)

∣∂uφ(t, x)∣ ≤ C
<u>δ
<v> (∥f∥4,δ + ∥g∥3,δ−1) (5.4)

and for δ > 0:
∣∂vφ(t, x)∣ ≤ C<v>δ−1 (∥f∥4,δ + ∥g∥3,δ−1) (5.5)

∣∂uφ(t, x)∣ ≤ C<v>δ−1 (∥f∥4,δ + ∥g∥3,δ−1) . (5.6)

Using these decay results, one can now refine the decay result for the derivatives of the func-
tion u, using the commutators properties of the wave equation with the vector fields generating
the symmetries of the metric. Introducing:

K = u∂u + v∂v which satisfies [K,◻] = −4◻,
the function K ⋅ φ satisfies Cauchy problem for the linear wave equation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
◻ (K ⋅ φ) = 0
Kφ∣t=0 ∈Hj−1

δ
(R3)

∂tKφ∣t=0 ∈Hj−2
δ−1(R3).

As a consequence, one can apply the decay result (5.2), (5.3) and (5.5) to K ⋅ φ. This gives:
∣K ⋅ φ(t, x)∣ ≤ C (∥f∥4,δ + ∥g∥3,δ−1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(<u>δ+1<v> ) if δ < −1
<v>δ if δ > −1

This consequently gives the following decay for the partial derivatives ∂uφ and ∂vφ, using the
decay result for these derivatives (5.3):

∣∂vφ(t, x)∣ ≤ C (∥f∥4,δ + ∥g∥3,δ−1)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(<u>δ+1<v>2 ) if δ < −1
<v>δ−1 if δ > −1.

Finally to obtain the decay result for the derivatives, the commutating properties of ◻ with
the generators of SO(3):

xi∂j − xj∂i
can then be used to obtain:

∣ /∇φ∣ ≤ C (∥f∥4,δ + ∥g∥3,δ−1)<u>δ+1<v>−2 if δ < −1
and ∣ /∇φ∣ ≤ C (∥f∥4,δ + ∥g∥3,δ−1)<v>δ−1 if δ > −1
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Remark 5.7. (1) It is important to notice at this stage that the different derivatives ∂u and
∂v, /∇ play different roles when considering the full scale of weights. This difference is
at the origin of the failing of the peeling for higher spin fields when the decay at i0 of
the initial data is too low.

(2) This difference between the derivatives can be explained by considering the derivatives
of the fundamental solution of the wave equation.

The result is finally completed by a recursion which is not written there, in the exterior
region, where the value of ∣<u>/<v>∣ is bounded, by the following discussion on δ:

● if 1 + δ − k < 0, then:
∣∂ku∂lv /∇mφ∣ ≤ C<u>1+δ−k<v>−1−l−m (∥f∥3+k+l+m,δ + ∥g∥2+k+l+m,δ−1)

● if 1 + δ − k > 0, then:
∣∂ku∂lv /∇mφ∣ ≤ C<v>δ−k−l−m (∥f∥3+k+l+m,δ + ∥g∥2+k+l+m,δ−1)

�

6. Estimates for spinor fields represented by potentials

Penrose, in his original paper on zero-rest mass fields [29], proved to the following two results:

● the existence for analytic massless fields of arbitrary spin of representation of the form:

φA...F = ξA′1 . . . ξF
′

2s∇AA′ . . .∇FF ′χ,
where the ξA

′

are constant spinors and χ is a complex function satisfying satisfying the
wave equation: ◻χ = 0.
● from a decay ansatz for χ along outgoing null light rays, he deduced the full peeling
result for the considered field.

The purpose of this section is to give an equivalent result for massless field admitting a potential
of the form considered by Penrose. The decay result for the solution of the wave equation which
is used in this section is given by Proposition 5.2.

6.1. Geometric background and preliminary lemmata. The geometric framework and
notations are introduced in this section. The geometric background is the Minkowski space-
time. We consider on this space time the normalized null tetrad defined by:

la =√2∂v = 1√
2
( ∂
∂t
+ ∂
∂r
) ma = 1√

2
( ∂
∂θ
+ i

sinθ
∂
∂ϕ
)

na =√2∂u = 1√
2
( ∂
∂t
− ∂
∂r
) ma = 1√

2
( ∂
∂θ
− i

sinθ
∂
∂ϕ
)

so that we have:
span (la, na) orthogonal to span (ma,ma)
lan

a = 1 and mam
a = −1.

The derivatives in the directions la, na,ma,ma are denoted by D,D′, δ, δ′ respectively. Consider
finally a spin basis (oA, ιA) arising from this tetrad, i.e;

la = oAoA′ ma = oAιA′
na = ιAιA′ ma = ιAoA′

This basis satisfies:

DoA = 0 DιA = 0
D′oA = 0 D′ιA = 0
δoA = cot θ

2r
√
2
oA διA = cot θ

2r
√
2
ιA − 1

r
√
2
oA

δ′oA = − cot θ

2r
√
2
oA + ιA

r
√
2

δ′ιA = cot θ

2r
√
2
ιA

(6.1)

As a consequence of this the following commutators relations hold:

Lemma 6.1 (Commutators). The following commutator relations hold:
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● D and D′ commute.● consider the gradient /∇ on the sphere of radius r:

/∇f = 1

r
(∂f
∂θ

∂

∂θ
+ 1

sin θ

∂f

∂ϕ

∂

∂ϕ
)

then, for any positive integer m:

/∇mD = D /∇m + m
r
/∇m

/∇mD′ = D′ /∇m + m
r
/∇m

Proof. The proof essentially relies on a direct calculation of the first order commutator and an
induction. �

Remark 6.2. Note that the following property holds:

/∇f = 1√
2
(R(δf) ∂

∂θ
+ I(δf) ∂

∂ϕ
)

= e−iπ4 δf ∂
∂θ
+ eiπ4 δ′f ∂

∂ϕ
. (6.2)

A final result deals with the asymptotic behaviour of the coefficients in the decomposition of
a constant spinor over the spin basis (oA, ιA):
Lemma 6.3 (Asymptotic behaviour of the decomposition of a constant spinor). Let ξA be a
constant spinor over M and consider its decomposition over the basis (oA, ιA):

ξA = αoA + βιA.
Then, for any integer n, ∇nα and ∇nβ are smooth bounded functions on M/{R × B(0,1)}.
Furthermore, considering the derivatives in the null directions, the following estimates hold for
θ ∈ [c, π − c] (c > 0):

Dα =D′α = 0 , Dβ =D′β = 0∣δnα∣ ≤ C
rn

, ∣δnβ∣ ≤ C
rn∣δ′nα∣ ≤ C

rn
, ∣δ′nβ∣ ≤ C

rn

Proof. To prove that α and β are bounded functions, it suffices to consider the decomposition
of the real vector field ξAξA

′

in Cartesian coordinates. The time component of the vector field
is ∣α2∣ + ∣β∣2 and it is constant. As a consequence, α and β are smooth bounded functions.

The second step consists in calculating the derivatives of the components in ξA. Since oA

and ιA are constant along outgoing and ingoing null rays, the following identities hold:

Dα =D′β =Dα =D′β = 0.
For the angular derivatives, we have:

(δα + α cot θ

2r
√
2
− β

r
√
2
)oA + (δβ + β cot θ

2r
√
2
) ιA = 0

(δ′α − α cot θ

2r
√
2
)oA + (δ′β + β cot θ

2r
√
2
− α

r
√
2
) ιA = 0

An immediate induction using these recursive relations gives the desired results. �

6.2. Proof of the decay result. We consider in this section a spin-s field represented as:

φA...F = ξM ′

1 . . . ξN
′

2s ∇AM ′ . . .∇FN ′χ, (6.3)

where χ is a complex scalar Hertz potential satisfying the wave equation:

◻χ = 0
and ξM

′

1
, . . . , ξN

′

2s are constants spinors.
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The purpose of this section is to give a result which is similar to the one obtained for the
wave (or 0-spin) equation in order to retrieve similar decay estimates as in the pioneering work
of Christodoulou-Klainerman [10].

Proposition 6.4 (Decay estimates for arbitrary spin). Let (k, l,m) be a triplet of non-negative
integers and denote by n their sum. We assume that the Hertz potential is a solution of the
Cauchy problem, for j ≥ 2 + 2s + n and δ ∉ Z

⎧⎪⎪⎪⎨⎪⎪⎪⎩
◻χ = 0
χ∣t=0 ∈Hj

δ
(R3,C)

∂tχ∣t=0 ∈Hj−1
δ−1(R3,C)

The norm of the initial conditions is denoted by Iδ,j:

Iδ,j = ∥χ∣t=0∥δ,j + ∥∂tχ∣t=0∥δ−1,j−1
Then, the following inequalities hold, for all i in {0,2s}:

(1) for any t ≥ 0, x ∈ R3, such that t > 3r, that is to say in the interior region,

∣∇nφA...F ∣ ≤ c<t>δ−2s−nIδ,n+2s+2.
(2) for i such that 1 + δ − k − i < 0, for any t ≥ 0, x ∈ R3, such that 3r > t > r

3
, that is to say

in the exterior region,

∣DkD′l /∇mφi∣ ≤ c<u>δ+1−i−l
<v>1+2s−i+k+m Iδ,n+2s+2;

(3) for i such that 1 + δ − k − i > 0, for any t ≥ 0, x ∈ R3, such that 3r > t > r
3
, that is to say

in the exterior region,

∣DkD′l /∇mφi∣ ≤ c<v>δ−2s−l−k−mIδ,n+2s+2.
Remark 6.5. ● The symbol /∇ denotes the gradient to the sphere of radius r. As a conse-

quence the rescaled operator 1

r
/∇ which is the gradient on the unit sphere is independent

of r.● For the spin 1 and δ = −1

2
, that is to say for initial data for the Maxwell fields lying in

H− 5

2

, which is the case considered in [10], one recovers the decay result stated in this

paper. For the spin 2 and for δ = 1

2
, that is to say for initial data in H− 7

2

, which is the

case considered by Christodoulou-Klainerman, their results are recovered.● It must be noticed that in the case when the potential does not decay enough (for δ >−2s − 2), the decay of some components of the field cannot distinguished: the peeling
fails.● The case of integer weights can also be handled similarly, provided that the corresponding
decay results for the solution of the wave equation are made available; to avoid a too
complicated result, this question has been put aside.● The peeling result obtained by Penrose [29] was relying on the assumption that the Hertz
potential, solution of the wave equation, was decaying as χ ∼ 1

r
where r is a parameter

along the outgoing null rays. For such a decay result to hold, the initial data for the
potential have to lie in Hδ with δ < −1. The peeling result by Mason-Nicolas [26], which
holds for the spins 1/2 and 1 on the Schwarzschild space-time, is for initial data lying
in a Sobolev space whose weights are not equally distributed on the components.

Proof. The proof is made by induction on the spin. The result for the spin 0 is exactly the one
obtained for the wave equation. The induction does consequently not need to be induced.

We now assume the following induction hypothesis for spin s: assume that any triplet (k, l,m)
(n = k + l +m), and for any s-spinor field represented in the following way:

ψ A...F±
2s indices

= ξA′1 . . . ξF
′

2s∇AA′ . . .∇FF ′χ
24



where χ is a potential whose initial data lie in H
j
δ
(R3,C) ×Hj−1

δ−1(R3,C) (j > 1 + 2s + n), the
decay results stated in the theorem are true.

Let now (k, l,m) be a triplet of non-negative integers and consider a s + 1

2
-spin field written

in the following way

φ A...FG²
2s+1 indices

= ξA′1 . . . ξG
′

2s+1∇AA′ . . .∇GG′χ
where χ is a potential whose initial data are in H

j
δ
(R3,C) × Hj−1

δ−1(R3,C) (p > 2 + 2s + n).
Consequently, the 2s-spin field

ψ B...G±
2s indices

= ξB′2 . . . ξG
′

2s+1∇BN ′ . . .∇GG′χ
with χ whose initial data lies in H

p
δ
(R3) × Hp−1

δ+1 (R3) (p > 1 + 2s + n) satisfies the induction
hypothesis. It remains then to prove that

φA...G = ξA′∇AA′ψB...G
satisfies the appropriate decay result.

We first start by the interior decay. The result trivially follows from the interior decay result
for the wave equation. As a consequence, the following relation holds:

∣∇nφA...G∣ = ∣ξA′∇AA′ (∇nψB...G) ∣
which is a derivation of order M + 1 of a spin field of valence s which satisfies the induction
assumptions. As consequence, the following decay result is immediate, in the interior region
3t ≤ r:

∣∇nφA...F ∣ ≤ C Iδ,n+2s+3
<t>−δ+2s+n+1 ,

where C is a constant depending on M and the spin s. This closes the induction for the part
concerning the interior decay.

We consider now the problem of the exterior decay, that is to say the decay in the neighbour-
hood of an outgoing light cone:

r

3
≤ t ≤ 3r⇔ ∣t − r∣ ≤ 1

2
∣t + r∣ . (6.4)

Recall that the definition of the component of the spinor ψB...F are defined by:

ψi = ιB . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i

oD . . . oF´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s−i

ψB...F .

The proof is this region in done by induction as in the first part of the proof. Let (k, l,m) be a
given triplet of non negative integers and denote by n their sum. The induction hypothesis is
written as follows for spin s:

For any s-spinor field ψB...G satisfying:

ψB...G = ηB′ . . . ζG′∇BB′ . . .∇GG′χ
where χ is a complex scalar solution of the massless wave equation whose initial

data lies in Hj
δ
(R3,C) ×Hj−1

δ+1(R3,C) (j > 1 + 2s +n), the following decay results

holds, in the exterior region t
3
≤ r ≤ 3t, for all integer k, l,m:● for i such that 1 + δ − k − i < 0:

∣DkD′l /∇mψi∣ ≤ c<u>δ+1−i−l
<v>1+2s−i+k+m Iδ,n+2s+2.● for i such that 1 + δ − k − i > 0:

∣DkD′l /∇mψi∣ ≤ C<v>δ−2s−l−k−mIδ,n+2s+2,
where the constant C depends on the bounds of the exterior domain and
the integers k, l,m.
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There is no need to prove the initial step since it is exactly the result for the standard wave
equation. Assume that the induction hypothesis holds for spin s in 1

2
N and consider the field

φA...G of spin s + 1

2
written as:

φA...G = ξA′ηB′ . . . ζG′∇AA′ . . .∇GG′χ
where χ is a complex scalar solution of the massless wave equation whose initial data lies in

H
j
δ
(R3,C) ×Hj−1

δ+1(R3,C) (j > 2 + 2s + n). As a consequence, the spinor:

ψB...G = ηB′ . . . ζG′∇BB′ . . .∇GG′χ
is a s-spinor field satisfying the requirements of the induction assumption.

To insure the proof of the induction assumption, a relation between the components of φA...F
and the components of the field ψB...G have to established; these relations are given in the
following lemma:

Lemma 6.6. The following relations between the components of ψ (of spin s + 1/2) and φ (of
spin s, s being in 1

2
N) hold:

φ0 = αDψ0 + βδψ0 − sβ cot θ
r
√
2
ψ0 (6.5)

φi = αδ′ψi−1 + βD′ψi−1
+α(s + 1 − i)cot θ

r
√
2
ψi−1 − (2s + 1 − i)α

r
√
2

ψi (6.6)

for i > 0.
Proof. The proof is realized using relations (6.1) and is a basic calculation.

φ0 = oA . . . oFφA...F

= oA . . . oF ηA
′∇AA′ψBḞ

= αoB . . . oFDψB...F + βoB . . . oF δψB...F
Since DoA = 0 and δoA = cot θ

2r
√
2
oA, we have:

oB . . . oF δψB...F = δψ0 − 2s cot θ
2r
√
2
ψ0.

and, consequently:

φ0 = αDψ0 + βδψ0 − sβ cot θ
r
√
2
ψ0.

Consider now i > 0 fixed; we have:

φi = ιA . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i times

oD . . . ιF´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s+1−i

φA...F

= α ιB . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i−1

oD . . . ιF´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s+1−i

δ′ψB...F + β ιB . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i−1

oD . . . ιF´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s+1−i

D′ψB...F

Since D′ιA =D′oA = 0, δ′oA = − cot θ

2r
√
2
oA + ιA

r
√
2
and δ′ιA = cot θ

2r
√
2
ιA we have:

ιB . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
i−1

oD . . . ιF´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s+1−i

δ′ψB...F = δ′ψi−1 − (i − 1) cot θ
2r
√
2
ιB . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

i−1
oD . . . ιF´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s+1−i

ψB...F

−(2s + 1 − i)⎛⎜⎝−
cot θ

2r
√
2
ιB . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

i−1
oD . . . ιF´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s+1−i

ψB...F + 1

r
√
2
ιB . . . ιC´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

i

oD . . . ιF´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s−i

ψB...F
⎞⎟⎠ .

Consequently,

φi = αδ′ψi−1 + βD′ψi−1 + α(s + 1 − i)cot θ
r
√
2
ψi−1 − (2s + 1 − i)α

r
√
2

ψi.

26



�

Using Lemma 6.6, the two cases (i = 0 and i > 0) are treated separately although the method
is the same. Here we present the case i = 0, the other case follows similarly.

The expression of the derivative DkD′l /∇φ0 is calculated explicitly, one derivative at a time,
using the Leibniz rule:

/∇mφ0 = m∑
a=0
( a
m
) /∇aα /∇m−aDψ0 + m∑

a=0
( a
m
) /∇aβ /∇m−aδψ0

−2s ∑
a+b+c=m

m!

a!b!c!
(∂bθ (cot θ)
2
√
2rb+1 ) /∇

a
β∂bθ /∇cψ0

since

/∇b cot θ = 1

rb
∂b cot θ

∂θb
∂bθ,

the power on the vector field have to be understood as a symmetric tensor exponent.
We then apply simultaneously the derivatives D and D′, using the Leibniz rule again. Notice

first that /∇aα and /∇aβ depend on r but ra /∇aα and ra /∇aβ do not, since both α and β are
independent both of time and radius. We have

DkD′l /∇mφ0 =
k∑
d=0

l∑
e=0

m∑
a=0
[(d
k
)(e
l
)( a
m
)(ra /∇aα) ((−1)dAd+ea+d+e)]{D

k−dD′l−e /∇m−aDψ0

ra+d+e }
+ k∑
d=0

l∑
e=0

m∑
a=0
[(d
k
)(e
l
)( a
m
)(ra /∇aβ) ((−1)dAd+ea+d+e)]{D

k−dD′l−e /∇m−aδψ0

ra+d+e }
+2s k∑

d=0
l∑
e=0

∑
a+b+c=m

[(d
k
)(e
l
)m!∂bθ (cot θ)

2
√
2a!b!c!

(ra /∇aβ) ((−1)dAd+e1+a+d+e)]
×{Dk−dD′l−e /∇cψ0

r1+a+b+d+e }
The factors in the brackets are clearly bounded provided that θ lies in [c, π − c] for a given
(arbitrarily small) positive constant c. There exists consequently a constant C depending on the

spin, the constant c, L∞ bounds on the coefficients of the spinor field ξA
′

and their derivatives,
such that:

∣DkD′l /∇mφ0∣ ≤ C ( k∑
d=0

l∑
e=0

m∑
a=0
∣Dk−dD′l−e /∇m−aDψ0

ra+d+e ∣
+ k∑
d=0

l∑
e=0

m∑
a=0
∣Dk−dD′l−e /∇m−aδψ0

ra+d+e ∣ + k∑
d=0

l∑
e=0

∑
a+b+c=m

∣Dk−dD′l−e /∇cψ0

r1+a+b+d+e ∣) (6.7)

Each of these terms is treated separately.
The first term can be transformed to fit the induction hypothesis using lemma 6.1:

Dk−dD′l−e /∇m−aDψ0 =Dk−d+1D′l−e /∇m−aψ0 +Dk−dD′l−e (m − a
r
/∇m−aψ0)

=Dk−d+1D′l−e /∇m−aψ0

+ k−d∑
f=0

l−e∑
g=0
( f

k − d)(
g

l − e)
(−1)f(m − a)(k − d + l − e)!

r1+f+g Dk−d−fD′l−e−g /∇m−aψ0.

In order to use the decay result stated in the induction hypothesis, the number of derivatives
in the ingoing direction has to be taken into account:

a) if 1 + δ − k < 0, then:
∣DkD′l /∇mψ0∣ ≤ C<u>1+δ−k<v>−1−2s−l−mIn+2s+2
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b) if 1 + δ − k > 0, then:
∣DkD′l /∇mψ0∣ ≤ C<v>δ−2s−k−l−mIn+2s+2

In order to simplify the presentation of the proof, we deal specifically with the sum:

A = k∑
d=0

l∑
e=0

m∑
a=0
∣Dk−d+1D′l−e /∇m−aψ0

ra+d+e ∣
Assume first that 1 + δ − k < 0.

For this case the sum a priori contains terms of both type a and type b. We therefore split
up the sum over d into two parts corresponding to the different types. Let d′ be the largest
integer such that d′ ≤ k + 1 and δ − k + d′ − 1 < 0. This means that if 0 ≤ d ≤ d′ − 1 we have
1 + δ − (k − d + 1) < 0 and if d′ ≤ d ≤ k we have 1 + δ − (k − d + 1) > 0. Using the induction
hypothesis, the sum A can then be bounded as follows: there exists a constant C such that:

A ≤ C l∑
e=0

m∑
a=0

Iδ,n+2s+2
ra+e ⋅ ( d

′−1∑
d=0

<u>1+δ−(k−d+1)
<v>1+2s+l−e+m−ard +

k∑
d=d′
<v>δ−2s−k+d−1−l+e−m+a

rd
)

≤ C <u>1+δ−kIδ,n+2s+2<v>2s+2+l+m ( l∑
e=0

m∑
a=0
(<v>
r
)a+e)

× ⎛⎝
d′−1∑
d=0
(<u><v>)

d+1 (<v>
r
)d + k∑

d=d′
(<u><v>)

−(1+δ−k) (<v>
r
)d⎞⎠

Since the considered region is the exterior region, that is to say the region defined by:

t

3
≤ r ≤ 3t,

the following inequalities hold (assuming also r > 1, which is not restrictive, when studying the
asymptotic behaviour): <v>

r
≤√17 and

<u>
<v> ≤

√
10.

As a consequence, there exists a constant C depending only on the considered region and of the
number of derivatives such that:

A ≤ C<u>1+δ−k<v>−1−2s−1−l−mIδ,n+2s+3.
In the case when 1 + δ − k > 0, all the indices 1 + δ − k + d are a fortiori positive and, as a

consequence, the induction hypothesis gives immediately: there exists a constant C depending
on the number of derivative and on the bounds of the derivatives of α and β such that:

A ≤ C<v>δ−2s−1−k−l−mIδ,n+2s+3
k∑
d=0

l∑
e=0

m∑
a=0
(<v>
r
)a+e+d .

There exists consequently, as previously, a constant C depending on the number of derivatives
such that:

A ≤ C<v>δ−2s−1−k−l−mIδ,n+2s+3.
The other terms in (6.7) can be studied in a similar way and details are left to the reader.

Collecting all the inequalities obtained for these derivatives, one gets that there exists a constant
C, depending only on the Sobolev embeddings and the number of derivatives such that:

∣DkD′l /∇mφ0∣ ≤ CIδ,n+2s+3 { <u>1+δ−k<v>−1−2s−1−l−m if 1 + δ − k < 0
<v>−2s−1−k−l−m if 1 + δ − k > 0

The other components ψi of the field can be studied in a similar way. The discussion will
this time occur on the sign of 1 + δ − k − i. These complementary computations are left to the
reader.

Hence, we have proved that the induction hypothesis holds also for s + 1

2
. We can therefore

conclude that it holds for all s ∈ 1

2
N. �
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7. Main result

This section contains the main result of the paper, which consists in, for arbitrary spin, in a
decay result for solutions of the Cauchy problem with initial data in weighted Sobolev spaces.
This result extends the result contained in [10] for the fixed weight δ = −s − 3

2
(for spin-s fields

with s = 1,2) and clarifies the fact that the peeling fails for the fastly decaying components of
the field. Furthermore, through Theorem 4.9, it establishes a full correspondence between the
decay result of the wave equation and the peeling result for the higher spin fields.

The notations adopted in the formulation of the main theorem is consistent with the ones
which are adopted in Section 6.1.

Theorem 7.1. Let s be in 1

2
N, δ in R/Z, j ≥ 2 an integer and consider the Cauchy problem for

the massless free fields of spin s

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇AA′φA...F = 0
φA...F ∣t=0 = ϕA...F ∈Hj

δ
(S2s)

DABϕA...F = 0.
One assumes that, for δ < −2s−2, the initial datum is orthogonal to the finite dimensional space
Es,δ.

One finally considers three nonnegative integers k, l,m whose sum is denoted by n ≤ j.
The following inequalities hold, for all i in {0, . . . ,2s}: there exists a constant c depending

only on a choice of a constant dyad and of k, l,m such that:

(1) for any t ≥ 0, x ∈ R3 such that t > 3r, that is to say, in the interior region,

∣∇nφA...F ∣ ≤ c<t>δ−n∥ϕA...F ∥δ,2+n;
(2) for i such that 1 + 2s + δ − k − i < 0, for any t ≥ 0, x ∈ R3, such that 3r > t > r

3
, that is to

say in the exterior region,

∣DkD′l /∇mφi∣ ≤ c<u>δ+1+2s−i−l<v>1+2s−i+k+m ∥ϕA...F ∥δ,2+n;
(3) for i such that 1 + 2s + δ − k − i > 0, for any t ≥ 0, x ∈ R3, such that 3r > t > r

3
, that is to

say in the exterior region,

∣DkD′l /∇mφi∣ ≤ c<v>δ−n∥ϕA...F ∥δ,2+n.
A specific case, stated as a corollary, due to its importance, is the following:

Corollary 7.2. If we assume that

● for spin 1, δ > −4 and δ ∉ Z;● for spin 2, δ > −6 and δ ∉ Z.
Then the decay result stated in Theorem 7.1 holds without restrictions on the initial data.

Remark 7.3. If δ < −2s − 2, we can of course embed ϕA...F in H
j−2s−2+ǫ which would give a

weaker decay result, but without any orthogonality condition.

Proof. Let s and δ be such as in the theorem and consider ϕA...F a initial datum in H
j
δ
(S2s)

satisfying the constraints equation:
DABϕA...F = 0.

The initial datum ϕA...F satisfies the assumptions stated in Theorem 4.9, so that there exists a
potential χ̃A

′...F ′ of order 2s such that the solution of the Cauchy problem with initial datum
ϕA...F is given by:

φA...F = ∇AA′ . . .∇FF ′χ̃A′...F ′
and χA...F = τAA′ . . . τFF ′χ̃A′...F ′ satisfies the Cauchy problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
◻χA...F = 0
χA...F ∣t=0 ∈Hj+2s

δ+2s(S2s)
∂tχA...F ∣t=0 ∈Hj+2s−1

δ+2s−1(S2s).
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Furthermore, the norm of the potential is controlled by the norm of the initial data:

∥χA...F ∥n+2s,δ+2s ≤ c∥ϕA...F ∥n,δ.
A constant dyad (eA0 , eA1 ) on the Minkowski space is chosen. The components of the field

χA...F are then of the form:

χξ1A . . . ξ
2s
F ,

where the constant spinor ξiA (for i ∈ {1, . . . ,2s}) belongs to {e0A, e1A} and χ is complex function
satisfying a Cauchy problem of the form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
◻χ = 0
χ∣t=0 ∈Hj+2s

δ+2s(R3,C)
∂tχ∣t=0 ∈Hj+2s−1

δ+2s−1(R3,C).
Proposition 6.4 can then be used, on each of the components of the field. All these components

decay exactly in the same way and, consequently, the field φA...F decays exactly as the field
under consideration in Proposition 6.4. �

Acknowledgments. We thank Dietrich Häfner, Jean-Philippe Nicolas and Lionel Mason for
helpful discussions.

Appendix A. Algebraic properties of the fundamental operators

To prove Proposition 4.1, we need the following relation:

Lemma A.1. The operators Gk and Ák commute and we have

(GkÁkφ)A1...Ak
= (ÁkGkφ)A1...Ak

=
⌊k
2
⌋
∑
n=0
( k
2n
)(−2)−nD(A1

B1⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n

(∆n
kφ)Ak−2n+1...Ak)B1...Bk−2n

.

Proof. We begin by proving that (GkÁkφ)A1...Ak
has the desired form. By partially expanding

the symmetry of the Ák operator we get

D(A1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kÁkφ)Ak−2n...Ak)B1...Bk−2n−1

= 2n + 1
k

D(A1

B1⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n

(∆n
kφ)Ak−2n+1...Ak)B1...Bk−2n

+ k − 2n − 1
k

D(A1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

D∣Bk−2n−1 ∣Bk−2n(∆n
kφ)Ak−2n...Ak)B1...Bk−2n

= 2n + 1
k

D(A1

B1⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n

(∆n
kφ)Ak−2n+1...Ak)B1...Bk−2n

− k − 2n − 1
2k

D(A1

B1⋯DAk−2n−2

Bk−2n−2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−2

(∆n+1
k φ)Ak−2n−1 ...Ak)B1...Bk−2n−2

.
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Where we used DA
CDBC = −1

2
ǫAB∆ in the last step. We therefore get:

(GkÁkφ)A1...Ak

=
⌊k−1

2
⌋

∑
n=0
(k − 1

2n
)(−2)−nD(A1

B1⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n

(∆n
kφ)Ak−2n+1 ...Ak)B1...Bk−2n

+
⌊k−1

2
⌋

∑
n=0
( k − 1
2n + 1)(−2)1−nD(A1

B1⋯DAk−2n−2

Bk−2n−2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−2

(∆n+1
k φ)Ak−2n−1 ...Ak)B1...Bk−2n−2

=
⌊k−1

2
⌋

∑
n=0
(k − 1

2n
)(−2)−nD(A1

B1⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n

(∆n
kφ)Ak−2n+1 ...Ak)B1...Bk−2n

+
⌊k+1

2
⌋

∑
n=1
( k − 1
2n − 1)(−2)−nD(A1

B1⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n

(∆n
kφ)Ak−2n+1 ...Ak)B1...Bk−2n

. (A.1)

Where we just changed n → n − 1 in the last sum. The Pascal triangle gives the algebraic
identity:

⌊k−1
2
⌋

∑
n=0
(k − 1

2n
)Ak−nBn +

⌊k+1
2
⌋

∑
n=1
( k − 1
2n − 1)Ak−nBn =

⌊k
2
⌋
∑
n=0
( k
2n
)Ak−nBn,

which in turn gives the desired form for (GkÁkφ)A1...Ak
. To handle (ÁkGkφ)A1...Ak

we partially
expand the symmetry in the following expression:

DA1

C D(A2

B2⋯DAk−2nBk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kφ)Ak−2n+1...AkC)B2...Bk−2n

= k − 2n − 1
k

DA1

CDC
B2 D(A2

B3⋯DAk−2n−1Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−2

(∆n
kφ)Ak−2n...Ak)B2...Bk−2n

+ 2n + 1
k

DA1

CD(A2

B2⋯DAk−2nBk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kφ)Ak−2n+1 ...Ak)CB2...Bk−2n

= − k − 2n − 1
2k

D(A2

B3⋯DAk−2n−1Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−2

(∆n+1
k φ)Ak−2n...Ak)A1B3...Bk−2n

+ 2n + 1
k

DA1

B1 D(A2

B2⋯DAk−2nBk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kφ)Ak−2n+1 ...Ak)B1...Bk−2n

.

Where we in the last step again used DA
CDBC = −1

2
ǫAB∆. Using this in the definition of Gk

yields:

DA1

C(Gkφ)CA2...Ak

=
⌊k−1

2
⌋

∑
n=0
( k − 1
2n + 1)(−2)1−nD(A2

B3⋯DAk−2n−1

Bk−2n−2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−2

(∆n+1
k φ)Ak−2n...Ak)A1B3...Bk−2n

+
⌊k−1

2
⌋

∑
n=0
(k − 1

2n
)(−2)1−nDA1

B1 D(A2

B2⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kφ)Ak−2n+1...Ak)B1...Bk−2n

.
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After symmetrization we get that (ÁkGkφ)A1...Ak
has an expansion identical to the one in the

first equation in (A.1). This gives the desired result. �

Proposition A.2. The equation (4.2) together with (4.6) implies

φA1...A2s
= (G2sÁ2sχ)A1...A2s

+ 1√
2
(G2s∂tχ)A1...A2s

.

Proof. Using τB
A′∇AA′ = DAB + 1√

2
ǫAB∂t we can express the express the potential equation in

terms of DAB and ∂t.

φA1...A2s
= ∇A1A

′

1
⋯∇A2sA

′

2s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s

χ̃A
′

1
...A′

2s = τB1A
′

1∇A1A
′

1
⋯τB2sA

′

2s∇A2sA
′

2s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s

χB1...B2s

= (DA1

B1 + 1√
2
ǫA1

B1∂t)⋯(DA2s

B2s + 1√
2
ǫA2s

B2s∂t)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s

χB1...B2s

= 2s∑
n=0
(2s
n
)2−n/2D(A1

B1⋯DA2s−n

B2s−n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s−n

∂nt χA2s−n+1...A2s)B1...B2s−n
.

We can now use (4.6) to elliminate all higher order time derivatives.

φA1...A2s

=
⌊s⌋∑
n=0
(2s
2n
)2−nD(A1

B1⋯DA2s−2n

B2s−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s−2n

∂2nt χA2s−2n+1 ...A2s)B1...B2s−2n

+
⌊s−1

2
⌋

∑
n=0
( 2s

2n + 1)2−n−1/2D(A1

B1⋯DA2s−2n−1

B2s−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s−2n−1

∂2n+1t χA2s−2n...A2s)B1...B2s−2n−1

=
⌊s⌋∑
n=0
(2s
2n
)(−2)−nD(A1

B1⋯DA2s−2n

B2s−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s−2n

(∆n
2sχ)A2s−2n+1 ...A2s)B1...B2s−2n

+ 1√
2

⌊s−1
2
⌋

∑
n=0
( 2s

2n + 1)(−2)−nD(A1

B1⋯DA2s−2n−1

B2s−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s−2n−1

(∆n
2s∂tχ)A2s−2n...A2s)B1...B2s−2n−1

= (G2sÁ2sχ)A1...A2s
+ 1√

2
(G2s∂tχ)A1...A2s

.

In the last step we used the definition of G2s and lemma A.1. In fact we have defined Gk to
match the ∂t part of this expression. �

Proposition A.3. For k ≥ 2, the operators Gk have the properties âkGk = 0 and GkÖk−2 = 0.
Proof. First we prove that âkGk = 0. By partially expanding the symmetrization in the definition
of Gk and restricting the summation to non-vanishing terms we get

(Gkφ)A1...Ak

=
⌊k−3

2
⌋

∑
n=0
( k − 2
2n + 1)(−2)−nDA1

B1DA2

B2 D(A3

B3⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−3

(∆n
kφ)Ak−2n...Ak)B1...Bk−2n−1

+
⌊k−1

2
⌋

∑
n=0
(k − 2

2n
)(−2)−nDA1

B2 D(A3

B3⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−2

(∆n
kφ)Ak−2n+1 ...Ak)A2B2...Bk−2n
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+
⌊k−1

2
⌋

∑
n=0
(k − 2

2n
)(−2)−nDA2

B2 D(A3

B3⋯DAk−2n

Bk−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−2

(∆n
kφ)Ak−2n+1 ...Ak)A1B2...Bk−2n

+
⌊k−1

2
⌋

∑
n=1
( k − 2
2n − 1)(−2)−nD(A3

B3⋯DAk−2n+1

Bk−2n+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kφ)Ak−2n+2 ...Ak)A1A2B3...Bk−2n+1

.

Using DA
CDBC = −1

2
ǫAB∆ we get DA1A2DA1

B1DA2

B2 = 1

2
DB1B2∆, DA1(A2DA1

B2) = 0 and

(âkGkφ)A1...Ak

= −
⌊k−3

2
⌋

∑
n=0
( k − 2
2n + 1)(−2)−n−1DB1B2 D(A3

B3⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−3

(∆n+1
k φ)Ak−2n...Ak)B1...Bk−2n−1

+
⌊k−1

2
⌋

∑
n=1
( k − 2
2n − 1)(−2)−nDB1B2 D(A3

B3⋯DAk−2n+1

Bk−2n+1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kφ)Ak−2n+2 ...Ak)B1...Bk−2n+1

.

The the first sum is identical to the second sum after a variable change n→ n−1, hence âkGk = 0.
Now, we turn to the proof of GkÖk−2 = 0. Partial expansion of the symmetrization in the

definition of Ök−2 gives

DB1(A1

⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
kÖk−2φ)Ak−2n...Ak)B1...Bk−2n−1

= (k − 2n − 1)(k − 2n − 2)
k(k − 1) DB1B2

D(A1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
k−2φ)Ak−2n...Ak)B3...Bk−2n−1

+ 2(k − 2n − 1)(2n + 1)
k(k − 1) DB1(Ak

DA1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
k−2φ)Ak−2n...Ak−1)B2...Bk−2n−1

+ 2n(2n + 1)
k(k − 1) D(Ak−1Ak

DA1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
k−2φ)Ak−2n...Ak−2)B1...Bk−2n−1

= (k − 2n − 1)(k − 2n − 2)
2k(k − 1) D(A1A2

DA3

B3⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−3

(∆n+1
k−2φ)Ak−2n...Ak)B3...Bk−2n−1

+ 2n(2n + 1)
k(k − 1) D(Ak−1Ak

DA1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
k−2φ)Ak−2n...Ak−2)B1...Bk−2n−1

.

Where we again used DA1A2DA1

B1DA2

B2 = 1

2
DB1B2∆ and DA1(A2DA1

B2) = 0. We therefore get

(GkÖk−2φ)A1...Ak

= −
⌊k−3

2
⌋

∑
n=0
( k − 2
2n + 1)(−2)1−nD(A1A2

DA3

B3⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−3

(∆n+1
k−2φ)Ak−2n...Ak)B3...Bk−2n−1

+
⌊k−1

2
⌋

∑
n=1
( k − 2
2n − 1)(−2)−nD(Ak−1Ak

DA1

B1⋯DAk−2n−1

Bk−2n−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−2n−1

(∆n
k−2φ)Ak−2n...Ak−2)B1...Bk−2n−1
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The the first sum is identical to the second sum after a variable change n → n − 1, hence
GkÖk−2 = 0. �

To use elliptic theory, we need well behaved elliptic operators. Gk is in general not elliptic
but, through the following lemma, it can related to some power of the Laplacian – which of
course is elliptic.

Lemma A.4. The formulae (2.1b) and (2.1a) hold, that is to say:

(∆k
2kφ)A1...A2k

= (Ö2k−2F2k−2â2kφ)A1...A2k
− (−2)1−k(G2kÁ2kφ)A1...A2k

,

(∆k
2k+1φ)A1...A2k+1

= (Ö2k−1F2k−1â2k+1φ)A1...A2k+1
+ (−2)−k(G2k+1φ)A1...A2k+1

.

Proof. For both formulae, we will use the following help quantity for the spin k + j/2 case:

Ij,km ≡
k−1∑
n=m
( 2k + j
2n + j − 2m)(−2)−nD(A1

B1⋯DA2k−2n

B2k−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−2n

(∆n
2k+jφ)A2k−2n+1 ...A2k+j)B1...B2k−2n

Multiplying DA1

B1DC1

B2φA3...AkC2B2
with ǫA2

C1ǫB1

C2 = ǫA2B1
ǫC1C2 + ǫA2

C2ǫB2

C1 and using

DA
CDBC = −1

2
ǫAB∆, we get

DA1

B1DA2

B2φA3...AkB1B2
= − 1

2
(∆kφ)A1...Ak

+DA1A2
(âkφ)A3...Ak

.

Using this in the definition of Ij,km gives

Ij,km =
k−1∑
n=m
( 2k + j
2n + j − 2m)(−2)−n−1

×D(A1

B1⋯DA2k−2n−2

B2k−2n−2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−2n−2

(∆n+1
2k+jφ)A2k−2n−1 ...A2k+j)B1...B2k−2n−2

+ k−1∑
n=m
( 2k + j
2n + j − 2m)(−2)−n

×D(A1A2
DA3

B3⋯DA2k−2n

B2k−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−2n−2

(â2k+j∆n
2k+jφ)A2k−2n+1 ...A2k+j)B3...B2k−2n

= Ij,km+1 + ( 2k + j
2k + j − 2m)(−2)−k(∆k

2k+jφ)A1...A2k+j
+ k−1∑
n=m
( 2k + j
2n + j − 2m)(−2)−n

×D(A1A2
DA3

B3⋯DA2k−2n

B2k−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−2n−2

(â2k+j∆n
2k+jφ)A2k−2n+1 ...A2k+j)B3...B2k−2n

. (A.2)

Here, we have changed n → n − 1 in the first sum, and identified that as Ij,km+1 plus the term

where n = k, which gives us the ∆k-term. We can easily solve the recursion(A.2) and get

I
j,k
0
= k−1∑
m=0
( 2k + j
2k + j − 2m)(−2)−k(∆k

2k+jφ)A1...A2k+j
+ k−1∑
m=0

k−1∑
n=m
( 2k + j
2n + j − 2m)(−2)−n

×D(A1A2
DA3

B3⋯DA2k−2n

B2k−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−2n−2

(â2k+j∆n
2k+jφ)A2k−2n+1 ...A2k+j)B3...B2k−2n

= k−1∑
m=0
(2k + j

2m
)(−2)−k(∆k

2k+jφ)A1...A2k+j
+ k−1∑
n=0

k−1−n∑
m=0

( 2k + j
2n + 2m + 2)(−2)n+1−k

×D(A1A2
DA3

B3⋯DA2n+2

B2n+2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2n

(∆k−1−n
2k+j−2â2k+jφ)A2n+3...A2k+j)B3...B2n+2

= k−1∑
m=0
(2k + j

2m
)(−2)−k(∆k

2k+jφ)A1...A2k+j
− 2j−1(−2)k(Ö2k+j−2F2k+j−2â2k+jφ)A1...A2k+j

.
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In the second sum we have changed the order of summation followed by the change n→ k−n−1.
For the operators acting on odd number of indices we have

(G2k+1φ)A1...A2k+1

= k∑
n=0
(2k + 1
2n + 1)(−2)−nD(A1

B1⋯DA2k−2n

B2k−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−2n

(∆n
2k+1φ)A2k−2n+1 ...A2k+1)B1...B2k−2n

= I1,k
0
+ (2k + 1

2k + 1)(−2)−k(∆k
2k+1φ)A1...A2k+1

= k∑
m=0
( 2k + 1
2k + 1 − 2m)(−2)−k(∆k

2k+1φ)A1...A2k+1
− (−2)k(Ö2k−1F2k−1â2k+1φ)A1...A2k+1

= (−2)k(∆k
2k+1φ)A1...A2k+1

− (−2)k(Ö2k−1F2k−1â2k+1φ)A1...A2k+1
.

Hence,

(∆k
2k+1φ)A1...A2k+1

= (−2)−k(G2k+1φ)A1...A2k+1
+ (Ö2k−1F2k−1â2k+1φ)A1...A2k+1

.

For the operators acting on even number of indices we can use (A.1) to obtain

(G2kÁ2kφ)A1...A2k

= k∑
n=0
(2k
2n
)(−2)−nD(A1

B1⋯DA2k−2n

B2k−2n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2k−2n

(∆n
2k+1φ)A2k−2n+1 ...A2k)B1...B2k−2n

= I0,k
0
+ (2k

2k
)(−2)−k(∆k

2kφ)A1...A2k

= k∑
m=0
( 2k

2k − 2m)(−2)−k(∆k
2kφ)A1...A2k

+ (−2)k(Ö2k−2F2k−2â2kφ)A1...A2k

= − (−2)k−1(∆k
2kφ)A1...A2k

+ (−2)k−1(Ö2k−2F2k−2â2kφ)A1...A2k
.

Hence,

(∆k
2kφ)A1...A2k

= (Ö2k−2F2k−2â2kφ)A1...A2k
− (−2)1−k(G2kÁ2kφ)A1...A2k

.

�
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