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Abstract

Modelling the Calvin cycle of photosynthesis leads to various systems
of ordinary differential equations and reaction-diffusion equations. They
differ by the choice of chemical substances included in the model, the
choices of stoichiometric coefficients and chemical kinetics and whether
or not diffusion is taken into account. This paper studies the long-time
behaviour of solutions of several of these systems, concentrating on the
ODE case. In some examples it is shown that there exist two positive
stationary solutions. In several cases it is shown that there exist solutions
where the concentrations of all substrates tend to zero at late times and
others (runaway solutions) where the concentrations of all substrates in-
crease without limit. In another case, where the concentration of ATP is
explicitly included, runaway solutions are ruled out.

1 Introduction

Photosynthesis is a process which is of great importance for many reasons. It
is the ultimate source of the food we eat, the oxygen we breath and many
fuels (fossil fuels and biofuels). For this reason it is clear that it would be
valuable to have a better theoretical understanding of this process and one way
of approaching this task is to use mathematical models. The aim of this paper
is to analyse dynamical properties of some of these models.

Photosynthesis can be split into two main parts. In the first part, called the
light reactions, energy is captured from light and the small molecules ATP and
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NADPH are produced. These provide sources of energy and reducing power,
respectively, for the second part, the dark reactions. The name of the latter
comes from the fact that they can take place in the dark. Molecular oxygen is
produced during the first part. In the second part carbon dioxide is used to make
carbohydrates. For this reason this part is also known as carbon fixation. This
paper is exclusively concerned with models for the second part of photosynthesis.

The models which are relevant describe reactions between different chemical
substances and also, in some cases, diffusion of these chemicals. The resulting
mathematical model is a system of ordinary differential equations (ODE) if
diffusion is not included and a system of reaction-diffusion equations if it is.
The models studied in what follows are either taken from the papers [9] or [22]
or are closely related to the models in those papers. In all these cases the network
of reactions modelled contains a cycle and due to the fundamental contributions
of Melvin Calvin to identifying the reactions concerned this is often referred to
as the Calvin cycle (see for instance [1]).

In building a model it is necessary to decide which substances are to be
included. The basic unknowns are the concentrations of these substances. It
is also necessary to decide how the chemical reactions are to be modelled. In
most of this paper diffusion is ignored and only a few remarks are made on what
happens when it is included. In the absence of diffusion the equations are of the
general form

ẋi = fi(x). (1.1)

Here xi are the concentrations, which are functions of time, and the dot denotes
the time derivative. The solutions of relevance for the applications are those
for which all xi are positive. In other words the point with coordinates xi(t)
is always in the positive orthant S of Rn. The mapping f with components fi
represents the interaction between the different substances during the reactions.
It is of the form Nv(x) where N is a matrix called the stoichiometric matrix and
the components vα of v are the rates of the different reactions. The vα describe
what is called the kinetics. The function fi is of the form f+

i −xif
−
i for two non-

negative functions f+
i and f−

i as a result of the form of the dependence of the
reaction rates on the concentrations of the substances going into the reactions.
The cosets of the range of the stoichiometric matrix are called stoichiometric
compatibility classes and are invariant under the flow of the dynamical system.
In all the systems considered in what follows the function v is C1 and it can
be shown that if the concentrations xi are positive at some time they remain
positive as long as the solution exists. This can be proved as in the special case
covered by Lemma 1 of [19]. Thus S is invariant under the evolution and it
follows by continuity that its closure S̄ is also invariant.

A common choice of kinetics is mass action kinetics where if p molecules of
the substance with concentration xi take part in a reaction the reaction rate
has a factor proportional to xpi . This corresponds to the idea that the rate of
reaction is proportional to the probability of the relevant molecules meeting.
For instance in the simple reaction A+2B → C the reaction rate is of the form
kxAx

2
B where k is the reaction constant. For more details on building systems
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of ODE describing reaction networks and mass action kinetics in particular
see [7]. Another common choice, particularly in the description of biological
systems, is Michaelis-Menten kinetics. This is adapted to describing reactions
which are dependent on a catalyst and the reactions in biological systems are
usually catalysed by enzymes. If the enzymes are explicitly included in the
description a type of kinetics is obtained which is referred to in [9] as Michaelis-
Menten represented in terms of mass action (MM-MA). Michaelis-Menten (MM)
kinetics is obtained fromMM-MA kinetics by a limiting process (quasistationary
approximation).

The structure of the paper is as follows. In Section 2 the dynamics of mod-
els with mass action kinetics is considered for two different choices of the sto-
ichiometric coefficients. In particular it is shown that for certain values of the
reaction constants there is exactly one positive steady state and that it is un-
stable. This raises the question of the final fate of general solutions. It turns
out that for suitable choices of the reaction constants there is an open set of
initial data for which all concentrations tend to zero at late times and an open
set of initial data for which all concentrations tend to infinity at late times. The
main results are collected in Theorem 1. The second statement is somewhat
technical to prove for the choice of stoichiometric coefficients used in [9] and
the proof is the subject of Section 3. Section 4 is concerned with the models
where the kinetics is Michaelis-Menten represented in terms of mass action. It is
shown that there are solutions which tend to infinity at late times for both the
choices of stoichiometric coefficients made in [9] and in [22]. For the first case
it is proved that there can exist more than one positive stationary solution in a
stoichiometric compatibility class and there is some discussion of what happens
in the second case. The models with Michaelis-Menten kinetics are studied in
Section 5 and it is shown that that there are solutions which tend to infinity
at late times for that model too. It is shown that the stationary solutions are
essentially the same for the MM-MA and MM models. A model in which the
concentration of ATP is a dynamical variable is discussed in Section 6. This
leads to a system of ODE for which, in contrast to the models discussed up
to this point, all solutions are bounded in the future. In all this the aim is
to treat values of the reaction constants which are as general as possible. In
Section 7 some conclusions are drawn. Appendix A gives an introduction to
Michaelis-Menten theory. Appendix B collects some technical results required
for the proofs in the main text.

2 Mass action kinetics

This section is mainly concerned with the dynamical system (6) of [9]. There
are five variables xRuBP, xPGA, xDPGA, xGAP and xRu5P which are the con-
centrations of the substances abbreviated by the subscripts. They are ribulose-
1,5-bisphosphate (RuBP), 3-phosphoglycerate (PGA), 1,3-diphosphoglycerate
(DPGA), glyceraldehyde-3-phosphate (GAP) and ribulose-5-phosphate (Ru5P).
This system has mass action kinetics and is called MA in what follows. It is
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given by

dxRuBP

dt
= k5xRu5P − k1xRuBP, (2.1)

dxPGA

dt
= 2k1xRuBP − k2xPGA − k6xPGA, (2.2)

dxDPGA

dt
= k2xPGA − k3xDPGA, (2.3)

dxGAP

dt
= k3xDPGA − 5k4x

5
GAP − k7xGAP, (2.4)

dxRu5P

dt
= −k5xRu5P + 3k4x

5
GAP. (2.5)

The ki are the reaction constants and they are all positive. The alternative nota-
tion where (xRuBP, xPGA, xDPGA, xGAP, xRu5P) is replaced by (x1, x2, x3, x4, x5)
is also used. The state space of interest for the applications is the positive or-
thant S. Sometimes it is also useful to consider the dynamics on S̄. The origin
is a stationary solution. The linearization of the system at the origin has eigen-
values (−k1,−k2 − k6,−k3,−k7,−k5). Thus the origin is a hyperbolic sink.
Consider a solution which starts at a point of the boundary of S other than the
origin. Let N be the set of indices i for which the concentration xi vanishes.
Both N and its complement are non-empty. Hence there exists i /∈ N for which
j ∈ N for j = i + 1 mod 5. It follows that ẋj > 0 and so the extension of the
solution towards the past must lie in the complement of S̄. This implies that
there exists no solution other than the zero solution which stays in the boundary
of S for a finite time. This can be used to show that if x is a solution which
starts in S then its ω-limit set contains no point of the boundary of S other
than the origin. For suppose that x∗ is a point of the ω-limit set of x(t) which
belongs to the boundary of S and is not the origin. Then there is a solution y
which passes through x∗ and lies entirely in the ω-limit set of x and hence in S̄.
On the other hand it has just been shown that this cannot happen. Thus any
ω-limit point of a solution starting in S must either be the origin or a point of
S.

Taking a suitable linear combination of (2.4) and (2.5) eliminates the non-
linear terms.

d(3xGAP + 5xRu5P)

dt
= 3k3xDPGA − 3k7xGAP − 5k5xRu5P. (2.6)

Let X be the maximum of the quantities xRuBP, xPGA, xDPGA, xGAP and
3xGAP+5xRu5P. Then any solution of the system satisfies the integral inequality

X(t) ≤ X(t0) + C

∫ t

t0

X(s)ds (2.7)

where C is the maximum of 2k1, k2, 3k3 and 1
5k5. Thus, by Gronwall’s inequal-

ity, none of the variables can blow up in finite time. Together with the fact
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that S̄ is invariant this shows that the solution exists globally in the future.
Summing up what has been proved so far gives:
Proposition 1 A solution of (2.1)-(2.5) with positive initial data exists globally
to the future, remains positive and has no ω-limit points on the boundary of S
except possibly the origin.

It is shown in [9] that if k2 > 5k6 there is a unique stationary solution of
the system in S and the equilbrium concentrations are calculated explicitly in
terms of the reaction constants. For this solution

xRuBP = k−1
1







k57

3k4

(

2k2

k2+k6
− 5

3

)5







1
4

. (2.8)

The other equilibrium concentrations can be expressed as xRu5P = k1

k5
xRuBP,

xPGA = 2k1

k2+k6
xRuBP, xDPGA = 2k1k2

k3(k2+k6)
xRuBP, xGAP =

(

k1

3k4
xRuBP

)
1
5

. An

additional relation which can be derived for the stationary solution is that

x4GAP = k7(k2+k6)
k4(k2−5k6)

. The linearization of the system about the stationary so-

lution has the characteristic polynomial

(λ+ k1)(λ+ k2 + k6)(λ+ k3)(λ+25k4x
4
GAP + k7)(λ+ k5)− 30k1k2k3k4k5x

4
GAP.
(2.9)

The constant term is equal to

k1k3k5[(k2 + k6)k7 + 5(−k2 + 5k6)k4x
4
GAP] = −4k1(k2 + k6)k3k5k7. (2.10)

Because of the signs of the coefficients this polynomial has exactly one positive
root. This means in particular that the stationary solution is unstable. For
k2 ≤ 5k6 there is no stationary solution in S. If k2 − 5k6 is allowed to tend
to zero while each of the reaction constants tends to a non-zero value then the
stationary point tends to infinity.

Define a function

L1 = xRuBP +
1

2
xPGA +

3

5
xDPGA +

3

5
xGAP + xRu5P. (2.11)

Then
dL1

dt
= −

1

2

(

k6 −
1

5
k2

)

xPGA −
3

5
k7xGAP. (2.12)

If k2 ≤ 5k6 then L1 is a Lyapunov function for the system (2.1)-(2.5). This
recovers the fact that for this parameter range there are no stationary solutions.
It fact, when combined with Proposition 1, it shows that when that inequality
holds all solutions converge to the origin as t→ ∞ - all concentrations go to zero
at late times. Thus strong control of the late-time asymptotics of all solutions
has been obtained in this case.

It remains to consider the case k2 > 5k6 where L1 does not seem to give an
interesting conclusion. A useful generalization of L1 is given by

L2 = xRuBP +
1

2
xPGA + αxDPGA + αxGAP + xRu5P (2.13)
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for α > 0. It satisfies

dL2

dt
= −

1

2
[k6 − (2α− 1) k2]xPGA − [αk7 − (3− 5α)k4x

4
GAP]xGAP. (2.14)

This means that if (2α − 1)k2 ≤ k6 the function L2 is monotone decreasing
along any solution for which (3 − 5α)k4x

4
GAP < αk7. For α = 3

5 the function
L2 coincides with L1. Another interesting choice is α = 1

2 . In that case L2 is
monotone decreasing on the region defined by the inequality k4x

4
GAP < k7. It

follows that if a solution initially satisfies

xRuBP +
1

2
(xPGA + xDPGA + xGAP) + xRu5P <

1

2

(

k7
k4

)
1
4

(2.15)

then it tends to zero as t→ ∞.
It has now been shown that in the case k2 > 5k6 there is an open set of

initial data for which the corresponding solutions tend to the origin as t → ∞.
The argument just given also provides some information about the basin of
attraction of the origin, which is more than could be concluded from the fact
that the origin is a hyperbolic sink. There is also an open set of initial data
for which all concentrations xi tend to infinity as t → ∞. The proof of this
statement is given in Section 3.

In [22] stoichiometric coefficients are considered which are slightly different
from those in [9]. While [22] uses Michaelis-Menten kinetics it is possible to take
mass action kinetics with the stoichiometric coefficients of [22]. This leads to a
system which is called MAZ in what follows. It differs from the system MA only
by the facts that the terms −5k4x

5
GAP and 3k4x

5
GAP are replaced by −k4xGAP

and 3
5k4xGAP respectively. In terms of the reaction network, the system MA

arises from the system MAZ by multiplying the stoichiometric coefficients in
one of the reactions by a constant factor so that they become integers. For the
system MAZ the set S̄ is positively invariant. The right hand side of the system
is C1 due to the fact that all the stoichiometric coefficients on the left hand sides
of reactions are integers. The arguments used to prove that solutions starting
in S̄ have no ω-limit points on the boundary of S other than the origin for the
system MA generalize easily to give the same statements for the system MAZ.
Since the latter system is linear all solutions exist globally. The function L1 of
(2.11) is a Lyapunov function for the system MAZ when k2 ≤ 5k6 since it also
satisfies the equation (2.12) in this case. It follows that all the statements about
the system MA derived using L1 also hold for the system MAZ. In the latter
case

dL2

dt
= −

1

2
[k6 − (2α− 1) k2]xPGA −

[

αk7 −

(

3

5
− α

)

k4

]

xGAP. (2.16)

Thus if (2α − 1)k2 ≥ k6 and (3 − 5α)k4 ≥ 5αk7 and at least one of these two
inequalities is strict then −L2 is a Lyapunov function. The equations for sta-
tionary solutions may be analysed in this case in a similar way to what was
done for the system MA. Four of the relations obtained are xRu5P = k1

k5
xRuBP,
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xPGA = 2k1

k2+k6
xRuBP, xDPGA = 2k1k2

k3(k2+k6)
xRuBP, xGAP = 5k1

3k4
xRuBP. Substitut-

ing these relations in the remaining equation gives:

5(k2 + k6)(k4 + k7) = 6k2k4. (2.17)

Thus there are stationary solutions only when this relation is satisfied and when
it is satisfied there is a whole one-dimensional subspace of them. This situation
is not surprising since the equations are linear in this case. It is natural to
examine the eigenvalues of the matrix on the right hand side of the equation.
The characteristic polynomial is

(k1 + λ)(k3 + λ)(k5 + λ)(k2 + k6 + λ)(k4 + k7 + λ)−
6

5
k1k2k3k4k5. (2.18)

As in the case of the system MA all the coefficients in this polynomial are
positive except possibly for the constant term, which is

k1k3k5

[

(k2 + k6)(k4 + k7)−
6

5
k2k4

]

. (2.19)

When the expression in brackets is negative there is a positive real eigenvalue
and there exists at least one solution which tends to infinity as t→ ∞ since the
origin has a non-trivial linear unstable manifold. If

(k2 + k6)(k4 + k7) <
6

5
k2k4 (2.20)

then α can be chosen so that −L2 is a Lyapunov function. Hence in that case
the origin does not belong to the ω-limit point of any solution. Since other
ω-limit points on the boundary of the positive orthant have already been ruled
out it follows that all solutions tend to infinity. The results for the systems MA
and MAZ are now collected as a theorem.
Theorem 1 If k2 ≤ 5k6 then all solutions of MA and MAZ tend to the origin
as t → ∞. If k2 > 5k6 there is a non-empty open set of initial data for MA for
which the corresponding solutions tend to the origin as t→ ∞ and a non-empty
open set of initial data for which the corresponding solutions tend to infinity as
t → ∞. If k2 > 5k6 then there is at least one solution of MAZ which tends to
infinity as t→ ∞. If k4(k2−5k6) > 5(k2+k6)k7 then all solutions of MAZ tend
to infinity as t→ ∞.

3 Solutions which tend to infinity

In this section it is shown that if k2 > 5k6 there exist solutions of (2.1)-(2.5) for
which all xi tend to infinity as t→ ∞. In fact there is a non-empty open set of
initial data for which the corresponding solutions behave in this way.
Theorem 2 If k2 > 5k6 there is a non-empty open set of initial data for the
system MA for which the corresponding solutions tend to infinity as t→ ∞ and
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have the asymptotics

x1(t) = Aeαt + . . . (3.1)

x2(t) = A(V2/V1)e
αt + . . . (3.2)

x3(t) = A(V3/V1)e
αt + . . . (3.3)

x4(t) = [A(V3/V1)ξs]
1
5 e

αt
5 + . . . (3.4)

x5(t) = A(V5/V1)e
αt + . . . (3.5)

Here α, ξs and the Vi are fixed positive constants and A is a constant depending
on the solution.
Proof For the proof it is useful to introduce the quantity ξ =

x5
4

x3
. Its evolution

equation is given by

dξ

dt
= 5(x3ξ)

4
5

[

k3 − 5k4ξ + ξ
1
5x

− 4
5

3

(

1

5
k3 − k7 −

k2x2
5x3

)]

. (3.6)

Let x̄ be the vector with components xi for i = 1, 2, 3, 5. Then four of the
evolution equations can be rewritten as

dx̄

dt
=Mx̄+R. (3.7)

Here the only non-zero component of the vector R is the last one and it is equal
to 3k4x3(ξ − ξs), ξs =

k3

5k4
and

M =









−k1 0 0 k5
2k1 −(k2 + k6) 0 0
0 k2 −k3 0
0 0 3

5k3 −k5









. (3.8)

Equations (3.6) and (3.7) are equivalent to the original system. The solutions
to be constructed are obtained as fixed points of a mapping depending on pa-
rameters. To define this mapping some manipulations of the basic equations
(3.6) and (3.7) are necessary. The equation (3.6) can be rewritten as

dξ

dt
= 25k4(x3ξ)

4
5 (ξs − ξ) + 5ξ

(

1

5
k3 − k7 −

k2x2
5x3

)

. (3.9)

The first term on the right hand side can be split into a leading term and a
remainder with the result that the whole right hand side can be written as

25k4(x3ξs)
4
5 (ξs − ξ) + F (x̄, ξ) (3.10)

where

F (x̄, ξ) = 25k4(x̄3)
4
5 [ξ

4
5 − ξ

4
5
s ](ξs − ξ) + 5ξ

(

1

5
k3 − k7 −

k2x̄2
5x̄3

)

. (3.11)
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The equation (3.7) can be solved by variation of constants to give

x̄(t) = exp(Mt)x̄(0) +

∫ t

0

exp(M(t− s))R[x̄, ξ](s)ds. (3.12)

The function R[x̄, ξ](s) depends on the functions x̄(s) and ξ(s).
The matrix M is of the type considered in Appendix 2. Its determinant is

k1k3k5
(

k6 −
1
5k2
)

. Thus when k2 > 5k6 it has exactly one positive eigenvalue
α and all its other eigenvalues have real parts less than α. Moreover, there is
an eigenvector V with eigenvalue α all of whose components are positive. Thus

exp(Mt)x̄(0) = µ1e
αtV + ψ(t;µ2, µ3, µ4) (3.13)

where the components of the function ψ are of the form

ψi(t;µ2, µ3, µ4) =
4
∑

j=2

µjWije
βjt
∑

k≥0

νjkt
k. (3.14)

Here the βj are the eigenvalues ofM other than α, theWij are the components of
the eigenvectors other than V and the νjk are constants which are only non-zero
for k > 0 if the eigenvalue βj has multiplicity greater than one. The function ψ
depends linearly on the parameters µ2, µ3 and µ4 and satisfies ψ(t;µ2, µ3, µ4) =
O(e(α−ǫ)t) as t→ ∞ for some ǫ > 0.

From the formula for x̄ we get

x3(t) = µ1e
αtV3+e3 ·ψ(t;µ2, µ3, µ4)+

∫ t

0

e3 ·exp(M(t−s))R[x̄, ξ](s)ds. (3.15)

This can be used to split the quantity x3 in the first term of (3.10) into a part
containing the leading term in (3.15) and a remainder term. The result is

dξ

dt
= 25k4(µ1V3ξse

αt)
4
5 (ξs − ξ) +G[x̄, ξ, t] (3.16)

where

G[x̄, ξ, t] = 25k4ξ
4
5
s

[

x̄
4
5
3 − (µ1V3e

αt)
4
5

]

(ξs − ξ) + F (x̄, ξ). (3.17)

The idea is that G contains all the contributions to (3.6) which can be considered
small.

Equation (3.16) can also be treated by variation of constants. Let

Φ(t) = exp

(

−
125k4
4α

[(µ1V3ξse
αt)

4
5 − 1]

)

. (3.18)

Then

ξ(t) = ξs + η0Φ(t) +

∫ t

0

Φ(t)

Φ(s)
G[x̄, ξ, s]ds (3.19)

9



with an arbitrary constant η0. Finally (3.12) can be rewritten as

x̄(t) = µ1e
αtV + ψ(t;µ2, µ3, µ4) +

∫ t

0

exp(M(t− s))R[x̄, ξ](s)ds. (3.20)

The integral equations (3.19) and (3.20) are those which are used for the fixed
point argument.

Let X be the set of continuous functions (x̄(t), ξ(t)) defined on the interval
[0,∞) which satisfy the inequalities

|x̄(t)− µ1e
αtV |

eαt
≤ δµ1, |ξ(t)− ξs|e

4
5αt ≤ K (3.21)

for positive constants µ1, δ and K which are restricted by some additional
conditions in the fixed point argument. Denote the right hand sides of equations
(3.19) and (3.20) by T1(ξ, x̄) and T2(ξ, x̄), respectively and let T = (T1, T2).
Then ξ and x̄ solve (3.19) and (3.20) if and only if (ξ, x̄) is a fixed point of T .
In order to ensure that the mapping T is well-defined on X it suffices to assume
that δ ≤ 1

2 mini Vi and thatK ≤ 1
2ξs since these inequalities imply the positivity

of x̄ and ξ. The aim is to show that for a suitable choice of the constants µ1,
µ2, µ3, µ4, η0, δ and K this rule defines a mapping T from X to itself.

For convenience let T (ξ, x̄) = (ζ, y). The quantities ζ and y should now be
estimated under the assumptions (3.21). The quantity ζ − ξs is estimated first.

It can be written as a sum
∑5

i=1Qi where the individual terms are defined as
follows. Q1 denotes the second term on the right hand side of (3.19). Q2 denotes
the contribution to the right hand side of (3.19) coming from the first term on
the right hand side of (3.17). The contribution to the right hand side of (3.19)
coming from the second term on the right hand side of (3.17) is Q3 +Q4 +Q5.
The three summands in this last expression come from three summands in F .
The expression Q3 is the contribution coming from the first term in (3.11). Q4

is the contribution from the first two terms in the bracket on the right hand
side of (3.11) and Q5 is the contribution from the third term in that bracket.
As a first step towards estimating ζ − ξs consider the following identity which
holds for any positive constants A and γ.

d

dt
(γ−1A−1e−γt exp(Aeγt)) = exp(Aeγt)(1−A−1e−γt). (3.22)

If A ≥ 2 then the second factor on the right hand side of this equation is no
smaller than one half for any t ≥ 0. Hence integrating this relation from 0 to t
gives

∫ t

0

exp(Aeγs)ds ≤ 2γ−1A−1e−γt exp(Aeγt). (3.23)

Thus

|ζ − ξs| ≤ Φ(t)

[

|η0|+ ‖G‖L∞

∫ t

0

1

Φ(s)
ds

]

≤
2

25k4
(µ1V3ξs)

− 4
5 ‖G‖L∞e−

4α
5 t + |η0|Φ(t). (3.24)
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The integral has been estimated using (3.23) with A =
(

125k4

4α

)

(µ1V3ξs)
4
5 and

γ = 4α
5 . Assuming µ1 sufficiently large ensures that the lower bound on A

required for (3.23) to hold is satisfied. Next G is estimated.

‖G‖L∞ ≤ 20k4ξ
4
5
s K(µ1V3)

4
5V −1

3 sup{1, (V3 − δ)−
2
5 }δ + ‖F‖L∞. (3.25)

Choosing δ small enough allows Q2 to be bounded by K
5 e

− 4
5αt. The first term

in the expression for F can be bounded by

Ck4µ
4
5
1 e

4
5αt(V3 + δ)

4
5 (ξ − ξs)

2 ≤ Ck4µ
4
5
1K

2(V3 + δ)
4
5 e−

4α
5 t (3.26)

for a numerical constant C. Choosing K sufficiently small allows Q3 to be
bounded by K

5 e
− 4

5αt. In the second term in F the first two contributions can
be bounded by 2ξs(k3 + 5k7). Choose µ1 large enough so that

4

5k4
(µ1V3ξs)

− 4
5 ξs(k3 + 5k7) ≤ K. (3.27)

Then it follows that Q4 is no greater than K
5 e

− 4
5αt. The third contribution to

F can be bounded by 2ξsk2

∣

∣

∣

x2

x3

∣

∣

∣. Now

∣

∣

∣

∣

x2
x3

∣

∣

∣

∣

≤
V2 + δe−2αt

V3 − δe−2αt
. (3.28)

To get a lower bound for the denominator in this expression it is assumed that
δ ≤ 1

2V3. Then
∣

∣

∣

∣

x2
x3

∣

∣

∣

∣

≤
2V2 + V3

V3
. (3.29)

If µ1 is chosen large enough then Q5 is bounded by K
5 e

− 4
5αt. To control the

quantity Q1 assume that µ1 is so large that

125k4
4α

[(µ1V3ξs)
4
5 e

4α
5 t − 1] ≥

4α

5
t. (3.30)

for all t ≥ 0. Then |η0|Φ(t) ≤ |η0|e
− 4α

5 t. Choose η0 to be no larger in modulus
than K

5 . Then combining the estimates shows that for K and δ sufficiently small
and µ1 sufficiently large the second defining inequality of the set X is satisfied
by ζ.

Next y − µ1e
αtV is estimated. The function ψ can be bounded by an ex-

pression of the form Ce(α−ǫ)t where the constant C depends only on the matrix
M and ǫ is a positive constant. Since ψ is linear in the parameters µ2, µ3 and
µ4 the constant C can be made as small as desired by making these parameters
small. Thus it can be ensured that e−αt|ψ(t)| ≤ µ1δ

2 . The integral term in
(3.20) can be estimated by an expression of the form Cµ1Ke

αt. This can be
made as small as desired compared to δµ1e

αt by choosing K small. Thus the
first defining inequality of the set X is satisfied by y.
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It follows that for a suitable choice of the parameters T maps X into itself.
Let x̄0(t) = µ1e

αtV and ξ0(t) = ξs. Define a sequence (ξn, x̄n) recursively by
(ξn+1, x̄n+1) = T ((ξn, x̄n)). The sequences x̄n and ξn are uniformly bounded
on compact subsets. It then follows from the definition of T that their time
derivatives are uniformly bounded on compact subsets. By the Arzela-Ascoli
theorem there is a subsequence (ξnr , x̄nr ) which converges uniformly to a limit
on compact subsets. It is possible to pass to the limit in the integral equations
defining the iteration to see that the limit is a fixed point of T and hence the
desired solution. The solution is uniquely determined by the parameters µi and
η0. The mapping from these parameters to the initial data for the solution at
t = 0 is a diffeomorphism onto its image. Thus the set of solutions constructed
in this way corresponds to an open set of initial data. This completes the proof
of the theorem.

4 Michaelis-Menten via mass action kinetics

Next the system (10) of [9] is considered. For the convenience of the reader we
reproduce the essential equations here:

ẋRuBP = k15xRu5PE5 − k1xRuBPxE1 + k2xRuBPE1 , (4.1)

ẋRuBPE1 = k1xRuBPxE1 − (k2 + k3)xRuBPE1 , (4.2)

ẋPGA = 2k3xRuBPE1 − k4xPGAxE2 + k5xPGAE2

−k16xPGAxE6 + k17xPGAE6 , (4.3)

ẋPGAE2 = k4xPGAxE2 − (k5 + k6)xPGAE2 , (4.4)

ẋDPGA = k6xPGAE2 − k7xDPGAxE3 + k8xDPGAE3 , (4.5)

ẋDPGAE3 = k7xDPGAxE3 − (k8 + k9)xDPGAE3 , (4.6)

ẋGAP = k9xDPGAE3 − 5k10x
5
GAPxE4 + 5k11xGAPE4

−k19xGAPxE7 + k20xGAPE7 , (4.7)

ẋGAPE4 = k10x
5
GAPxE4 − (k11 + k12)xGAPE4 , (4.8)

ẋRu5P = −k13xRu5PxE5 + k14xRu5PE5 + 3k12xGAPE4 , (4.9)

ẋRu5PE5 = k13xRu5PxE5 − (k14 + k15)xRu5PE5 , (4.10)

ẋPGAE6 = k16xPGAxE6 − (k17 + k18)xPGAE6 , (4.11)

ẋGAPE7 = k19xGAPxE7 − (k20 + k21)xGAPE7 . (4.12)

The equations for the concentrations of the free enzymes have been omitted
since they can easily be reconstructed. As explained below, this could be made
into a closed system by using the conservation of the total quantity of each
enzyme. This has not been done so as to prevent the equations becoming even
longer. The kinetics is called Michaelis-Menten represented in terms of mass
action in [9] and is called the system MM-MA here. The unknowns are of three
types. There are the concentrations of free substrates, which are denoted by
the same variables as in the system MA. There are the concentrations xEα

of
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the seven enzymes corresponding to the seven reactions in the system. Finally,
there are the concentrations of the complexes formed when the enzymes bind
to their substrates. The complex formed when the substrate Ai binds to the
enzyme Eα is denoted in what follows by AiEα. Since in some reactions r(α) > 1
molecules of the substrate bind to the enzyme this might be denoted instead

by A
r(α)
i Eα. Since, however, the exponent r(α) is uniquely determined by α

we chose the shorter notation to prevent certain formulae becoming even more
cumbersome than they already are. It should be warned that the word ‘complex’
is used in two different ways in the literature on reaction networks. The first
meaning is the one just introduced. The other is a formal linear combination
of the chemical species which is on the left or right hand side of a reaction.
To distinguish these two concepts in what follows they will be referred to as
’enzyme-substrate complex’ and ’reaction complex’ respectively.

The total concentration of each enzyme (free plus bound) is a conserved
quantity and is denoted by ρα. It follows as for the system MA that the set
S̄ is invariant. The question, whether solutions starting in S can have ω-limit
points on the boundary is a little more complicated than for the system MA.
Note first that there is a five-dimensional set A1 of stationary solutions in S̄
defined by setting the concentrations of all enzymes to zero together with those
of the corresponding complexes. This is the set where all ρα are zero. This
set cannot contain any ω-limit point of a solution with positive initial data,
since for a solution of that type the ρα are positive. The conservation of the ρα
defines invariant affine subspaces of S of codimension seven. It is elementary
to show that the stoichiometric matrix has rank twelve so that these subspaces
are the stoichiometric compatibility classes. Call one of these subspaces SE .
Another set of stationary solutions A2, of dimension seven, is defined by setting
the concentration of all substrates and all enzyme-substrate complexes to zero.
Any subspace SE intersects this set of stationary solutions in precisely one
point. Consider a solution x(t) which is positive and which has an ω-limit point
x∗ on the boundary of S. The solution y(t) passing through x∗ lies entirely
in the boundary of S. If the concentration of any free enzyme Eα vanishes
at x∗ then, by the conservation laws, the concentration of the corresponding
substrate-enzyme complex is non-zero. It follows that the time derivative of
the concentration of Eα is positive, a contradiction. Thus it can be concluded
that the concentrations of all free enzymes are non-zero at x∗. Suppose that
x∗ /∈ A2. If all substrates had zero concentration at x∗ then at least one enzyme-
substrate complex would have to be non-zero and the evolution equation for that
substrate would give a contradiction. Thus at least one substrate must have non-
zero concentration. Then the evolution equation for a complex of that substrate
with any enzyme implies that the concentration of that complex must be non-
zero. Since x∗ is on the boundary of S it is not possible that the concentrations
of all substrates are non-zero. From this point on it is possible to argue as in
the corresponding proof for the system MA to obtain a contradiction. It can
be concluded that any ω-limit point of a solution starting in S must either be
a point of S or belong to A2. The conservation laws show that the ω-limit set
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contains at most one point of A2.
The system (4.1)-(4.12) has the property that all the variables representing

the concentrations of enzymes or enzyme-substrate complexes are bounded due
to the conservation laws for the quantities ρα. On the other hand, the quantities
on the right hand sides of the evolution equations for all other variables are
all either non-positive or linear in the quantities which are not known to be
bounded. It follows from this that all solutions exist globally in the future.
Summing up:
Proposition 2 A solution of the system (4.1)-(4.12) (the system MM-MA) with
positive initial data exists globally to the future, remains positive and has no
ω-limit points on the boundary of S except possibly a single point of the set A2.
The conclusions listed for the system MM-MA in this proposition also hold for
the analogous system MM-MAZ defined using the stoichiometric coefficients of
[22] and can be proved in the same way.

For i = 1, 2, 3, 4, 5 let x̃i be the sum of the concentration of the free substrate
i and its concentrations within its complexes with enzymes. Note that here it
is necessary to take into account that in general the complex contains several
molecules of the substrate. Then A2 is the subset of S̄ where all x̄i vanish.
These quantities satisfy the evolution equations

dx̃1
dt

= k15xRu5PE5 − k3xRuBPE1 , (4.13)

dx̃2
dt

= 2k3xRuBPE1 − k6xPGAE2 − k18xPGAE6 , (4.14)

dx̃3
dt

= k6xPGAE2 − k9xDPGAE3 , (4.15)

dx̃4
dt

= k9xDPGAE3 − 5k12xGAPE4 − k21xGAPE7 , (4.16)

dx̃5
dt

= 3k12xGAPE4 − k15xRu5PE5 . (4.17)

Let L̃1 be the quantity obtained by replacing xi by x̃i in the expression for the
function L1 introduced for the system MA. Then

dL̃1

dt
= −

1

2

(

k18xPGAE6 −
1

5
k6xPGAE2

)

−
3

5
k21xGAPE7 . (4.18)

This shows that L̃1 is a Lyapunov function on the region where the quantity in
brackets in (4.18) is non-negative. It will now be shown that this can be used
to prove that certain solutions tend to zero as t→ ∞.
Proposition 3 A solution of the system MM-MA (the system (4.1)-(4.12))
with k17 + k18 < k5 + k6 which satisfies the inequalities (4.19) and k4k6ρ2 <
k16k18(ρ6 − 2L̄1(0)) converges to a point of A2 as t→ ∞.
Proof For a solution satisfying the assumptions of the proposition the quantity
in brackets in (4.18) is initially positive, i.e.

k6xPGAE2(0) < 5k18xPGAE6(0). (4.19)
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The evolution equations for the concentrations occurring in this inequality are

dxPGAE2

dt
= k4xPGAxE2 − (k5 + k6)xPGAE2 , (4.20)

dxPGAE6

dt
= k16xPGAxE6 − (k17 + k18)xPGAE6 . (4.21)

Let t∗ be supremum of times for which k6xPGAE2(t) < 5k18xPGAE6(t) holds
on the interval [0, t∗). Using the fact that k17 + k18 < k5 + k6 the sum of
the contributions of the second terms on the right hand sides of the evolution
equations for xPGAE2 and xPGAE6 to the evolution equation for 5k18xPGAE6 −
k6xPGAE2 is positive when t = t∗. Now k4xPGAxE2 ≤ k4xPGAρ2 and

k16xPGAxE6 = k16xPGA(ρ6 − xPGAE6) ≥ k16xPGA(ρ6 − 2L̃1(0)). (4.22)

Thus due to the inequality k4k6ρ2 < k16k18(ρ6 − 2L̃1(0)) the assumption that
t∗ is finite leads to a contradiction. In addition it can be seen that in this case
any ω-limit point of the solution must satisfy xPGA = 0 and hence belong to
A2. This gives the conclusion of the proposition.

Next it will be shown that the system MM-MA has solutions for which
the concentrations of the substrates tend to infinity at late times. To do this
it is most economical to do the calculations in the framework of a class of
reaction networks wider than those describing the Calvin cycle. Consider a
system of chemical reactions as defined by sets of species, reaction complexes
and reactions. This will be called the basic reaction network. It is possible
to build a new network by replacing each reaction in the basic network by a
Michaelis-Menten scheme containing a substrate (the species from the basic
network), an enzyme and a substrate-enzyme complex. Applying mass action
kinetics to the extended network gives ‘Michaelis-Menten expressed in terms
of mass action’ kinetics or, for short, MM-MA kinetics. In this way starting
from the basic network we get a system of ordinary differential equations called
the MM-MA system. It contains reaction constants for each reaction in the
extended system as parameters. Call the substrates Ai and the enzymes Eα for
some indices i and α. The complex formed when these bind to each other is
denoted by AiEα.

Some restrictions will now be made on the basic set of chemical reactions.

1. Each reaction complex in the basic network contains only one species

2. The set of substrates and the set of enzymes are disjoint. This rules out
the MAP kinase cascade [12].

3. Each enzyme catalyses only one reaction. This rules out systems with
enzyme sharing such as the multiple futile cycle [20].

When there are n species and r reactions in the basic network then the number of
species in the corresponding MM-MA system is n+2r. There are n substrates,
r free enzymes and r substrate-enzyme complexes. There are 3r reactions.
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In the motivating example for this work the basic system is defined by the
equations (2.1)-(2.5) describing the Calvin cycle. It has five species. There are
seven reactions and so there are nineteen species in the corresponding MM-MA
system. When a system is so big it is not very efficient to write it out explicitly
when analysing it. It can be more useful to treat it as an example of a class
of systems characterized by some particular structural properties. This is the
motivation for considering a more general class of systems here. Note that the
first restriction above rules out the more detailed models of the Calvin cycle
given in [17] and [18]. It also rules out the homogeneous case of the model with
diffusion considered in [9]. It will be seen in Section 6 that in fact all solutions
of the latter system are bounded.

The main theme of what follows is solutions of an MM-MA system in which
the concentrations of all substrates tend to infinity as t → ∞. In fact they all
tend to infinity linearly in time. In the solutions of interest here the concen-
tration of each free enzyme tends to zero as t → ∞ and almost all the enzyme
becomes bound to the substrate at late times. A class of networks are con-
sidered which are called autocatalytic. It is shown that for MM-MA systems
arising from networks satisfying this additional property, which is defined later,
there are large classes of solutions of the type just described. They are referred
to here as runaway solutions.

The MM-MA system can be written as a set of evolution equations for the
substrates, the substrate-enzyme complexes and the free enzymes. The right
hand sides of the equations of the second and third types for a given choice of
enzyme differ only by an overall sign. Adding them gives a conservation law
for the total amount of enzyme ρα = xAiEα

+ xEα
. The conservation laws can

be used to eliminate the concentrations of the free enzymes from the evolution
equations for the substrates and the substrate-enzyme complexes. The evolution
equations for the free enzymes can be discarded. This leads to the system

dxAm

dt
= −

∑

α:i(α)=m

r(α)C+(α)x
r(α)
Ai(α)

(ρα − xAi(α)Eα
)

+
∑

α:i(α)=m

r(α)C−(α)xAi(α)Eα
+

∑

α:f(α)=m

s(α)Γ(α)xAi(α)Eα
, (4.23)

dxAi(α)Eα

dt
= C+(α)x

r(α)
Ai(α)

(ρα − xAi(α)Eα
)− (C−(α) + Γ(α))xAi(α)Eα

.(4.24)

Here C+(α), C−(α) and Γ(α) are the reaction constants for the reactions in-
volving the enzyme Eα. The numbers r(α) and s(α) are the stoichiometric
coefficients of the reaction catalysed by Eα, referred to for brevity as the reac-
tion α. The number of molecules of substrate entering the reaction is r(α) and
the number of molecules of product which result is denoted by s(α). In fact we
allow r(α) and s(α) to be any real numbers satisfying the condition r(α) ≥ 1.
This inequality ensures that the coefficients in the system of ODE are C1. i(α)
is the index labelling the substrate entering the reaction α and f(α) is the in-
dex labelling the product of that reaction. The full MM-MA system consists
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of (4.23), (4.24) and evolution equations for the concentrations of the free en-
zymes. Equations (4.23) and (4.24) are equivalent to the full MM-MA system
in the following sense. If a solution of the full MM-MA system is given then
the conserved quantities ρα can be computed. Then the concentrations of the
substrates and the substrate-enzyme complexes satisfy (4.23) and (4.24) with
those values of the ρα. Conversely, suppose that a solution of (4.23) and (4.24)
is given with certain values of the ρα and that the concentration of xAi(α)Eα

is
always less than ρα. Then defining the concentrations of the free enzymes by
xEα

= ρα − xAi(α)Eα
gives a solution of the full MM-MA system. The following

linear combination of equations (4.23) and (4.24) will be useful later.

d

dt



xAm +
∑

α:i(α)=m

r(α)xAi(α)Eα





=
∑

α:i(α)=m

r(α)Γ(α)xAi(α)Eα
−

∑

α:f(α)=m

s(α)Γ(α)xAi(α)Eα
. (4.25)

In order to investigate when the MM-MA system admits runaway solutions
a first step is to look for consistent leading order asymptotics. This is done
using the following ansatz.

xAm = θmt+ . . . , (4.26)

xEα
= ηαt

−r(α) + . . . . (4.27)

For consistency xAi(α)Eα
= ρα − ηαt

−r(α) + . . .. These relations and their for-
mal time derivatives are now inserted into the evolution equations. Comparing
coefficients results in the equations

θm = −
∑

α:i(α)=m

r(α)C+(α)θ
r(α)
i(α) ηα

+
∑

α:i(α)=m

r(α)C−(α)ρα +
∑

α:f(α)=m

Γ(α)s(α)ρα, (4.28)

0 = C+(α)θ
r(α)
i(α) ηα − (C−(α) + Γ(α))ρα. (4.29)

Substituting the second equation into the first (or comparing coefficients in
(4.25)) gives

θm = −
∑

α:i(α)=m

r(α)Γ(α)ρα +
∑

α:f(α)=m

s(α)Γ(α)ρα. (4.30)

Since the θm are positive this implies a linear system of inequalities for the quan-
tities ρα. If these inequalities admit non-trivial solutions then the network is said
to be autocatalytic. For a general network it is not easy to determine whether it
is autocatalytic. The network of [9] modelling the Calvin cycle is easily shown
to be autocatalytic. The network obtained by replacing the stoichiometric co-
efficients used in [9] by those used in [22] can be checked to be autocatalytic by

17



an almost identical computation. When a network is autocatalytic and the ρα
satisfy suitable inequalities then the constants θm are determined by equation
(4.30) and the constants ηα are determined by equation (4.29).

In order to prove the existence of runaway solutions for autocatalytic MM-
MA systems it is convenient to introduce new variables adapted to the expected
asymptotics. Define

xAm(t) = Zm(t)(t +R), (4.31)

xEα
= ζα(t)(t+R)−r(α). (4.32)

Then the solutions to be constructed should satisfy Zm(t) → θm and ζα(t) → ηα
as t→ ∞. The parameter R ≥ 1 has been introduced to ensure that the leading
terms in the quantities which tend to zero are already small for t = 0. Rewriting
the evolution equations in terms of the new variables leads to the system

(t+R)
dZm

dt
+ Zm = −

∑

α:i(α)=m

r(α)C+(α)Z
r(α)
i(α) ζα

+
∑

α:i(α)=m

r(α)C−(α)ρα +
∑

α:f(α)=m

s(α)Γ(α)ρα − Fm(ζα),

dζα
dt

+ C+(α)(t +R)r(α)Z
r(α)
i(α) ζα = r(α)(t +R)−1ζα

+(t+R)r(α)(C−(α) + Γ(α))ρα − (C−(α) + Γ(α))ζα (4.33)

where

Fm(ζα) =
∑

α:i(α)=m

r(α)C−(α)ζα(t+R)−r(α)

+
∑

α:f(α)=m

s(α)Γ(α)ζα(t+R)−r(α). (4.34)

The main result is
Theorem 3 Let an autocatalytic reaction network be given. Then the corre-
sponding MM-MA system can be written in the form (4.33)-(4.34) depending
on a parameter R. Fix the values of the reaction constants. Define parameters
θm and ηα by equations (4.30) and (4.29) and suppose that the θm are positive.
Then there exist positive constants K, R0 and δ0 such that if R ≥ R0 and

∑

m

|Zm(0)− θm|+
∑

α

|ζα(0)− ηα| ≤ δ0 (4.35)

then
∑

m

|Zm(t)− θm|+
∑

α

|ζα(t)− ηα| ≤ Kδ0 (4.36)

for all t ≥ 0 and

lim
t→∞

(

∑

m

|Zm(t)− θm|+
∑

α

|ζα(t)− ηα|

)

= 0. (4.37)
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To prove this theorem the first step is to rewrite the evolution equation for ζα
as an integral equation using variation of constants. Define

Ψα(s, t) = exp

[

−

∫ t

s

C+(α)(u +R)r(α)(Zi(α)(u))
r(α)du

]

. (4.38)

Here the fact that Ψα depends on Zi(α) has not been made explicit in the
notation. Then

ζα(t) = ζα(0)Ψα(0, t) +

∫ t

0

Ψα(s, t)(C
−(α) + Γ(α))ρα(s+R)r(α)ds

+

∫ t

0

Ψα(s, t)[r(α)(s +R)−1ζα(s)− (C−(α) + Γ(α))ζα(s)]ds. (4.39)

The second term on the right hand side of this equation can be transformed
using the identity

1

C+(α)(Zi(α)(s))r(α)
d

ds
(Ψα(s, t)) = (s+R)r(α)Ψα(s, t) (4.40)

and integration by parts. The result is

ζα(t) −
(C−(α) + Γ(α))ρα
C+(α)(Zi(α)(t))r(α)

=

[

ζα(0)−
(C−(α) + Γ(α))ρα
C+(α)(Zi(α)(0))r(α)

]

Ψα(0, t)

+

∫ t

0

Ψα(s, t)
r(α)(C−(α) + Γ(α))ρα
C+(α)(Zi(α)(s))r(α)+1

dZi(α)(s)

ds
ds+ . . . . (4.41)

where the last term in (4.39) has not been written out again.
Proof of Theorem 3 In this proof it is assumed that K and R0 are greater
than one. For positive constants K and δ define

t∗ = sup

{

t > 0 :
∑

m

|Zm(t)− θm|+
∑

α

|ζα(t)− ηα| ≤ 2Kδ0

}

. (4.42)

Suppose that δ0 ≤ 1
4K

−1min{θm}. This implies that the inequality Zm ≥ θm/2
holds on [0, t∗]. The time derivatives of the quantities Zm can be bounded by
a constant K depending only on the parameters in the system. To obtain esti-
mates for Ψα the following auxiliary estimate is useful. For a positive constant
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a

∫ t

0

exp

[

−a(r(α) + 1)

∫ t

s

(u+ R)r(α)du

]

ds

= exp[−a(t+ R)r(α)+1]

∫ t

0

exp[a(s+R)r(α)+1]ds

= exp[−a(t+ R)r(α)+1]

∫ t

0

1

a(r(α) + 1)(s+R)r(α)
d

ds

(

exp[a(s+R)r(α)+1]
)

ds

=
1

a(r(α) + 1)(t+R)r(α)
−

exp[aRr(α)+1 − a(t+R)r(α)+1]

a(r(α) + 1)Rr(α)

+

∫ t

0

r(α)

a(r(α) + 1)(s+R)r(α)
exp[a(s+R)r(α)+1 − a(t+R)r(α)+1]ds. (4.43)

Choosing R0 large enough ensures that the first factor in the last integral is
smaller than 1

2 . Thus the integral term can be absorbed into the left hand side
of the inequality. Discarding a term with a good sign gives

∫ t

0

exp

[

−a(r(α) + 1)

∫ t

s

(u+R)r(α)du

]

ds ≤
2

a(r(α) + 1)(t+R)r(α)
. (4.44)

Making a suitable choice of the constant a leads to the inequality

∫ t

0

Ψα(s, t)ds ≤ K(t+R)−r(α). (4.45)

Putting this information into (4.41) gives

∣

∣

∣

∣

ζα(t)−
(C−(α) + Γ(α))ρα
C+(α)(Zi(α)(t))r(α)

∣

∣

∣

∣

≤

[

ζα(0)−
(C−(α) + Γ(α))ρα
C+(α)(Zi(α)(0))r(α)

]

+K(t+R)−r(α).

(4.46)
The first term can be bounded using the smallness condition on the initial data
and the second by using (4.45) and choosing R0 large. It follows that for R0

sufficiently large and δ0 sufficiently small

∣

∣

∣

∣

ζα(t)−
(C−(α) + Γ(α))ρα
C+(α)(Zi(α)(t))r(α)

∣

∣

∣

∣

≤
Kδ0
2
. (4.47)

The evolution equation for Zm can be rewritten in the form

(t+R)
dZm

dt
+ (Zm − θm) =

−
∑

α:i(α)=m

r(α)C+(α)Z
r(α)
i(α)



ζα −
(C−(α) + Γ(α))ρα

C+(α)Z
r(α)
i(α)





−Fm(ζα). (4.48)
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The right hand side of (4.48) can be bounded by Kδ0/2 after possibly increasing
K and R0. Integrating this gives an inequality of the form

(t+R)
∑

m

|Zm − θm| ≤ (Kδ0/2)(t+ 1) (4.49)

and hence
∑

m

|Zm − θm| ≤
Kδ0
2
. (4.50)

Combining (4.50) and (4.47) gives

∑

α

|ζα(t)− ηα| ≤
Kδ0
2
. (4.51)

It can be concluded that t∗ = ∞ and the first part of the theorem is proved.
The integrand in the definition of Ψα is bounded below by a positive constant
and thus Ψα(0, t) → 0 as t→ ∞. Combining this with (4.41) shows that

ζα(t)−
(C−(α) + Γ(α))ρα
C+(α)(Zi(α)(t))r(α)

→ 0 (4.52)

as t → ∞. It can then be concluded from (4.48) that d
dt
((t+R)(Zm−θm)) = o(1).

Hence (t + R)(Zm − θm) = o(t) and Zm → θm as t → ∞. Together with the
information we already have this implies that ζα − ηα → 0 as t → ∞ and this
completes the proof of the theorem.

Consider now stationary solutions of MM-MA. Equation (4.25) implies that
the equation obtained by setting θm = 0 in (4.30) holds in the stationary case.
This is a linear system for the substrate-enzyme complexes. It is a system of n
equations for r unknowns. In the case of the system (4.1)-(4.12) there are five
equations for seven unknowns and it is easily seen that the solution space is of
dimension two. The equations are those obtained by setting the time derivatives
to zero in (4.13). Explicitly

xRuBPE1 =
k15
k3
xRu5PE5 , (4.53)

xPGAE2 =
2k3
k6

xRuBPE1 −
k18
k6
xPGAE6 , (4.54)

xDPGAE3 =
k6
k9
xPGAE2 , (4.55)

xGAPE4 =
k9
5k12

xDPGAE3 −
k21
5k12

xGAPE7 , (4.56)

xRu5PE5 =
3k12
k15

xGAPE4 . (4.57)

Suppose now that we prescribe the values of xPGAE6 and xGAPE7 . It is possible
to derive the equation

xGAPE4 =
1

k12
(k18xPGAE6 + k21xGAPE7). (4.58)
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Substituting back into equations (4.53)-(4.55) and (4.57) gives:

xRuBPE1 =
3

k3
(k18xPGAE6 + k21xGAPE7), (4.59)

xPGAE2 =
1

k6
(5k18xPGAE6 + 6k21xGAPE7), (4.60)

xDPGAE3 =
1

k9
(5k18xPGAE6 + 6k21xGAPE7), (4.61)

xRu5PE5 =
3

k15
(k18xPGAE6 + k21xGAPE7). (4.62)

These can then be used to obtain expressions for the concentrations of the
free enzymes. For the total amount of any one of the enzymes is equal to the
amount of the free enzyme plus the amount of it bound to its substrate. Now
these expressions will be used to extract information from the time evolution
equations for the free enzymes. For brevity let X = xPGAE6 and Y = xGAPE7 .
Then

xRuBP =
3(k2 + k3)(k18X + k21Y )

k1(k3ρ1 − 3k18X − 3k21Y )
, (4.63)

xPGA =
(k5 + k6)(5k18X + 6k21Y )

k4(k6ρ2 − 5k18X − 6k21Y )
, (4.64)

xDPGA =
(k8 + k9)(5k18X + 6k21Y )

k7(k9ρ3 − 5k18X − 6k21Y )
, (4.65)

xGAP =

[

(k11 + k12)(k18X + k21Y )

k10(k12ρ4 − k18X − k21Y )

]
1
5

, (4.66)

xRu5P =
3(k14 + k15)(k18X + k21Y )

k13(k15ρ5 − 3k18X − 3k21Y )
. (4.67)

The expressions obtained up to now suffice to determine all unknowns in terms
of X , Y and the conserved quantities ρα. There are, however, two further
equations which lead to consistency conditions. These are:

xPGA =
(k17 + k18)X

k16(ρ6 −X)
, (4.68)

xGAP =
(k20 + k21)Y

k19(ρ7 − Y )
. (4.69)

Note that equations (4.63)-(4.69) only have positive solutions under the restric-
tions that X and Y satisfy the inequalities which ensure the positivity of the
denominators of the right hand sides. Rearranging the equations (4.68) and
(4.69) gives

X =
k16ρ6xPGA

k17 + k18 + k16xPGA
, (4.70)

Y =
k19ρ7xGAP

k20 + k21 + k19xGAP
. (4.71)
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Hence

5k18X + 6k21Y =
5k16k18ρ6xPGA

k17 + k18 + k16xPGA
+

6k19k21ρ7xGAP

k20 + k21 + k19xGAP
(4.72)

and

k18X + k21Y =
k16k18ρ6xPGA

k17 + k18 + k16xPGA
+

k19k21ρ7xGAP

k20 + k21 + k19xGAP
. (4.73)

Substituting these relations into (4.64) and (4.66) gives equations of the form:

xPGA − g1(xPGA, xGAP) = 0, (4.74)

x5GAP − g2(xPGA, xGAP) = 0 (4.75)

for some rational functions g1 and g2. More explicitly

g1(xPGA, xGAP) =
a1xPGA + a2xGAP + a3xPGAxGAP

b1 + b2xPGA + b3xGAP + b4xPGAxGAP
, (4.76)

g2(xPGA, xGAP) =
c1xPGA + c2xGAP + c3xPGAxGAP

d1 + d2xPGA + d3xGAP + d4xPGAxGAP
(4.77)

for suitable constant coefficients depending on the ki and the ρα.
Lemma 1 Any positive stationary solution of the system (4.1)-(4.12) defines a
positive solution of the system (4.74)-(4.75). Conversely each positive solution
of (4.74)-(4.75) with given values of ρα for which the quantities X and Y defined
by (4.70) and (4.71) make the denominators in (4.63), (4.65) and (4.67) positive
defines a positive stationary solution of the system (4.1)-(4.12).
Proof The first statement is a direct consequence of the calculations which
have just been done. To prove the converse let (xGAP, xPGA) be a solution of
(4.74)-(4.75) and let X and Y be defined by (4.70) and (4.71). Then (4.68) and
(4.69) are satisfied. It follows from (4.74)-(4.75) that (4.64) and (4.66) hold.
Next define xRuBP, xDPGA and xRu5P by (4.63), (4.65) and (4.67) respectively.
Define the quantities xEi by the conservation laws and the quantities xRuBPE1 ,
xPGAE2 , xDPGAE3 , xGAPE4 and xRu5PE1 by (4.58) and (4.59)-(4.62). Now all
the variables in the system (4.1)-(4.12) have been defined and it remains to
show that they define a stationary solution. Equations (4.58) and (4.59)-(4.62)
imply (4.53)-(4.57). At this point it is useful to think of the system (4.1)-(4.12)
as a special case of the MM-MA system introduced for a more general class of
networks above. In that framework what has been obtained up to this point in
the proof is a stationary solution of the equations (4.23), (4.24) and (4.25). It
follows from the discussion above that this set of equations is equivalent to the
full MM-MA system and this completes the proof of the lemma.

In [9] elementary flux modes of this system are investigated. This is a concept
coming from chemical reaction network theory which can sometimes be used to
investigate the number of stationary solutions of a dynamical system coming
from a network of chemical reactions. To describe this in more detail it is
necessary to introduce the notion of the deficiency of a reaction network. First
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note that a directed graph can be associated to any network where there is a
vertex corresponding to each reaction complex and an arrow corresponding to
each reaction. The connected components of this graph are called linkage classes.
Let n be the number of reaction complexes, s the rank of the stoichiometric
matrix and l the number of linkage classes. Then the deficiency of the network
is δ = n−s− l. If the deficiency of the network (which is always non-negative) is
equal to one and some other technical conditions are satisfied information about
the number of stationary solutions can be obtained using what is called the
deficiency one algorithm (D1A) [8]. There is a computer implementation of this
algorithm which can be applied to cases where the network is not too large [6].
An elementary flux mode defines a subnetwork which is always of deficiency one
[5]. Under suitable technical conditions stationary solutions of the subnetwork
lead to corresponding stationary solutions of the full network and this can be
proved using the implicit function theorem. In [9] this procedure is cited to
conclude the existence of two distinct stationary solutions of the system MM-
MA in a given stoichiometric class. In what follows we will not say much more
about this approach but the results obtained by using it were the starting point
of the more direct proof of the existence of two stationary solutions given here.

In the MM-MA model for the Calvin cycle there are two stoichiometric
generators and each defines a subnetwork. The subnetwork can be obtained
by setting some of the reaction constants to zero. Here we procede directly
using certain limits for the reaction constants corresponding to the two modes.
Consider the system obtained from the system for stationary solutions of the
system (4.1)-(4.12) by setting k16, k17 and k18 to zero. Call it LS1. If the
limiting values of the parameters are approached in such a way that k17/k16
and k18/k16 tend to non-zero limits q17 and q18 then the system varies in a way
which is smooth up to the boundary. A similar system LS2 can be obtained by
letting k19, k20 and k21 tend to zero while k20/k19 and k21/k19 tend to non-zero
limits q20 and q21.
Lemma 2 Consider the system LS1 and suppose that k6ρ2 − 6k21ρ7 ≥ 0. If
k12ρ4 − k21ρ7 ≥ 0 then there is a unique positive solution. If k12ρ4 − k21ρ7 < 0
then the number of solutions is zero, one or two according to whether

1

5

[

4k12ρ4(k20 + k21)

5k19(k12ρ4 − k21ρ7)

]4

k10ρ4(k20 + k21)− (k11 + k12)k19k21ρ7 (4.78)

is negative, zero or positive, respectively.
Proof In this case the functions g1 and g2 in (4.74) and (4.75) only depend on
xGAP. This means that (4.75) is an equation for xGAP alone and for a suitable
solution of this equation a corresponding value of xPGA can be calculated. The
explicit form of (4.75) is

x4GAP =
(k11 + k12)k19k21ρ7

k10k12ρ4(k20 + k21) + k10k19(k12ρ4 − k21ρ7)xGAP
. (4.79)

When k12ρ4 − k21ρ7 ≥ 0 the right hand side of this equation is non-increasing
and the equation (4.79) has unique positive solution. The explicit form of (4.74)
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is

xPGA =
6(k5 + k6)k19k21ρ7xGAP

k4k6ρ2(k20 + k21) + k4k19(k6ρ2 − 6k21ρ7)xGAP
. (4.80)

If the right hand side of this is positive it defines an acceptable solution for xGAP

and the first statement of the lemma follows. Consider the case k12ρ4−k21ρ7 <
0. Rewrite the equation schematically as

x4 =
α

β + γx
. (4.81)

where α > 0, β > 0 and γ < 0. If p(x) = γx5 + βx4 then the equation to be
solved is p(x) = α. The function p has a unique maximum at x∗ = 4β

−5γ and

p(x∗) =
1
5β
(

4β
5γ

)4

. Comparing this quantity with α gives the second result of

the lemma.
Lemma 3 Consider the system LS2 and suppose that k12ρ4 − k18ρ6 ≥ 0. It
has no positive solution if the quantities k4k6(k17 + k18)ρ2 − 5(k5 + k6)k16k18ρ6
and −k6ρ2 + 5k18ρ6 are non-zero with opposite signs and exactly one positive
solution when they are non-zero and have the same sign. The solution is given
by

xPGA =
k4k6(k17 + k18)ρ2 − 5(k5 + k6)k16k18ρ6

k4k16(−k6ρ2 + 5k18ρ6)
, (4.82)

x5GAP =
(k11 + k12)k16k18ρ6xPGA

k10k12ρ4(k17 + k18) + k10k16(k12ρ4 − k18ρ6)xPGA
. (4.83)

The only other case where there exist positive solutions is when

k4(k17 + k18) = (k5 + k6)k16 (4.84)

and
k6ρ2 = 5k18ρ6. (4.85)

In that case xPGA is arbitrary and there is a continuum of solutions.
Proof This is a direct calculation.

The parameters which are contained in g1 and g2 are

k4, k5, k6, k10, k11, k12, k16, k17, k18, k19, k20, k21, ρ2, ρ4, ρ6, ρ7. (4.86)

These equations do not depend on ρ1, ρ3 or ρ5. Thus the conditions required
to ensure the positivity of the solutions of (4.63), (4.65) and (4.67) can be
guaranteed by choosing ρ1, ρ3 and ρ5 large enough while keeping the other
parameters fixed. In the two limiting cases considered above these functions
simplify. In each limiting case the functions g1 and g2 depend on only one of
the variables xPGA and xGAP. Thus in that case one of the equations to be solved
involves only one of the unknowns. If it can be solved then it can be substituted
into the other equation to get the other variable. The derivative of the mapping
sending the unknowns to the right hand side of the two equations is invertible
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in the two limiting cases. It follows by the implicit function theorem that for
parameter sets close to those of the limiting cases the number of stationary
solutions is independent of the values of the parameters. It follows in particular
that there an open set in the space of parameters and conserved quantities for
which this construction proves the existence of two distinct positive stationary
solutions for given values of the parameters and conserved quantities.

It is possible to define a system MM-MAZ with mass action via Michaelis-
Menten kinetics starting from the data in [22]. Like the other systems considered
up to now it has the property that S̄ is positively invariant. In the case of
the system MM-MAZ the quantities x̄i satisfy evolution equations which are
the same as those satisfied in the case of the system MM-MA except that the
coefficients 5 and 3 are replaced by 1 and 3

5 . Next stationary solutions of MM-
MAZ will be considered. The concentrations of the substrate-enzyme complexes
satisfy a system of linear equations similar to those in the case MM-MA. The
relation between these linear systems can be expressed succinctly by saying
that k12 is replaced by 1

5k12. These linear equations can be solved for the
concentrations of the first five complexes in terms of the other two. The result is
similar to that for MM-MA with slightly different coefficients. In the equation
for xGAPE4 there is an extra factor of five while the equations for the other
complexes are as before since they are independent of k12. It is also possible
to derive expressions for the concentrations of all substrates. These are all
identical to the corresponding equations in the MM-MA case except for the
equation for the concentration of GAP. This last equation is changed in two
ways. The first is that k12 is replaced by 1

5k12. The second is that the exponent
1
5 is replaced by one. Equations similar to (4.74) and (4.75) can be derived,
with the important difference that the fifth power in (4.75) is replaced by the
first power. Thus (4.79) is replaced by a linear equation. This linear equation
has a unique positive solution provided a certain sign condition is satisfied and
no positive solution otherwise. Thus for the system MM-MAZ, in contrast to
the system MM-MA, this construction does not lead to a proof of the existence
of more than one stationary solution for any value of the parameters. Setting
the right hand sides of the equivalents of equations (4.64) and (4.66) for the
system MM-MA equal to the corresponding quantities coming from the right
hand sides of equations (4.68) and (4.69) respectively shows that the set of
X and Y defining stationary solution is the intersection of the zero set of two
quadratic polynomials in X and Y . Hence by Bézout’s theorem [10] unless there
is a continuum of solutions there are at most four.

5 Michaelis-Menten kinetics

Starting from the MM-MA system it is possible to obtain a simplified system,
the Michaelis-Menten system (MM system) by passing to a singular limit. This
will now be carried out formally. It will be convenient to describe this in the
context of the more general system introduced in the last section. (The basic
scheme is explained in a simpler case in Appendix A.) Let ǫ be a positive real
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number and define τ = ǫt, x̃Ai(α)Eα
= ǫ−1xAi(α)Eα

and x̃Eα
= ǫ−1xEα

. Defining

ρ̃α = ǫ−1ρα allows the transformation of the system to be carried out directly on
the system (4.23)-(4.24). Equation (4.23) is identical to what it was originally
except that the original quantities are replaced by the transformed quantities.
The factors of ǫ cancel. On the other hand the equation (4.24) picks up an extra
factor of ǫ on the left hand side. Formally taking the limit ǫ→ 0 results in the
equation obtained by setting the time derivative in (4.24) to zero. Solving this
equation for x̃Ai(α)Eα

gives

x̃Ai(α)Eα
=

C+(α)x
r(α)
Ai(α)

ρ̃α

C+(α)x
r(α)
Ai(α)

+ C−(α) + Γ(α)
. (5.1)

Substituting this back into equation (4.23) gives the MM system

dxAm

dτ
= −

∑

α:i(α)=m

C+(α)ρ̃αr(α)Γ(α)x
r(α)
Ai(α)

C+(α)x
r(α)
Ai(α)

+ C−(α) + Γ(α)

+
∑

α:f(α)=m

C+(α)ρ̃αs(α)Γ(α)x
r(α)
Ai(α)

C+(α)x
r(α)
Ai(α)

+ C−(α) + Γ(α)
. (5.2)

Consider the ansatz xAm = θ̃mτ+ ... for runaway solutions of (5.2). Substituting
into the equation and comparing coefficients gives the equation obtained from
(4.30) by replacing θm and ρα by θ̃m and ρ̃α. Define a new variable Z̃m by

xAm(τ) = Z̃m(τ)(τ +R). (5.3)

Then equation (5.2) becomes

(τ +R)
dZ̃m

dτ
+ Z̃m =

−
∑

α:i(α)=m

ρ̃αr(α)Γ(α)

1 + (C+(α))−1Z̃
−r(α)
i(α) (C−(α) + Γ(α))(τ +R)−r(α)

+
∑

α:f(α)=m

ρ̃αs(α)Γ(α)

1 + (C+(α))−1Z̃
−r(α)
i(α) (C−(α) + Γ(α))(τ +R)−r(α)

. (5.4)

Theorem 4 Let an autocatalytic reaction network be given. Then the corre-
sponding MM system can be written in the form (5.2) depending on a parameter
R. Fix the values of the reaction constants. The positive parameters θ̃m are
determined by the reaction constants. There exist positive constants K, R0 and
δ0 such that if R ≥ R0 and

∑

m

|Z̃m(0)− θ̃m| ≤ δ0 (5.5)
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then
∑

m

|Z̃m(τ) − θ̃m| ≤ Kδ0 (5.6)

for all τ ≥ 0 and
lim
τ→∞

∑

m

|Z̃m(τ)− θ̃m| = 0. (5.7)

Proof The proof is similar to that of Theorem 3 but simpler. Define

τ∗ = sup

{

τ > 0 :
∑

m

|Z̃m(τ) − θ̃m| ≤ 2Kδ0

}

. (5.8)

Choose δ0 small enough so that |Z̃m(τ)| ≥ θ̃/2 on [0, τ∗]. It follows from (5.4)
that

∣

∣

∣

∣

∣

(τ +R)
dZ̃m

dτ
+ (Z̃m − θ̃m)

∣

∣

∣

∣

∣

≤ K(τ +R)−1. (5.9)

Integrating this in time and choosing R0 large enough gives an inequality of the
form

(τ +R)(Z̃m − θ̃m)(τ) ≤ Kδ0(1 + τ)ǫ (5.10)

for any ǫ > 0. This allows the bootstrap assumption to be improved if τ∗ is finite
and it follows that in fact τ∗ = ∞. Using (5.9) again gives the final statement
of the theorem.

Stationary solutions of the MM-MA system give rise to equations similar to
those defined by the runaway solutions. In that case the analogue of (5.1) with-
out tildes holds. Substituting this into the evolution equation for the substrates
gives the equation (5.4) without tildes. This means that any stationary solution
of the MM-MA system defines a stationary solution of the MM system. Con-
versely, any stationary solution of the MM system defines a stationary solution
of the system (4.23)-(4.24). It was already shown that any solution of the latter
system defined a solution of the system MM-MA and if the solution of (4.23)-
(4.24) is stationary the solution of the system MM-MA is so too. Thus there
is a one to one correspondence between stationary solutions of the MM system
and stationary solutions of the MM-MA system for fixed values of the conserved
quantities ρα. To get the standard form of the Michaelis-Menten system as used
in [22] the numerators and denominators in all the summands on the right hand
side should be divided by C+(α). Hence if the MM system is given in isolation
the reaction constants of the MM-MA system it comes from are not determined

uniquely. Only the expressions Γ(α) and C−(α)+Γ(α)
C+(α) are determined.

Equations for a model with Michaelis-Menten kinetics are written in Ap-
pendix A of [22]. In fact, as has been remarked in [4], the expression for v5
in [22] is not correct since it includes a dependence of the reaction on ATP,
which does not agree with the reaction it is supposed to model, the sixth re-
action in Table B2 of [22]. Here we consider the correct model obtained from
the reaction network given in [22] by using Michaelis-Menten kinetics and call
it the model MMZ in what follows. The discrepancy just mentioned only affects
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the biological interpretation of the constants in the system studied here and
not the general mathematical form of the equations. The variables used in [22]
include the concentration of ATP but this is assumed to be constant and so no
evolution equation is required for it. A system with Michaelis-Menten kinetics
is also considered (but not written explicitly) in [9] and is called MM in what
follows. The only difference between these two systems is that the expression

v4 in [22] is replaced by an expression of the form
Ax5

GAP

B+x5
GAP

for some positive

constants A and B. For both systems the positive orthant S is invariant. In
these Michaelis-Menten systems the right hand sides of the evolution equations
are bounded functions of their arguments and so solutions exist globally to the
future. Making use of these facts it can be shown as in the case of the systems
MA and MAZ that there are no ω-limit points on the boundary except possibly
the origin. To see this it is enough to use the structure of the first equation in
Appendix A of [22].

In both cases
dL1

dt
= −

1

2
(v5 −

1

5
v2)−

3

5
v6 (5.11)

where the vj denote reaction rates. With the corrected value of v5 we get

v5 −
1

5
v2 =

V5maxxPGA

(xPGA +Km5)
−

1

5

[

V2maxxPGAxATP

(xPGA +Km21)(xATP +Km22)

]

. (5.12)

The positivity of this is equivalent to the inequality

(xPGA +Km5)V2maxxATP

≤ 5(xPGA +Km21)(xATP +Km22)V5max. (5.13)

This can be rewritten as

xPGA ≤
5Km21(xATP +Km22)V5max −Km5V2maxxATP

V2maxxATP − 5(xATP +Km22)V5max
(5.14)

provided the denominator is non-zero. Call the right hand side of this equation
K and suppose that K > 0. Then if a solution initially satisfies the inequality
5
3L1 ≤ K it tends to zero as t → ∞. For the values of the parameters given in
Appendix B of [22] K is about 0.14.

6 A model including a dynamical description of

ATP

In [9] a model with diffusion is considered which is given by the equations (13)
of that reference. They define a system of reaction diffusion equations. This
system is denoted by MAd. Setting the diffusion coefficient equal to zero (or
restricting to spatially homogeneous solutions) gives a system of ODE different
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from (2.1)-(2.5) due to the inclusion of the concentration of ATP as a dynamical
variable. Call this ODE system MAdh. The explicit form of this system is

dxRuBP

dt
= k5xRu5PxATP − k1xRuBP, (6.1)

dxPGA

dt
= 2k1xRuBP − k2xPGAxATP − k6xPGA, (6.2)

dxDPGA

dt
= k2xPGAxATP − k3xDPGA, (6.3)

dxGAP

dt
= k3xDPGA − 5k4x

5
GAP − k7xGAP, (6.4)

dxRu5P

dt
= −k5xRu5PxATP + 3k4x

5
GAP, (6.5)

dxATP

dt
= −k2xPGAxATP − k5xRu5PxATP + k8(c− xATP) (6.6)

for a constant c. Adding equations (6.1) and (6.6) gives

d

dt
(xRuBP + xATP) = −k1xRuBP − k2xPGAxATP + k8(c− xATP). (6.7)

Let m = min{k1, k8}. Then

d

dt
(xRuBP + xATP) ≤ −m(xRuBP + xATP) + k8c. (6.8)

It follows that xRuBP + xATP can be bounded by the maximum of its initial
value and the quantity k8c

m
. Call this x̂RuBP. The evolution equation for xPGA

implies that this quantity is bounded by the maximum of its initial value and
x̂PGA = 2k1x̂RuBP

k6
. Similarly the quantities xDPGA and xGAP are bounded by

the maximum of their initial values and

x̂DPGA =
k2x̂PGAx̂RuBP

k3
, x̂GAP =

k3x̂DPGA

k7
, (6.9)

respectively.
Obtaining a bound for xRu5P is more complicated. Integrating the evolution

equation for xDPGA on the interval [s, t] and using the fact that xPGA and xDPGA

are bounded leads to an inequality of the form
∫ t

s

xDPGA(ξ)dξ ≤ C

(∫ t

s

xATP(ξ)dξ + 1

)

(6.10)

for a positive constant C. Similarly it follows from the evolution equation for
xGAP that

∫ t

s

xGAP(ξ)dξ ≤ C

(∫ t

s

xDPGA(ξ)dξ + 1

)

. (6.11)

Combining these two inequalities gives
∫ t

s

xGAP(ξ)dξ ≤ C

(∫ t

s

xATP(ξ)dξ + 1

)

. (6.12)
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By variation of constants the evolution equation for xRu5P implies

xRu5P(t) = xRu5P(0) exp

(

−k5

∫ t

0

xATP(s)ds

)

+3k4

∫ t

0

exp

(

−k5

∫ t

s

xATP(ξ)dξ

)

(xGAP(s))
5ds. (6.13)

for a positive constant C′. The first term is bounded and the second can be
bounded by an expression of the form

C

∫ t

0

exp

(

−C′

∫ t

s

xGAP(ξ)dξ

)

xGAP(s)ds. (6.14)

The integrand in the last expression can be written in terms of the derivative

of exp
(

−C′
∫ t

s
xGAP(ξ)dξ

)

. Thus this expression can be bounded by

C

[

1− exp

(

−C′

∫ t

0

xGAP(ξ)dξ

)]

. (6.15)

It follows that xRu5P is bounded.
Since solutions of the system MAdh are bounded they exist for all future

times. If a solution of MAdh has an ω-limit point on the boundary of S then
xATP is positive there. It follows, using the same argument as was applied to
the system MA, that if a solution of MAdh has an ω-limit point on the bound-
ary then all concentrations except that of ATP are zero there. The evolution
equation for xATP then shows that xATP = c at that point. Linearizing about
the point (0, 0, 0, 0, 0, c) shows that it is a hyperbolic sink.

Consider the stationary solutions of MAdh, i.e. the homogeneous stationary
solutions of the MAd model. Combining the first and fifth equations gives
x5GAP = (k1/3k4)xRuBP, just as in the system MA. In fact, as shown in [9], for a
stationary solution all other concentrations can be expressed in terms of xRuBP.
Note first that

xATP = c−
8k1xRuBP

3k8
−
k7
k8

(

k1xRuBP

3k4

)
1
5

. (6.16)

For an admissible solution the right hand of this equation must be positive. If
this is satisfied the concentrations other than xRuBP can be computed. The

result is that xPGA = 2k1xRuBP

k2xATP+k6
, xDPGA = k7xGAP

k3
+

5k4x
5
GAP

k3
, xRu5P =

3k4x
5
GAP

k5xATP
.

Substituting all these relations into the evolution equation for PGA gives an
equation for xRuBP alone. It is of degree ten and hence it is not easy to extract
information from it.

An alternative approach is the following. Another equation which can be
derived for stationary solutions of MAdh is

xGAP =

[

k7(k2xATP + k6)

k4(k2xATP − 5k6)

]
1
4

. (6.17)
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On the other hand, the equation (6.16) can be rewritten as

xATP = c−
8k4
k8

x5GAP −
k7
k8
xGAP. (6.18)

Thus we have a set of two equations for the two quantities xGAP and xATP

and solving these is equivalent to determining all stationary solutions of MAdh.
Write the equation (6.17) schematically as xGAP = F1(xATP). The function
F1 is decreasing on the region xATP > 5k6/k2 where it is real. Note that the
right hand side of (6.18) is a decreasing function of xGAP and thus this equation
can be inverted to write it schematically as xGAP = F2(xATP) for a decreasing
function F2 defined on the interval [0, c] with F2(c) = 0. Stationary solutions of
MAdh are in one to one correspondence with intersections of the graphs of F1

and F2. The function F1 is strictly convex since F ′′
1 > 0. On the other hand,

the function F2 is strictly concave. It follows that the two graphs can intersect
in at most two points for any given values of the parameters. If c < 5k6/k2
they do not intersect at all. For fixed values of the reaction constants if c is
sufficiently large the graphs intersect in two points.

For the system MAdh

dL1

dt
= −

1

2

(

k6 −
1

5
k2xATP

)

xPGA −
3

5
k7xGAP. (6.19)

Note that in this system xATP is bounded by c. Hence to make L1 a Lyapunov
function it suffices to require the inequality ck2 ≤ 5k6. Thus when this inequality
is satisfied all solutions converge to the origin as t→ ∞. For the system MAdh
the function L2 with α = 1

2 satisfies the same equation as it does for the system
MA. Hence the same conclusion can be drawn about solutions which converge
to zero.

One remark will be made on the behaviour of solutions of systems including
a diffusion term. In fact we can do this in any space dimension, adding diffu-
sion terms in any subset of the equations with any choice of positive diffusion
constants. Suppose that the domain of the spatial variables is a bounded region
Ω with smooth boundary and assume that Neumann boundary conditions hold.
Let L1 =

∫

Ω
L1. Then

dL1

dt
= −

∫

Ω

[

1

2

(

k6 −
1

5
k2xATP

)

xPGA −
3

5
k7xGAP

]

. (6.20)

When the inequality k6 − 1
5k2xATP ≥ 0 holds L1 is a Lyapunov function. In

particular, there are no stationary solutions, homogeneous or inhomogeneous,
when ck2 ≤ 5k6.

7 Conclusions

An important motivation for the work of [22] and [9] on models of the Calvin
cycle was to see if photosynthesis can work in different steady states. This led to
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the question of whether the relevant mathematical models admit more than one
stable positive stationary solution. For related work see also [21], [4], [13] and
[14]. It was already shown in [9] that a simple model using mass action kinetics
(the model called MA) never admits even one solution of this type. Depending
on the values of the reaction constants, either there is no positive stationary
solution at all or if there is it is unstable. This suggests that this is not a
very good model. Trying to understand more about what actually happens in
this model leads to the mathematical question of what the solutions departing
from a small neighbourhood of the stationary solution actually do or, more
generally, what the long-time behaviour of solutions is. Theorem 1 of this paper
provides partial answers to this question. When there is no stationary solution
the concentrations of all substrates tend to zero. When there is a stationary
solution some solutions have the property that all concentrations tend to zero
while others have the property that all concentrations tend to infinity (runaway
solutions). The latter alternative seems to be a further undesirable property of
the model.

The model MM-MA, which has a much larger number of unknowns, does
admit more than one stationary solution for certain values of the reaction con-
stants, as was shown in [9], and numerical results indicate that one of them
is stable. In this paper this existence result was reproduced by a more di-
rect method. The model MM has the same stationary solutions as the model
MM-MA and thus also admits two stationary solutions for certain choices of
parameters. Applying the same method to the related system MMZ with the
stoichiometric coefficients taken from [22] does not reveal the presence of mul-
tiple stationary solutions and it may be that in that case there are none. From
this point of view the models MM-MA and MM look better that the model
MA but in fact, as shown in Theorems 3 and 4 of this paper, both the models
MM-MA and MM exhibit runaway solutions. An intuitive explanation for the
existence of these solutions is that in all these models the concentration of ATP,
which is the energy source for the reactions, is not modelled explicitly. Instead
ATP is implicitly assumed to be plentiful and thus present at a constant level.
In [9] another model is considered where diffusion is taken into account and the
concentration of ATP is modelled dynamically. Restricting to spatially homoge-
neous solutions leads to a system of ODE called MAdh. Interestingly, we were
able to show here that all solutions of MAdh remain bounded, so that there
are no runaway solutions in that model. Although heuristically plausible this is
subtle to prove. For suitable values of the parameters this system also admits
two positive stationary solutions.

There seem to be few general results available on the boundedness of so-
lutions of systems of ODE arising from chemical reaction networks with mass
action kinetics. One theorem says, using the language of Chemical Reaction
Network Theory, that in a mass action system which is weakly reversible and
has only one linkage class all solutions are bounded [2]. Neither of the main hy-
potheses of that result hold for any of the systems considered in this paper but
perhaps some of the techniques used there might be adapted to give information
about models for the Calvin cycle. For weakly reversible systems it might be
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possible to prove that solutions do not have ω-limit points on the boundary
of the positive orthant. Information about this and relevant references can be
found in [3].

It is of interest to compare the conditions which allow the conclusions of the
theorems in this paper to be obtained with values of the parameters which are
biologically reasonable. To do this we start from the biological data collected in
Appendix B of [22]. In that paper values are given relating to Michaelis-Menten
kinetics. Assuming that Michaelis-Menten kinetics goes over into mass action
kinetics when the concentration of the substrate is small compared to that of
the enzyme it is possible to get values for the reaction constant in equations
(2.1)-2.5). The results are

(

V1max

Km1
,
V2maxxATP

Km21Km22
,
V3max

Km3
,
V4max

Km4
,
V5max

Km5
,
V6max

Km6
,
V13maxxATP

Km131Km132

)

= (3.78, 125, 10.1, 9.63, 4, 0.02, 4.52). (7.1)

With these values of the reaction constants the ratio k2

5k6
which plays a key role

in Theorem 1 is equal to 1250. Thus these values are well within the regime
where a positive stationary solution exists.

Is it true that for the system MA with k2 > 5k6 every solution either tends
to infinity, the origin or the positive stationary solution? This is not known but
since (2.1)-(2.5) is what is called a monotone cyclic feedback system it follows
from the main theorem of [15] that bounded solutions have ω-limit sets which
are no worse that those of a two-dimensional system. Using similar ideas it can
be shown that almost all bounded solutions converge to the stationary solution.
The system (2.1)-(2.5) satisfies ∂fi

∂xj
≥ 0 for i 6= j and is thus cooperative. It

is also irreducible in the sense that no non-trivial coordinate hyperplane is left
invariant by the Jacobian at any point. Using this the result on convergence of
all bounded solutions except for those whose initial conditions belong to a set
of measure zero follows from a theorem of Hirsch [11].

In this paper a variety of different results have been proved about the dy-
namics of solutions of mathematical models for the Calvin cycle. A number
of interesting open questions remain to be investigated. It would be desirable
to have rigorous results on stability of the stationary solutions and the (non)-
existence of periodic solutions. Inhomogeneous solutions of the system with
diffusion should be investigated following the initial work in [9]. It would be
good to extend the results of this paper to more general models of the Calvin cy-
cle such as those of [17] and [18]. Finally, the basic motivating question remains:
are there mathematical models of the Calvin cycle where it can be proved that
there are at least two homogeneous stable positive stationary solutions?

A Michaelis-Menten theory

Consider a simple reaction which converts one molecule of the species S (the
substrate) to one molecule of the substance P (the product). With mass action
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kinetics this leads to the equations ẋS = −kxS and ẋP = kxS . Suppose now
that this reaction is catalysed by an enzyme E. Then there is a reaction with
reaction constant k1 in which the substrate combines with the enzyme to form
a complex SE. The reaction constant for the process of dissociation of SE into
S and E will be denoted by k−1. Finally there is the reaction in which the
complex gives rise to the product with reaction constant k2 while setting free
the enzyme. This gives rise to the system

ẋS = −k1xSxE + k−1xSE , (A.1)

ẋSE = k1xSxE − (k−1 + k2)xSE , (A.2)

ẋE = −k1xSxE + (k−1 + k2)xSE , (A.3)

ẋP = k2xSE . (A.4)

The first three of these equations form a closed system and thus it is natural
to analyse it first and use the last equation to determine the evolution of the
concentration of the product afterwards, if desired. The above system is the
MM-MA version of the original simple reaction. The Michaelis-Menten kinetics
will now be derived on a heuristic level. Note first that the quantity xSE + xE
is conserved. Call it E0. Substituting the relation xE = E0 − xSE into the first
two evolution equations gives a closed system for xS and xSE :

ẋS = −k1E0xS + (k−1 + k1xS)xSE , (A.5)

ẋSE = k1E0xS − (k−1 + k1xS + k2)xSE . (A.6)

Now introduce τ = ǫt, x̃SE = ǫ−1xSE and Ẽ0 = ǫ−1E0 for a constant ǫ. This
gives

x′S = −k1Ẽ0xS + (k−1 + k1xS)x̃SE , (A.7)

ǫx̃′SE = k1Ẽ0xS − (k−1 + k1xS + k2)x̃SE (A.8)

where the primes denote derivative with respect to τ . In the last system it
is possibly to formally pass to the limit ǫ → 0, corresponding to a very small
amount of enzyme. In the limit the second equation reduces to the algebraic
equation

x̃SE =
k1Ẽ0xS

k−1 + k1xS + k2
. (A.9)

Substituting this back into the evolution equation for xS and gives the effective
Michaelis-Menten equation

x′S = −
k1k2Ẽ0xS

k1xS + k−1 + k2
. (A.10)

It can then be computed that in this set-up x′P = −x′S .
This type of discussion is quite standard and the reason it is reproduced here

is to illuminate the relations between the three types of kinetics (MA, MM-MA
and MM) by an explanation of the simplest example. There is a one to one
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correspondence between stationary solutions of the systems MM-MA and MM,
as will now be shown. If a stationary solution (xS , xSE) of the system MM-MA
is given then the equation (A.9) is satisfied. Hence the equation (A.10) holds
and a stationary solution of the system MM is obtained. Conversely, suppose
that a solution (xS , x̃SE) is given. Then a stationary solution of the system
(A.5) is obtained. Defining xE = E0−xSE for a positive constant E0 completes
it to a stationary solution of the system MM-MA.

B A special class of matrices

This appendix is concerned with the algebraic properties of some matrices of a
special form which appear in this paper. Let A be an n× n matrix with entries
aij . Suppose that aii < 0 for each i, that aij > 0 for j = i − 1 mod n and that
aij = 0 otherwise. Suppose further that (−1)n+1 detA > 0. The matrix A+ λI
is positive for a sufficiently large real number λ, i.e all its elements are positive.
By the Perron-Frobenius theorem [16] it has a unique eigendirection spanned
by a positive vector. Let p be an eigenvector of this type with components
pi. The corresponding eigenvalue is positive. Let it be denoted by β. Another
consequence of the Perron-Frobenius theorem is that all other eigenvalues of
A + λI have modulus smaller than β. In particular the real part of any other
eigenvalue is smaller than β. The vector p is an eigenvector of A with eigenvalue
α = β − λ and all other eigenvalues of A have real part smaller than α.

If A is a matrix of the above special form then it can be shown that the
matrix B = A−1 is a positive matrix. One way of proving this as follows. Let
x be a vector in Rn and consider the equation Ax = y. Inverting the matrix
is equivalent to solving this equation for x. The equation can be written in
components as

aiixi + ai,i−1xi−1 = yi; 1 ≤ i ≤ n (B.1)

where the indices are to be interpreted modulo n. Hence

ai+1,ixi = (−ai+1,i+1)xi+1 + yi+1. (B.2)

Note that the coefficients in this equation are positive. By substituting these
equations into each other successively with i increasing from one to n it is
possible to obtain an equation of the form:

(

∏

i

ai,i+1

)

x1 =

(

∏

i

(−aii)

)

xn +
∑

ciyi (B.3)

where the coefficients ci are positive. Rearranging this gives

(−1)n+1(detA)xn =
∑

ciyi. (B.4)

Any other xi can be determined in an analogous way. The determinant of A is
equal to

∏

i aii+(−1)n+1
∏

i ai,i+1. Putting these facts together gives the proof
of the desired statement.

36



It can be concluded from the Perron-Frobenius theorem that B has a unique
eigendirection spanned by a positive vector. This is also an eigenvector of A
and so must be proportional to p. The corresponding eigenvalue is α−1 and is
positive. Hence α is positive.
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