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ABSTRACT
Measurements of gravitational waves from the inspiral of a stellar-mass compact object into a massive black

hole are unique probes to test General Relativity (GR) and MBH properties, as well as the stellar distribution
about these holes in galactic nuclei. Current data analysistechniques can provide us with parameter estimation
with very narrow errors. However, an EMRI is not a two-body problem, since other stellar bodies orbiting
nearby will influence the capture orbit. Any deviation from the isolated inspiral will induce a small, though
observable deviation from the idealised waveform which could be misinterpreted as a failure of GR. Based on
conservative analysis of mass segregation in a Milky Way like nucleus, we estimate that the possibility that
another star has a semi-major axis comparable to that of the EMRI is non-negligible, although probably very
small. This star introduces an observable perturbation in the orbit in the case in which we consider only loss
of energy via gravitational radiation. When considering the two first-order non-dissipative post-Newtonian
contributions (the periapsis shift of the orbit), the evolution of the orbital elements of the EMRI turns out to
be chaotic in nature. The implications of this study are twofold. From the one side, the application to testing
GR and measuring MBHs parameters with the detection of EMRIsin galactic nuclei with a millihertz mission
will be even more challenging than believed. From the other side, this behaviour could in principle be used as
a signature of mass segregation in galactic nuclei.

1. MOTIVATION

A stellar mass black hole or neutron star executes∼ 105−6

orbits during the final year of inspiral toward a∼ 106 M⊙ su-
permassive black hole (MBH). The large number of cycles
implies that a phase-coherent measurement of the inspiral,
achievable through detection of low frequency gravitational
waves, would be a tremendously powerful probe of the space-
time near a black hole (Amaro-Seoane et al. 2007; Hughes
2009). Among other things, it would enable a precise determi-
nation of the spin of the supermassive black hole, and a test of
General Relativity that is independent of current constraints
derived from pulsar timing data.

There is no foreseeable instrument sensitive enough to de-
tect gravitational waves from extreme mass ratio inspirals
(EMRIs) over time scales comparable to the orbital period. As
a consequence, realizing the astrophysical and gravitational
physics promise of EMRIs requires an assurance that the in-
spiral can be accurately modeled over many orbits using tem-
plates calculated by solving the 2-body problem in General
Relativity (for a review, see e.g., Barack 2009). It is therefore
necessary to assess whether gas, stars or other compact ob-
jects in the vicinity, could significantly perturb EMRI trajec-
tories. In the case of gas, perturbations to stellar mass black
holes or neutron stars6 are securely negligible provided that
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pact object itself could form a dynamically significant disceven if the back-
ground accretion flow is of low density(Zalamea, Menou & Beloborodov
2010).

accretion on to the black hole occurs in a low density, radia-
tively inefficient flow (Narayan 2000). Such flows are much
more common than dense accretion discs, whichwould yield
observable phase shifts during inspiral (Kocsis et al. 2011), at
least at the relatively low redshifts where EMRIs may be ob-
served.

In this Letter, we quantify the nature and strength of possi-
ble perturbations from point mass perturbers: low mass stars
or compact objects in tight orbits around the supermassive
black hole. Any perturbers are unlikely to orbit close enough
to the EMRI to undergo strong interactions, so the regime of
interest is one where the third body is relatively distant and the
interaction weak. The Newtonian analog of this problem has
been studied extensively in the context both of Solar System
satellite evolution, and for transit timing variations of extra-
solar planets (Dermott, Malhotra & Murray 1988; Agol et al.
2005; Holman & Murray 2005; Veras, Ford & Payne 2011).
In Newtonian gravity, perturbations are strong only at the lo-
cation of mean motion resonances, and these have the effect
of inducing small jumps in eccentricity upon divergent res-
onance crossing. This would already be interesting for the
EMRI problem, since the jumps in eccentricity would result
in a perturbation to the gravitational wave decay rate, and an
eventual dephasing of the waveform. However, as we will see,
the inclusion of post-Newtonian corrections changes the evo-
lution qualitatively. Computing trajectories that include the
two first-order non-dissipative post-Newtonian corrections,
we find evidence of dependence on initial conditions in the
evolution of the perturbed inner binary, such that arbitrarily
small variations in the initial orbit lead to significantly differ-
ent future behaviour.

2. ASTROPHYSICAL LIMITS ON PERTURBERS

Is it likely that a star or compact object will be present close
enough to perturb the orbit of an EMRI? Excluding low mass
MBHs (M• < 106 M⊙), where the stellar tidal disruption limit
comes into play, the existence of perturbers is not excludedby

http://arxiv.org/abs/1108.5174v2


2

FIG. 1.— Estimates for the semi-major axis of the innermost perturbing
body around a massive black hole, scaled to the hole’s gravitational radius
Rg = GM•/c2. The red lines show the location of the innermost star, esti-
mated assuming that stars of mass 0.3 M⊙ follow a single power-law cusp of
indexγ in a galaxy on theM•-σ relation. The green line shows the tidal dis-
ruption limit for such stars. The blue lines show the average(upper) and 1%
probability (lower) location of the next nearest EMRI, assuming uncorrelated
inspirals at a rate of 10−6 yr−1.

elementary arguments. Neither, however, is it easy to calcu-
late the probability distribution of perturbers, whose proxim-
ity will depend upon the details of discreteness and relativis-
tic effects very close to the MBH, and mass segregation and
EMRI injection mechanisms in galactic nuclei (Preto et al.
2004; Freitag et al. 2006; Amaro-Seoane et al. 2004).

Rather than face these difficulties, we limit ourselves here
to order of magnitude estimates for the likely location of the
nearest star and compact object. For stars, assumed to be of a
single massM∗, we assume a cusp-like distribution with den-
sity profileρ∝ R−γ , extending from the MBH to its radius of
influenceRBH = GM•/σ

2. Hereσ is the velocity dispersion of
the galaxy. Using the fact that the enclosed mass,M(R) ≃ M•

at R = RBH, we find that the expected radius of the innermost
star,R1, is,

R1

Rg
=

(
M∗

M•

)1/(3−γ)( c
σ

)2
, (1)

whereRg = GM•/c2. This formula yields an explicit esti-
mate for R1 once we adopt a relation betweenM• and σ
(Gültekin et al. 2009). For the location of the next nearest
compact object (or EMRI), we use an even simpler approach.
We calculate the expected semi-major axis for uncorrelated
inspirals due to gravitational radiation (Peters 1964), assum-
ing near-circular orbits and ratėNEMRI. Finally, we plot the
tidal limit (e.g. Rees 1988) for 0.3 M⊙ main-sequence stars.

Figure 1 shows these estimates as a function ofM•. For a
standard cusp slopeγ = 1.75, there is likely to be a low mass
stellar perturber within a few hundredRg for M• > 106 M⊙.
Similarly, if the EMRI rate is as high as 10−6 yr−1, there
is a significant chance (at least a few percent) that a sec-
ond compact object will be present between 10− 102 Rg for

106 M⊙ < M• < 107 M⊙. Clearly, these crude estimates
do not demonstrate thatmost EMRIs will be perturbed by
third bodies, but they do suggest that perturbers may be close
enough in some galaxies to motivate detailed considerationof
their dynamical effects.

3. METHODS

We are interested in the secular effect of a star acting on
an EMRI which will describe thousands of orbits in the de-
tector bandwidth and slowly decay. The kind of effects on
the wave that we are looking at are tiny, though detectable,
and the mass difference between the two binaries (the MBH-
EMRI and the MBH-star systems) is huge. We need there-
fore a numerical tool capable of integrating the plunging orbit
of the EMRI while inducing a minimal error in the integra-
tion, since data analysis techniques can detect e.g. eccentric-
ity differences of the order∆e ∼ 10−3 (Amaro-Seoane et al.
2010; Porter & Sesana 2010; Key & Cornish 2011). We
hence have chosen to use a directN−body approach (Aarseth
1999, 2003), theplanet code, written by Aarseth7. This
is the most expensive method because it involves integrat-
ing all gravitational forces for all three bodies at every time
step, without making any a priori assumptions about the sys-
tem. Our approach employs the improved Hermite integration
scheme, which requires computation of not only the acceler-
ations but also their time derivatives. Since we are simply in-
tegrating Newton’s equations directly, all gravitationaleffects
are included. For the purpose of our study, nonetheless, we
have included relativistic corrections to the Newtonian forces
(the forces can be found in the same page in thetoy code8).
This was first implemented in a direct-summationN−body
code by Kupi et al. (2006). For this, one has to add pertur-
bations in the integration, so that the forces are modified by

F =

Newt.
︷︸︸︷

F0 +

periapsis shift
︷ ︸︸ ︷

c−2F2
︸ ︷︷ ︸

1PN

+c−4F4
︸ ︷︷ ︸

2PN

+

energy loss
︷ ︸︸ ︷

c−5F5
︸ ︷︷ ︸

2.5PN

+

neglected
︷ ︸︸ ︷

O(c−6) (2)

In the last equation “PN” stands for post-Newtonian. We note
that the perturbations do not need to be small compared to the
two-body force (Mikkola 1997). The expressions forF2, F4
andF5 can be found in Blanchet & Faye (2001), their equation
7.16.

4. DISSIPATION OF ENERGY AND RESONANCES

We first analyse the system by contemplating only the rel-
ativistic effect of dissipation of energy; i.e. our simulations
only incorporate the 2.5 PN correction term. We stop the in-
tegration when the separation between the stellar BH and the
MBH is a• = 5RSchw, which approximately corresponds to the
limit where the PN approximation is not valid anymore. The
inspiral down to this distance takes typically in our simula-
tions some 440,000 orbits.

In Fig.(2) the test stellar black hole of massm• = 10M⊙ has
been initially set in such an orbit that it is totally embedded in
a LISA-like detector band (i.e. with an orbital period< 105

secs, namelyP• = 6× 103 secs) and is hence an EMRI; its
initial semi-major axis isa•, i ≃ 1.45×10−6 pc and its eccen-
tricity e•, i = 0.05. The perturber, a star of massm⋆ = 10M⊙ is

7 who, as is his admirable custom, has made the code publicly available
http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm

8 ftp://ftp.ast.cam.ac.uk/pub/sverre/toy/README

http://www.ast.cam.ac.uk/~sverre/web/pages/nbody.htm
ftp://ftp.ast.cam.ac.uk/pub/sverre/toy/README
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FIG. 2.— Upper panel: Results for the fiducial case using the direct-
summationN−body integrator. The mass of the MBH isM• = 106 M⊙,
the mass of the stellar black hole ism• = 10M⊙. See text for more details.
Lower panel: Same configuration but with an initial inclination of the star
of i⋆ = 45◦ instead of 30◦, i.e. the inclination triggers the Kozai mechanism,
sincei⋆ > 39.2◦ and the orbit is prograde. As mentioned in the previous case,
even if the changes in eccentricity cannot be directly seen in the curve, they
are of the order∆e• ∼ 10−3.

initially on an orbit in which the semi-major axis has the value
a⋆, i ≃ 4.1×10−6 pc and the eccentricity atT = 0 ise⋆, i = 0.5.
The inclination of the system EMRI – star was set to 30◦ ini-
tially in the upper panel. This constitutes our reference sys-
tem.

In the figure, the straight lines mark the conditionP⋆/P• =
A, with A an integer,P⋆ the period of the star around the MBH
andP• the period of the EMRI around the MBH; i.e. where
the resonances occur. The first three resonances have an im-
pact one• which can be seen on the plot; later resonances do
also affecte•, with∆e• ∼ 10−3. We also note that in the upper
panel one can see in-between smaller jumps; they correspond
to higher-order resonances,P⋆/P• = 5.5, 6.5 and 7.5.

We made the choice for an initial inclination of 30◦ to avoid
another effect that introduces a change in the eccentricity. In
the lower panel we haveexactly the same system but fori⋆ =
45◦. With this value, and the fact that the orbit is prograde, the
Kozai oscillation of eccentricity is present (Kozai 1962).Even
if the eccentricity of the EMRIe• suffers the characteristic
Kozai oscillations, the loci for the resonances still fulfill the
conditionP⋆/P• = integer.

5. DOES THE FLAP OF THE STAR AT APOAPSIS SET OFF A
TORNADO AT PERIAPSIS?

In this subsection we address numerically the effect of in-
cluding the relativistic periapsis shift along with the dissipa-
tion of energy; i.e. the set of corrections as specified in Eq.(2).
As we show below, the effect of the periapsis shift changes
completely the evolution of the system. In Fig.(3) we show
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FIG. 3.— Fiducial case with energy dissipation and periapsis shift correct-
ing terms for different initial inclinations of the perturber. The solid (red)
curve corresponds toi⋆ = 30◦, the long-dashed (green) toi⋆ = 30.001◦, the
short-dashed (blue) corresponds to the fiducial case plus abillionth of a de-
gree,i⋆ = 30.0000000001◦ and the dotted (magenta) to the reference plus a
10−13 of a degree,i⋆ = 30.0000000000001◦ .

four cases. One of them corresponds to the reference system
but taking into account the periapsis shift. We only display
these examples but note that the behaviour is also chaotic9

for other nearby choices ofi⋆. When using an initial inclina-
tion of i⋆ = 45◦, which corresponds to the same situation as
in the lower panel of Fig.(2) but taking into account the pe-
riapsis shift, along with another case which is identical but
for i⋆ = 45.0000000001◦, we find also a chaotic result which
moreover eliminates the secular Kozai oscillation ofe.

We have systematically studied this chaotic behaviour by
running hundreds of simulations in which we methodically
increase in minimal differences an initial dynamical orbital
parameter such as the inclination, semi-major axis or eccen-
tricity. In all cases and parameters the evolution corroborates
the chaotic behaviour of the system. We have also tested a
mass for the perturbing star of 5 and 1.44M⊙, as well as dif-
ferent values ofe⋆ (0.1, 0.3, 0.7 and 0.9), with similar results.

In order to fence in the region within which the system is
chaotic, we systematically increase the semi-major axis ofthe
star and run the same experiment. We start with the same dif-
ference in inclination at a slightly larger semi-major axis, and
then regularly increase it until we reach one order of mag-
nitude over the fiducial case, as we depict in Fig.(4). The
chaotic behaviour ceases at about one order of magnitude of
the initial value ofa⋆ in the reference case.

6. QUANTIFYING THE DEPENDENCE ON INITIAL CONDITIONS
OF THE SYSTEM

In this section we present a way of characterizing the rate of
separation of infinitesimally close trajectories systematically.
To achieve this we compare our fiducial model with another
case in which we set up the EMRI in an (almost) impercepti-
bly different initial orbit (the initial difference is 2×10−10 pc,
while the objects are moving on the same ellipse) and keep the
same initial conditions of the MBH and the perturber. Hence
EMRI in the second case differs only from the reference case
slightly and has an initial distance separation ofr0. We say
that the two models are in phase provided that

9 When we use the word, we do not follow the rigorous mathematical
definition of chaos. We mean a strong dependence on the initial conditions.
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FIG. 4.— Same as in Fig.(3) but we set initially the perturber at alarger
and larger initial semi-major axis. From the top to bottom and from the left
to the right, the semi-major axis of the perturber isa⋆ = 4×10−6 pc, 6×10−6

pc, 9× 10−6 pc and 4.07243× 10−5 pc. Solid lines correspond toi⋆ = 30◦

and dashed lines toi⋆ = 30.0000000001◦ .

r ≈ r0. (3)

If the two different realizations reach a separation

r ≈ 2a• (4)

the EMRI bodies are moving out of phase, on entirely un-
related orbits. We thence are able to estimate a characteris-
tic timescaleτdeph for the system to become out of phase. In
Fig.(5) we display the separation of the two systems for differ-
ent distances to the perturber. From these figures we can mea-
sure the value of a characteristic timescaleτdeph for a given
a⋆.

From the data points obtained in the upper panels of Fig.(5)
we can then derive the relation displayed in the lower panel.
For large enough distances, of the order of∼ 10−5 pc the two
timescales converge and the system becomes deterministic.

7. CONCLUSIONS

In this paper we have addressed the role of a perturbation
on an EMRI by a nearby star. The system depends extremely
on minimal changes in the initial conditions (as small as a
10−9 part in the inclination) lead to a very different dynami-
cal evolution. In all cases, however, the Kozai mechanism is
washed out by the periapsis shift, as one can expect (see e.g.
Holman et al. 1997; Blaes et al. 2002). For distances of the
order of a⋆ ∼ 10−5 pc the system enters the chaotic regime,
for perturbing masses as small as 1.44M⊙. While we can-
not state clearly whether this will be a common feature for
EMRIs, since the different dynamical and relativistic phe-
nomena involved in the problem are many and not straight-
forward (see for a review Amaro-Seoane et al. 2007 and also
Amaro-Seoane 2011 for a dedicated review of the dynamics),
it seems plausible that for a Milky Way-like galaxy a star can

be at such a radius from the EMRI system that it will signif-
icantly perturb it. From the standpoint of detection and data
analysis, this is yet another complication of the problem and
could even lead to the misinterpretation that nature’s GR isnot
what we believe it to be. On the other hand, from the point of
view of stellar dynamics, the detection of one of these systems
would shed light on our current understanding of galactic dy-
namics in general and mass segregation in particular.
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FIG. 5.— Upper panels: From the left to the right and from the top to the
bottom we show the separationr for a increasing separation of the perturbing
star of 3.5× 10−6, 3.9× 10−6, 4.375× 10−6, and 4.5× 10−6 pc. The dashed
line shows the critical distance 2a•. Note the different timescales in the lower
panels.Lower panel: τdephagainst distance to the perturber normalized to the
gravitational radiation timescale of the isolated systemτinsp; i.e. the merger
timescale without the perturber acting onto the binary MBH-EMRI.
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