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In light matter interfaces based on the Faraday effect quite a number of quantum information
protocols have been successfully demonstrated. In order to further increase the performance and
fidelities achieved in these protocols a deeper understanding of the relevant noise and decoherence
processes needs to be gained. In this article we provide for the first time a complete description of
the decoherence from spontaneous emission. We derive from first principles the effects of photons
being spontaneously emitted into unobserved modes. Our results relate the resulting decay and noise
terms in effective equations of motion for collective atomic spins and the forward propagating light
modes to the full atomic level structure. We illustrate and apply our results to the case of a quantum
memory protocol. Our results can be applied to any Alkali atoms, and the general approach taken
in this article can be applied to light matter interfaces and quantum memories based on different
mechanisms.
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I. INTRODUCTION

The strong and coherent interaction of light with mat-
ter is a prerequisite for many approaches towards quan-
tum information technologies. In particular long distance
quantum communication relies on efficient light-matter
interfaces which allow for a coherent transfer of quantum
information from light to stationary carriers and back
[1]. Also architectures for quantum computations based
on light will depend on efficient light-matter interfaces
for buffering and storing quantum information carried
by light.

Optically dense atomic ensembles have proven to be a
particularly promising technique for achieving strong co-
herent light matter interaction. Thereby quantum states
of propagating pulses of light are mapped onto states
of collective atomic (pseudo) spins. This essentially re-
quires a mechanism to fiducially and reversibly convert
photons into ground state spin excitations with long co-
herence times. Several mechanisms have been explored
for realizing such an atomic ensemble based light matter
interface, e.g. Raman transitions, Electromagnetically
Induced Transparency [2–4], Spin Echoes [5], and Fara-
day rotation, see [6–8] for comprehensive reviews. The
Faraday effect — which will be the topic of this article —
consists in the rotation of light polarization depending on
atomic spin polarization, and vice versa. In the context
of light matter interface it has been successfully used to
create squeezed states for spin [9, 10] and light [11, 12],
entangled states of collective atomic ensembles [13, 14],
quantum teleportation from states of light to atoms [15],
and quantum memory for light [16, 17]. Apart from the
light-matter interface the Faraday interaction has impor-
tant applications also in continuous nondemolition mea-
surement of atomic spin ensembles [18, 19], quantum-

state control/tomography [20], and magnetometry [21–
23].

These protocols can all be understood in terms of a
rather simple model of the Faraday interaction. In this
model atoms are assumed to have a spin 1/2 ground state
and a spin 1/2 excited state [24]. Far off resonant light
probing this dipole allowed transition will then experi-
ence a polarization rotation due to the dipole selection
rules for such a 1/2 → 1/2 transition. By the same effect
the atomic polarization will be rotated by light. For far
off resonant light atoms will be only very weakly excited
such that this birefringence of the atomic medium can
be understood as being due to the polarizability of the
atomic ground states alone [25, 26]. The coherent inter-
action of light with atoms arises from the real part of the
atomic polarizability. By the Kramers-Kronig relation it
is clear that the corresponding imaginary part will neces-
sarily be non-zero and add some incoherent effects to the
dynamics. Sure enough, these effects can be understood
as resulting from spontaneous emission events. They will
cause both, decoherence of light (absorption) and deco-
herence of atoms (spin decay). While both effects can be
kept small as compared to the coherent dynamics, they
are ultimately unavoidable on a fundamental level.

Both decoherence effects — light losses and spin de-
cay — can be included on the level of the simple spin 1/2
model giving a qualitative understanding of the trade-
off between coherent and incoherent contributions to the
light matter interaction [27–29]. However, in view of the
experimental achievements it will become increasingly
important to further gain a detailed and more quanti-
tative understanding of these effects and the resulting
tradeoff. A theoretical description based on a realistic
atomic level scheme, such as the one shown in Fig. 1,
and starting from first principles has not been given so
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FIG. 1. Level structure of Cesium. We assume that our laser
light is blue detuned by an amount −∆ from the transition
F = 4→ F ′ = 5

far. In this article we will provide such a description.

From the standard dipole interaction of a single multi-
level atom with the three dimensional electromagnetic
field we consistently derive effective equations of mo-
tion for the collective ground state spin and the forward-
propagating light modes relevant to the description of
the light matter interface. In the derivation we will keep
track of the effects of events where photons are emitted
to any other than the forward direction. This eventually
adds decay and noise terms to the equations of motions
whose origin and dependence on the details of the atomic
level structure are fully understood and explained for the
first time in the present article. Important steps towards
a deeper understanding have been taken before in [30].
The insight gained by the detailed knowledge of losses
and decoherence will enable an optimized operation of
the light matter interface based on the Faraday interac-
tion, and therefore contribute to boost its performance
and fidelity.

The article is organized as follows: In section II we
will briefly summarize the Faraday rotation effect and
connect it to the atomic polarizability. In section III we
give a description of the coherent part of the dynam-
ics, deriving effective equations of motion for collective
atomic spins and forward propagating modes. We will
write down and solve these equations of motion also for
canonical operators for light and atoms, and illustrate
the working principle of a quantum memory protocol. In
section IV we arrive at the main results of this article
and include in our derivation spontaneous emission and
decoherence starting from first principles. The result-
ing equations of motion can again be expressed and inte-
grated in terms of canonical operators. As an illustration
we apply the result to the quantum memory protocol. In
section V we provide a self-contained executive summary
of our results. Readers just interested in applying the

correct model for decoherence in the Faraday based light
matter interface can directly consult this section.

II. EFFECTIVE INTERACTION

We consider alkali atoms, which have a single electron
outside a closed shell. This electron will be in a S1/2-
state, giving two stable ground levels: a higher - and a
lower hyperfine manifold, describing respectively a state
where the electronic spin J = 1

2 (in this article we put
~ = c = 1) is parallel to the nuclear spin I giving a total
of F = I + 1

2 and a state where the spins are pointing

opposite giving F = I − 1
2 , see Fig. 1 where we show

the level structure of the specific case of Cs where I =
7
2 so that F = 3, 4. There will be two dipole-allowed
transitions to the excited states P1/2 and P3/2, each of
which consists of several hyperfine states with spin F ′

(primed variables always refer to electronically excited
states). In this article we will mainly consider the case
where atoms are initially prepared in the S1/2(F = I +
1
2 )-state and are driven on the D2-transition to P3/2 as

indicated in Fig. 1 for the example of 133Cs.
In the standard dipole and rotating wave approxima-

tion the coupling of light to atoms is given by

Hint = −(d(+)E(−) + d(−)E(+)).

where E(±) and d(±) are the positive/negative frequency
component of, respectively, the electric field E = E+ +
E− and the dipole moment operator d = d+ + d−. We
will be interested here in the interaction with far off-
resonant light only. In this case the excited states will be
only very weakly populated. In the limit of low satura-
tion excited states can be adiabatically eliminated (Ap-
pendix A), and the light-atom interaction is described by
the effective Hamiltonian

Heff
int = E(−)αE(+). (1)

We have here introduced the polarizability tensor opera-
tor

α = −
∑
F ′

PgdPF ′dPg
∆F ′

, (2)

where the projection operators are defined as

PF =
∑
m

|F,m〉〈F,m|, Pg =
∑
F

PF , (3)

PF ′ =
∑
m′

|F ′,m′〉〈F ′,m′|, Pe =
∑
F ′

PF ′ , (4)

such that Pg + Pe = 1. Here ∆F ′ is the detuning of the
light from the S1/2F → P3/2F

′ transition, see Fig. 1.
The polarizability operator α in (2) has to be under-
stood as a 3× 3 matrix whose Cartesian components are
given by αij = −

∑
F ′ PgdiPF ′djPg/∆F ′ . Each of these
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components is an operator acting exclusively within the
subspace of ground states S1/2(F = I ± 1

2 ).
The effective interaction in (1) describes second or-

der processes where a photon is absorbed and reemitted,
while the atom makes a transition from a ground to an
excited state and back again to a ground state. In such
a process the initial and final ground states can either
have the same or different total spin F = I ± 1

2 . In
order to describe processes involving transitions within
the F -subspace we introduce HFF = PFH

eff
intPF . Tran-

sitions between F ↔ F − 1 we describe by HFF−1 =
PF−1H

eff
intPF + PFH

eff
intPF−1. In general such second or-

der processes could also give rise to changes of F by 2,
but since we are considering S1/2 ground levels there are
only two ground levels, e.g. as shown in Fig. 1 for Cs
F = 3, 4.

Consider first transitions within one F -subspace as de-
scribed by the Hamiltonian HFF . Due to the fact that
we have conservation of angular momentum in the in-
teraction, we can decompose the polarizability operator
αFF = PFαPF into its tensor parts [20, 26], namely

αFF = −d
2
0

∆
(a0 + ia1j×+a2Q). (5)

Here the dipole matrix element is defined as d2
0 = (2J ′+

1)|〈J ′‖d‖J〉|2 with J and J ′ being the electronic angular
momenta of the ground and exited states, respectively
(see Appendix B), ∆ is the detuning from resonance as
shown in Fig. 1. The three terms are the scalar, vec-
tor and second rank tensor part, respectively. j is the
spin operator for the total ground state spin, that is
j2|F,m〉 = F (F + 1)|F,m〉. In the vector component
we use here the short hand notation

j× =

 0 jz jy
jz 0 −jx
−jy jx 0

 ,

which is equivalent to taking the cross product of j with
the vector to the right and then the scalar product with
the vector to the left. One can use vector product prop-
erties in order to transform the expression as follows
iE(−) · [j×E(+)] = −i j · [E(−) ×E(+)]. The latter form
could be more convenient since it is just a scalar prod-
uct of the spin and a vector for light which resembles the
Stokes operator characterizing the polarization of light,
as will be discussed in more detail below. The second
rank tensor part Q is defined component-wise as

Qij = −(jijj + jjji) + δij
2

3
j2.

The tensor decomposition of α is given in detail in Ap-
pendix B where we also give the explicit expressions for
the real coefficients a0, a1 and a2 and their dependence
on the detuning. In Fig. 2 we show these coefficients for
the case of Cs. Note in particular that the second rank
tensor polarizability vanishes for large detunings.

FIG. 2. a and b coefficients as functions of detuning −∆
in MHz for Cesium with F = 4; a0 (thick), a1 (medium),
a2 (thin), b1 (thick dashed), b2 (thin dashed). In the limit of
high detuning we obtain a0 → 1

6
, a1 → 1

48
, b1 → 1

16
√
5
, and

{a2, b2} → 0.

For the other case where the final spin state has a
different total spin than the initial state, we have

αFF±1 = −d
2
0

∆
(b1T

(1) + b2T
(2)). (6)

The coefficients b1 and b2 and the irreducible tensor op-
erators T(1) and T(2) are given in Appendix B. We do
not have a scalar tensor component here because in these
processes the spin state is changed such that the corre-
sponding Hamiltonian cannot have a component propor-
tional to the identity operator i.e. a scalar component.
In Fig. 2 we show b1 and b2 as a function of the detuning.
Note that b1 and b2 have the same scale as a1 and a2,
respectively.

The effective interaction Hamiltonian (1) describes
elastic Rayleigh and inelastic Raman scattering of light
on atoms. It is a Hermitian operator and as such gives
rise to a fully coherent evolution for the overall system
comprised of the atom and the quantized electromagnetic
field. The quantum coherent effects resulting from this
effective interaction have been widely used in the field of
quantum information, both theoretical and experimental
[16]. Note however, that within the regime of its valid-
ity — that is far below saturation of excited states —
the interaction Hamiltonian (1) still contains and cor-
rectly describes the effects of spontaneous emission on
both atom and light: If light is treated as a reservoir and
we trace over the random position of the atoms we will
show that we can describe spontaneous emission which
leads to decoherence effects within the ground state lev-
els. Vice versa, the atom (or an ensemble of atoms) can
provide an effective absorptive medium for light. In the
following sections we will first treat the coherent inter-
action and then include the decoherence effects resulting
from the effective interaction Hamiltonian (1).
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FIG. 3. The spin polarized atomic sample interacts with the
off-resonant light field EF and non-forward modes ES in vac-
uum states.

III. COHERENT INTERACTION

A. Interaction with a single atom

We consider now a situation as shown in Fig. 3. A
cloud of atoms interacts with an incoming pulse of light
described by the forward propagating electric field EF,
and we are interested in the coherent evolution of the
spin of atoms and the forward propagating field modes
[31, 32]. The total electric field E = EF +ES will be the
sum of forward propagating modes and the remaining,
non-forward propagating modes ES, cf. Fig. 3. These
modes will be treated as a reservoir in the later sections
and give rise to the decoherence effects to be discussed
there.

For the moment we will thus restrict ourselves to light
propagating along the z-direction. In principle the for-
ward modes will also experience some spreading [33, 34],
but here we take the opening angle to be roughly zero,
and use a one dimensional description of EF(z). The sep-
aration into a forward propagating mode EF described by
a one dimensional equation of motion and a set of non
forward modes ES is further justified in Ref. [6, 30] and is
valid if the Fresnel number of the ensemble is much larger
than unity. In this model the field is described in terms
of position dependent annihilation (creation) operators,
defined by

aσ(z, t) =

∫
dk

2π
akσ(t)eikz, (7)

where σ = x, y labels the transverse polarizations. These

operators obey [aσ(z, t), a†σ′(z′, t)] = δσσ′δ(z − z′). In
terms of ax(z, t) and ay(z, t) the Stokes operators Si(z, t)
can be introduced

Sx =
1

2
(a†xax − a†yay), Sy =

1

2
(a†xay + a†yax), (8)

Sz =
1

2i
(a†xay − a†yax), S0 =

1

2
(a†xax + a†yay), (9)

which are a convenient tool to describe the polarization
state of light propagating along the z-direction. They
obey the commutation relations for an angular momen-
tum density [Si(z), Sj(z

′)] = iδ(z − z′)εijkSk(z).

Each part in the decomposition (5) of the atomic polar-
izability operator will give rise to a term in the effective
interaction Hamiltonian, such that HFF = H(0) +H(1) +
H(2) corresponding to the scalar, vector and tensor parts
respectively. These terms can be conveniently expressed
and interpreted in terms of Stokes operators. The scalar
Hamiltonian — the tensor-0 term is

H(0) = ga0S0. (10)

Here we have defined g = −d
2
0

∆
ω0

ε0A
where ∆ is the de-

tuning from resonance as shown in Fig. 1, ω0 the atomic
transition frequency, and A the beam cross section. It
can be interpreted as a Stark shift, which equally shifts
all atomic energy levels proportional to the light inten-
sity. Conversely it can also be interpreted as an equal
shift of the frequency for all light modes (off-resonant
with a detuning ∆), that is as a new index of refraction
seen by light.

The vector Hamiltonian, which for our purpose is the
most interesting part, is

H(1) = ga1Szjz. (11)

Sz describes the circularity of light and jz the z-
component of the atomic spin. In the interaction the
atomic spin is rotated around the z-axis, by an amount
proportional to Sz. Likewise, the Stokes vector is rotated
about z-axis, by an amount proportional to jz. This is a
circular birefringence effect and this interaction gives us
the desired Faraday interaction.

Finally we also have a complicated tensor Hamiltonian

H(2) = −ga2(Sx(j2
x− j2

y) +Sy{jx, jy}+ 2S0(3j2
z − j2)/3).

(12)
This amounts to a dynamical Stark shift. The effect van-
ishes for large detunings since the coefficient a2 goes to
zero as shown in Fig. 2. It can be interesting for coher-
ent dynamics in some experiments for tomography and
collective squeezing purposes [14, 21, 35–37]. We keep
it for calculation of spontaneous emission, and neglect it
for simplicity in the coherent dynamics.

B. Interaction with an atomic ensemble

So far we have considered a single atom. We will now
assume that light is interacting with a cloud of Na atoms
of length L and constant atomic density ρ as shown in
Fig. 3. For the atomic spin we therefore introduce the
continuous spin density operators, which are a sum of the
single atom (ja) angular momentum operators evaluated
at their respective positions

jk(z) =

Na∑
a=1

δ(z − za)jak , k = x, y, z. (13)
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Then the commutator is

[jm(z), jn(z′)] =

Na∑
a,b

δ(z − za)δ(z′ − zb)[jam, jbn]

= i εmnk jk(z)δ(z − z′), (14)

in perfect analogy to the commutation relation for the
Stokes operators. For details regarding the definition of
these continuous spin operators, in particular concerning
transverse effects, we refer to [6, 30].

We are now in a position to describe the coherent inter-
action of the forward propagating light modes with the
atomic ensemble. We ignore here the contributions from
H(0) since it merely accounts for the overall refractive
index. The effective interaction can then be written

Heff
coh = g

∫ L

0

(γ · S)(z, t)dz, (15)

where γ = (−a2(j2
x − j2

y),−a2{jx, jy}, a1jz) is a vector
describing atomic polarization. In Appendix C we show
how the time derivative of the light operators can be
transformed to a derivative in position (z), such that
when we form the Heisenberg equation of motion we get
from the relation [Si(z), Sj(z

′)] = iδ(z−z′)εijkSk(z) that

∂

∂z
S(z, t) = g(γ × S)(z, t). (16)

If we replace the operators in γ with their expectation
values, we can see that in the interaction the Stokes op-
erator S gets rotated about the vector γ. Written out in

full detail the equation reads

∂

∂z

SxSy
Sz

=g

 0 −a1jz −a2{jx, jy}
a1jz 0 a2(j2

x − j2
y)

a2{jx, jy} −a2(j2
x − j2

y) 0

SxSy
Sz

.
(17)

These equations have first been derived by B. Julsgaard
[31]. The rotation of S can be seen to be composed of a
big rotation (proportional to a1) around the z-axis and
proportional to the atomic spin along z and a small rota-
tion (proportional to a2) in the (x, y) plane by an angle
which depends on the relative angle between the mean
atomic spin and the Stokes vector. If we only consider the
a1-terms above, and assume the x component of Stokes
vector to be much larger than the other two projections
(as is the case for x polarized light), and assuming the
rotation angle to be small, then we arrive at the effectice
equation of motion

∂

∂z

(
Sy
Sz

)
(z, t) = ga1Sx

(
jz
0

)
. (18)

These simpler equations tell us that Sz is conserved in
the interaction, while Sy receives some contribution from
the spin component jz.

A similar analysis can be performed for the the coher-
ent dynamics of the atoms. We will write the coherent
Hamiltonian as

Hcoh = g[γ·S + γ0S0], (19)
where γ is given as above and γ0 = −a2j

2
z . From this we

can determine the coherent evolution of the spin vector j

∂

∂t

 jxjy
jz

 = g

 a2{jy, jz} −a2{jx, jz}−a1jy
a2{jx, jz} a2{jy, jz} a1jx
−2a2{jx, jy} 2a2(j2

x − j2
y) 0

SxSy
Sz

+ a2

−{jy, jz}{jx, jz}
0

S0

 . (20)

While the overall form of these equations is rather com-
plicated we can get valuable insight by treating the differ-
ent terms separately [31]. For instance if we only consider
a1-terms as it was done with light and also assume small
Faraday rotations of atomic spins with strong polariza-
tion along x then we get the equation

∂

∂t

(
jy
jz

)
(z, t) = ga1jx

(
Sz
0

)
, (21)

in perfect analogy to the effective equations of motion for
light found above, cf. (17) and (18). jz is unaltered in
the interaction, whilst jy gets a contribution from Sz.

C. Canonical Operators

In order to further emphasize the similarity in the atom
and light evolution we will consider them on a more equal
footing by introducing canonical variables. From the defi-
nition of the Stokes operators for light (8)–(9) one can see
that for a large classical field polarized in the x-direction
and sufficiently small angles of Faraday rotations the Sy
and Sz components are proportional to the X and P
quadratures of the weak quantum field in the orthogonal
polarization (y).

Sy(z, t) =
√
〈Sx〉XL(z, t), (22)

Sz(z, t) =
√
〈Sx〉PL(z, t). (23)

The quadratures introduced here obey standard commu-
tation relation [XL(z, t), PL(z′, t)] = iδ(z − z′).
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Next we consider canonical spin densities. Experimen-
tally two different configurations are typically employed.
Either the light polarization is oriented along the same
axis as the spins of the atoms (x) or the light is orthogo-
nal to the atomic polarization (y). For simplicity we will
restrict our discussion of the general method to the case
where the light is polarized along the polarization of the
spins. The argument we give can however easily be gener-
alized also to the other orientations and for completeness
we give the results for both orientations below. Let us as-
sume that the atomic spin is polarized along the x-axis.
Then the commutation relation (14) averaged over the
random positions of the atoms read

[jy(z, t), jz(z′, t)] = i〈jx〉δ(z − z′), (24)

where 〈jx〉 = n〈jax〉 with n being the average linear den-
sity of atoms. The field like canonical variables for the
spin subsystem,

XA(z, t) =
jy(z, t)√
〈jx〉

, PA(z, t) =
jz(z, t)√
〈jx〉

, (25)

obey the canonical commutation relation

[XA(z, t), PA(z′, t)] = iδ(z − z′). (26)

Now we can write the equations of motion for light
and atoms given by (18), (21) in terms of the canoni-
cal operators. Upon introducing the coupling constant

κ = ga1

√
F
2 NaNp where Np is a number of photons in

the driving field one obtains

∂

∂z

(
XL

PL

)
(z, t) =

κ√
LT

(
PA
0

)
,

∂

∂t

(
XA

PA

)
(z, t) =

κ√
LT

(
PL
0

)
.

(27)

As opposed to the initial set of equations (17), (20) these
simplified equations are not coupled to each other, since
we have dropped the term H(2) of the interaction Hamil-
tonian (12) due to the second rank tensor polarizability.
This is justified in the limit of large detuning. Their
solution can be expressed in the form of input-output
relations for collective variables which are introduced by

X
in(out)
L =

1√
T

∫
T

dtXL(0(L), t), (28)

X
in(out)
A =

1√
L

∫
L

dz XA(z, 0(T )). (29)

Here T is the duration of the light pulse and L is the
length of the atomic sample. The same definitions are
applied to the conjugated canonical variables of light and
atoms. Finally, the input-output relations obtained from
the equations of motion (27) read(

Xout
L

P outL

)
=

(
Xin
L

P inL

)
+ κ

(
P inA
0

)
, (30)(

Xout
A

P outA

)
=

(
Xin
A

P inA

)
+ κ

(
P inL
0

)
. (31)

These relations constitute the foundation for the light–
matter interface based on the Faraday rotation, see Ref.
[6].

A specific example for the application of the Faraday
interaction is the possibility to create a memory for light.
The quantum state of a propagating pulse of light is
thereby mapped onto the collective spin of a cloud of
atoms. The mapping protocol applied in Ref. [16] works
as follows: The light pulse first interacts with the atomic
cloud such that the evolution is described by (30) and
(31). One then measures Xout

L via homodyne detection
and uses the result for a feedback on the atomic spin. The
feedback should substract the measurement outcome for
Xout
L from P outA with a gain ν. One can show that the

evolution of the atoms is then described by the relations
[16]

Xout
A = Xin

A + κP inL , (32)

P ′
out
A = P outA − νXout

L = P inA (1− κν)− νXin
L . (33)

Assuming κ = ν = 1 we have

Xout
A = Xin

A + P inL , (34)

P outA = −Xin
L , (35)

meaning that we have stored the light quadratures in
atoms

〈Xout
A 〉 = 〈P inL 〉, (36)

〈P outA 〉 = −〈Xin
L 〉. (37)

The quality of the mapping can be characterized by the
fidelity F . Assuming a random set of coherent states as
the input state the fidelity is found to be [38]

F =

(
1

2
+ ∆X2,out

A

)− 1
2

×
(

1

2
+ ∆P 2,out

A

)− 1
2

. (38)

Assuming light and atoms to be initially shot noise lim-
ited we get a fidelity of F =

√
2/3 ≈ 82%. The fidelity

is limited by the initial noise of the Xin
A spin component

which was not canceled during the mapping process. If
this quadrature would be squeezed before the pass of the
light pulse the fidelity can approach unity.

It is known from earlier works [6, 27] that the coupling
constant is related to the optical depth by κ2 = d η,
where the optical depth is d = Naσ/A, the scattering
cross section is σ = 3λ2/2π and the transversal area of
the atomic sample is A. The coefficient η ∼ Np/∆

2 was
called atomic depumping as it is closely related to a spin
decay rate. The fact that the coupling constant depends
on the decoherence rate is a very important observation.
It means that for the great variety of quantum protocols
based on such light–matter interaction a good perfor-
mance is a compromise between the interaction strength
and the decoherence. E.g. in order to reach a value of
κ = 1 in the memory protocol for a given optical depth
d a nonzero atomic depumping η ∼ 1/d is required. By
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working with an ensemble with sufficiently large opti-
cal depth d � 1 the atomic depumping can be made
small and this is the basis of the protocols for quan-
tum interfaces based on the Faraday interaction which
have been implemented in practice. In reality however,
there is a limit to how large an optical depth that can
be obtained in practice. Hence there will always be some
atomic depumping for any implementation of a quantum
information protocol. A proper optimization of such pro-
tocols requires knowledge of how exactly the depumping
η is related to the spin decay rates. In the next section
we give the answer to this question.

IV. DECOHERENCE

A. Example of decoherence

Before presenting the rigorous treatment of the general
case of spontaneous emission for multilevel atoms, let us
include decay in a phenomenological basis and examine
how an arbitrary decay would affect the atom light inter-
action. We expect that the spins and light would decay
according to the Heisenberg-Langevin equations

∂

∂z
aµ = − γµ

2L
aµ + FL,µ, µ = {x, y}, (39)

∂

∂t
ji = −Γi

T
ji + Fi, i = {x, y, z}. (40)

Since the decay process for light is due to scattering of
the photons out of the mode of interest we shall see below
that the added Langevin noise is simpler for light than
the one for atoms. For light the noise is just the minimal
noise required to preserve the commutation relation for
the field. The noise is delta correlated in time and space
and has a vanishing mean value

〈FL,µ(z, t)F †L,ν(z′, t′)〉 =
γµ
L
δµνδ(t− t′)δ(z − z′), (41)

〈FL,µ(z, t)〉 = 0. (42)

The atomic spin decays in a number of ways. First, it can
decay to another hyperfine level (F − 1) and disappear
from the interaction as it is show in Fig. 4a. This is the
same process which happens to photons. Another way for
an atom to decay is to decay to the same hyperfine level
as shown in Fig. 4b. This results in essentially a random
rotation of the original spin and it creates extra noise. We
will derive the correlators of the spin noise operators in
the following section, as well as the corresponding decay
rates.

Using the definition of canonical variables for atoms
(25) we obtain the following expressions for the decay in

FIG. 4. Scheme of two possible decay processes.

canonical variables

∂

∂t
XA =

1√
〈jx〉

∂

∂t
jy −

1

2

jy√
〈jx〉

· 1

〈jx〉
∂

∂t
〈jx〉

= −ΓX
T
XA + FX(z, t), (43)

∂

∂t
PA = −ΓP

T
PA + FP (z, t). (44)

Here ΓX(P ) = Γy(z) − 1
2Γx, and FX(P ) = Fy(z)/

√
〈jx〉.

Now we can consider equations of motion for the light-
matter interaction in the presence of the decoherence in
terms of the canonical variables

∂

∂z

(
XL

PL

)
(z, t) =

κ(z, t)√
LT

(
PA
0

)
− γy

2L

(
XL

PL

)
+

(
FL,X
FL,P

)
(z, t), (45)

∂

∂t

(
XA

PA

)
(z, t) =

κ(z, t)√
LT

(
PL
0

)
− 1

T

(
ΓXXA

ΓPPA

)
+

(
FX
FP

)
(z, t). (46)

Here the coupling constant κ(z, t) is a function of position
and time due to the decay of the classical spin component
and of the driving wave amplitude according to (39), (40)

κ(z, t) =
1

2
ga1

√
〈jx(z, t)〉〈ax(z, t)〉

√
LT

= κ e−
1
2 (γxz/L+Γxt/T ). (47)

Integration of the equations of motion over space and
time gives us the input-output relations(

Xout
L

P outL

)
=

(
Xin
L

P inL

)
e−

γy
2 + κL

(
P inA
0

)
+

(
FXL
FPL

)
, (48)(

Xout
A

P outA

)
=

(
Xin
A e−ΓX

P inA e−ΓP

)
+ κA

(
P inL
0

)
+

(
FXA
FPA

)
. (49)

Due to the space and time dependence of the function
κ(z, t) the integration of the equations of motion can be
done by expanding light and atomic variables over Leg-
endre polynomials in space and time domain [34, 39].
However, we consider the decay rates to be small and
therefore take into account only the zeroth order Legen-
dre modes for atoms and light which are just integrals
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over length of the ensemble and over time of the interac-
tion. The obtained relations are a generalization of (30)
and (31) for an arbitrary decay. The following notations
were used

κL = κh

(
Γx + 2ΓP

2

)
h

(
γx − γy

2

)
e−

γy
2 , (50)

κA = κh

(
Γx − 2ΓX

2

)
h

(
γx + γy

2

)
e−ΓX , (51)

h(x) =
1

x
(1− e−x).

The protocol of quantum memory based on the direct
mapping requires κA = 1, as described above. It is dif-
ferent from the constraint κ = 1 without decoherence.
For a given detuning an increase of the number of atoms
leads to higher scattering for the signal field and an in-
crease of the driving field strength gives rise to decay of
atomic spins. Overall, it means that if the number of
atoms for a given detuning is too low there is no way
to meet the constraint by increasing the field power and
vice versa.

The noise terms in the input output relations (48) and
(49) are a bit lengthy to express exactly. One can show
that the noise terms have the following approximate val-
ues

〈F 2
XL〉 ≈

1

2
γy +

κ2

3
〈F 2
P 〉, 〈F 2

PL〉 ≈
1

2
γy, (52)

〈F 2
XA〉 ≈ 〈F

2
X〉+

κ2

6
γy, 〈F 2

PA〉 ≈ 〈F
2
P 〉. (53)

Where the collective noise correlators for atoms are de-
fined as follows

〈F 2
X(P )〉 =

1

LT

∫
L

dzdz′
∫
T

dtdt′〈FX(P )(z, t)FX(P )(z
′, t′)〉.

In order to preserve mean values of the canonical vari-
ables during the mapping of the field state to the atoms
one has to choose the feedback gain parameter to be

ν = e
γy
2 . Assuming input states of light and atoms to be

coherent we find the fidelity according to (38) which for
low decay rates reads

F ≈
√

2

3

(
1− 11

36
γy −

1

3

[
〈F 2
X〉+ 2〈F 2

P 〉 − ΓX
])

. (54)

In order to evaluate the Fidelity we need to know all
these decay rates and Langevin noises for a particular
atomic ensemble. Here we come to the central part of the
paper — the proper treatment of spontaneous emission
in multilevel atoms.

B. General method

In this section we find the full equations of motion
from the single atom theory and assume that the formal-
ism can be extended for a large collection of atoms that

couple to their own reservoir and do not interact with
each other. For a justification of this approach we refer
to Ref. [30], where it is shown that the approximation is
suitable for dilute elongated samples, for which ρλ3 � 1
and the Fresnel number of the ensemble is much larger
than unity. The interaction Hamiltonian including both,
forward and non-forward modes E = EF + ES is

Hj = E(−)αjE
(+)

' E
(−)
F αjE

(+)
F + E

(−)
S αjE

(+)
F + E

(−)
F αjE

(+)
S

= Hj
coh + Vj , (55)

where j labels the j-th atom. We have neglected the

much weaker contribution E
(−)
S αjE

(+)
S which has no en-

hancement the by strong field in EF. The coupling of
forward modes to forward modes we identify as the co-
herent interaction

Hcoh = E
(−)
F αE

(+)
F ≡ d2

0

∆
E

(−)
F αE

(+)
F . (56)

Here we have introduced dimensionless α which will be
more convenient to use in what follows. The interac-
tion with the environment ES we will treat in Wigner-
Weisskopf approximation. To do this we write the per-
turbation Vj in the form

Vj =
d2

0

∆

∑
σ

∫
d3k

(2π)3

√
ωk
2ε0

εkσ(b†kσαjE
(+)
F + E

(−)
F αjbkσ).

(57)
The summation here is performed over all directions and
polarizations of the non-forward electromagnetic modes.
The resulting interaction will depend on the relative ori-
entation of the atomic dipole moments hidden in the po-
larizability tensor α and the light field polarization vec-
tor. The net effect of this directional dependence appears
as a difference in the decay rates and added noises for par-
allel and orthogonal light and atomic spin orientations.
The modes in ES have a Hamiltonian

HR =
∑
σ

∫
d3k

(2π)3
ωkb
†
kσbkσ. (58)

We assume the system to start out in vacuum and pro-
ceed in a Wigner-Weisskopf approach by first finding the
time evolution of the b-operators

∂

∂t
bkσ(t) = i[HR + Vj , bkσ]

= −iωkbkσ(t)− id
2
0

∆

√
ωk
2ε0

εkσαj(t)E
(+)
F (t),

(59)

which has the formal solution

bkσ(t) = bkσ(0)e−iωkt

− id
2
0

∆

√
ωk
2ε0

εkσ

∫ t

0

dt′αj(t
′)E

(+)
F (t′)e−iωk(t−t′).

(60)
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We are interested in the equation of motion of some op-
erator A (which can belong to either atoms or light). We
insert the found expression for ES into Vj

d

dt
A(t) = [Hj

coh, A] + i
d2

0

∆

∑
σ

∫
d3k

(2π)3

√
ωk
2ε0

εkσ

(
b†kσ(0)eiωkt[αjE

(+)
F , A](t) + [E

(−)
F αj , A](t)bkσ(0)e−iωkt

)
−
(d0

∆

)2∑
σ

∫
d3k

(2π)3

ωk
2ε0

ε2
kσ

∫ t

0

dt′
(
E

(−)
F (t′)αj(t

′)eiωk(t−t′)[αjE
(+)
F , A](t)− [E

(−)
F αj , A](t)αj(t

′)E
(+)
F (t′)e−iωk(t−t′)

)
.

(61)

Going into the rotating frame of the forward field, which
has the carrier frequency ω0 and performing the Markov
approximation we may take the polarizability outside the
integral and find that the general equation of motion for
an observable A is given by the quantum Langevin equa-
tion

d

dt
A = i[Hj

coh, A] +
(d0

∆

)2

Lj(A)

+ i
√
γ
d0

∆

(
[E

(−)
F αj , A]fj + f†j [αjE

(+)
F , A]

)
. (62)

Here γ is the decay rate γ = d2
0ω

3
0/3πε0 which is related

to radiative decay rate of an atom with exited state elec-
tronic angular momentum J ′ as γrad = γ/(2J ′ + 1). We
have neglected the Lambshift, which is assumed to be in-
corporated in the transition frequency ω0, also we ignore
collective effects in the limit of a dilute ensemble (see [30]
for details) as discussed in the beginning of Section IV B.
The decay is described by the Lindblad form

Lj(A) =
γ

2

(
2E

(−)
F αjAαjE

(+)
F

− E
(−)
F α2

jE
(+)
F A−AE(−)

F α2
jE

(+)
F

)
, (63)

The decay gives two different contributions, one where
the atom decays to the same state and will involve the a-
coefficients belonging to αFF and one to different states
through αFF±1 and be described by b-coefficients. But
we are not going to have any cross terms of the form ab
since they will oscillate at much higher frequencies cor-
responding to the hyperfine splitting ∼ GHz and average
out to zero in (61). Above we have introduced the noise
operators,

fj(t) =
d0√
γ

∑
σ

∫
d3k

(2π)3

√
ωk
2ε0

εkσb
j
kσ(0)e−i(ωk−ω0)t.

(64)
which in the Markov approximation are delta-correlated
in time

〈[fi,µ(t), f†j,ν(t′)]〉 = δijδµνδ(t− t′). (65)

Below we shall apply these equations of motion to ob-
servables for both light and atoms. There is an essential
difference between the decoherence of light and of atoms.
The reason is that each time the atoms undergo sponta-
neous emission they remain in the ensemble. For light
on the other hand a lost photon simply attenuates the
beam, but there is no change in the coherence of it. It
means that we can model the resulting noise for light as
vacuum operators when considering the field a, a†.

C. Light

In the last section we showed how to treat the spon-
taneous emission and how to calculate the decay for the
operators of interest. We will now apply this to the light
field operators ax(z, t) and ay(z, t). First, one has to gen-
eralize the dynamics of a single atom studied above to a
spatially extended ensemble. The continuous equations
of motion are obtained from the single atom version (62)
by replacing operators with the space dependent ones de-
fined in (13) and then integrating the right hand side over
the ensemble volume.

In order to obtain the required equations for the field
propagation one has to consider the field evolution in-
cluding the interaction Hamiltonian and the free field
Hamiltonian. The resulting equation is obtained from the
Heisenberg-Langevin equation (62) by replacing ∂

∂t →
∂
∂z + ∂

∂t as showed in Appendix C and [40]. Since the
light pulse is usually much longer than the size of the
atomic ensemble we can omit the time derivative as it
only describes retardation effect. Using the commutation
relation for light field operators one obtains the following



10

equations of motion

∂

∂z
aµ(z, t)= i

∫
L

dz[Hcoh, aµ(z, t)]

− |g|γ
4∆

Na
L

(〈α2〉µµaµ(z, t)+〈α2〉µνaν(z, t))

+ FL,µ(z, t), (66)

FL,µ(z, t)= i

√
|g|γ
2∆

Na
L

(αµµfµ(z, t)+αµνfν(z, t)), (67)

where µ = {x, y} and µ 6= ν. Here we have assumed that
the atoms are evenly distributed so that 〈α2〉µµ(z) =
Na
L 〈α

2〉µµ and the element 〈α2〉ij is to be understood as

the ij’th element of the matrix α2. Using (65) we obtain
the following properties of the averaged commutators of
the noise operators FL,µ

〈[FL,µ(z, t), F †L,ν(z′, t′)]〉 =

=
|g|γ
2∆

Na
L
〈α2〉µνδ(t− t′)δ(z − z′). (68)

Since the matrix α2 depends on the atomic operators, the
expressions derived here incorporates that the decoher-
ence of the light field depends on the state of the atoms.
To evaluate the formulas we therefore need to specify the
atomic state. Here we assume that the atoms are initially
polarized along the x-axis and evaluate the expressions
in a coherent spin state. In principle there is also a pos-
sibility for cross-scattering between the x and y polar-
ization, which is contained in the matrix element 〈α2〉xy.
In Appendix D we show, however, that this matrix ele-
ment vanishes for this particular spin configuration. As
noted above experiments sometimes use a different con-
figuration with the atoms polarized perpendicular to the
light polarization. Also in this case the cross polarization
scattering vanishes, but this is not the case for a general
orientation. Experimentally it is advantageous to avoid
the cross polarization scattering since this avoids a rota-
tion of the mean polarization of the light. Such rotation
may be hard to control precisely and this classical noise
could therefore overwhelm the quantum noise around the
mean which we are trying to control. Therefore, the ge-
ometry with spin polarized parallel or orthogonal to the
direction of light polarization is preferable. In both these
cases we obtain the equation of motion for light in the
form (39) with the decay rates.

γµ =
|g|γ
2∆

Na〈α2〉µµ = 2
Na
Np

κ2

d
Aµ, (69)

Aµ =
〈α2〉µµ
Fa2

1

.

Here the difference in the orientation of the atoms is again
contained in the matrices 〈α2〉µµ. For Cesium with F = 4
the Aµ coefficients are shown in Fig. 5. In the limit of
large detuning the coefficients read

Ax(y) → 24. (70)

FIG. 5. Light attenuation and noise are described by the ma-
trix Aµ. Solid line shows the matrix element Ax as a function
of detuning −∆ in MHz and the dashed line corresponds to
Ay. We assume atoms to be polarized along x. Cs in F = 4.

Taking into account coherent part of the interaction
Hamiltonian we arrive at the full equations for the light
field

∂

∂z
ay(z, t) =

g

2
√
T
ax(z, t) [a1jz(z, t) + ia2{jx, jy}(z, t)]

−
[γy

2
− 2 ia2j

2
y(z, t)

]
ay(z, t) +

√
γyfy(z, t), (71)

∂

∂z
ax(z, t) =

−g
2
√
T
ay(z, t) [a1jz(z, t)− ia2{jx, jy}(z, t)]

−
[γx

2
− 2 ia2j

2
x(z, t)

]
ax(z, t). (72)

Since the x-polarized field is supposed to be strong and
classical we neglect its quantum noise.

D. Atoms

In this section we consider atomic evolution in a similar
way as it was done for light. To describe the decay of
the single atomic spin we use expressions (62), (63) from
above to obtain

∂

∂t
ji(z, t) =

(d0

∆

)2

L(ji)(z, t), (73)

L(ji)(z, t) = −γ
2
E

(−)
F (z)[α2ji + jiα

2 − 2αjiα](z)E
(+)
F (z).

(74)

We expect this decay to be proportional to the total flux
of photons and we can as a good approximation ignore
the position dependence of the light field, allowing us to
write for the collective spin

L(ji)(t) = −γ
2
E

(−)
F

∫
dz[α2ji + jiα

2 − 2αjiα](z)E
(+)
F

The most notable contribution comes from the x polar-
ized part of light. Since we already expect the effect of
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spontaneous emission to be small in the regime where the
quantum interface is operating (remember that it scales
as 1/∆2) we can safely only consider the xx element of
the matrix

ξi = α2ji + jiα
2 − 2αjiα.

With this assumption we find that we can make the lin-
earization

L(ji)(t) = −γ
2
|E|2Np

T
Ξi ji(t), (75)

where the field amplitude is given by |E|2 = ω0/2ε0A
and the decay rate coefficient Ξi is defined through the
expression

Ξi ji(t) =

∫ L

0

dz ξi(z, t). (76)

This element gives the magnitude of the decay of the
respective component of the spin. For the decay to a dif-
ferent hyperfine level F (the b terms), we will neglect the
term 2αjiα, which describe the increase in the popula-
tion of the final state. The reason is that once an atom
decays to another hyperfine level F it will no longer be
interesting for us, since we restrict our analysis to collec-
tive behavior of many atoms in the same F state. This
is reasonable since the energy spacing between the two
ground F = I ± 1

2 hyperfine levels is big. For the same
reasons we obviously need to keep 2αjiα for the a-terms.
Written in short form the decay reads

∂

∂t
ji(t) = −|g|γ

4∆

Np
T

Ξi ji(t) + Noise. (77)

This expression gives us the decay rates of the spin com-
ponents defined in (40). The noise terms will be treated
in detail below. The decay rates depend on the relative
orientation of spin and light polarizations as it is the case
with the light decay. The expression for the decay rates
now read

Γi‖(⊥)
=
|g|γ
4∆

Np Ξi‖(⊥)
=
κ2

d
Bi‖(⊥)

, (78)

Bi‖(⊥)
=

Ξi‖(⊥)

Fa2
1

.

Similar to the discussion of spontaneous emission in sec-
tion III C we have here expressed the atomic scattering in
terms of the coupling constant κ and the optical depth d.
The details of the interaction and the difference between
different atoms, which is our main interest here, is thus
contained in the coefficient B. The required coefficients
Ξ are calculated in Appendix D 3 for an arbitrary atom.
The Bi coefficients for Cesium atoms are shown in Fig. 6,
explicit expressions can be found in Appendix E. In the
limit of high detuning the coefficients for Cesium atoms
with F = 4 read

Bx‖ →
29

2
, By‖ , Bz‖ →

25

2
,

By⊥ →
37

4
, Bx⊥ , Bz⊥ →

1

2
Bx‖ .

FIG. 6. Spin decay coefficients Bi as functions of detuning
−∆ in MHz for parallel configuration (spin and light are x
polarized) are shown by thick solid line for x spin component
and by thin solid curve for y and z spin projections. The
orthogonal configuration (spin is x polarized and the light is
y polarized) is presented by the dashed curves, thick line is x
and z, thin is y spin component. The plot is calculated for
Cesium atoms with ground state F = 4.

The remaining term in the Heisenberg-Langevin equation
(62) gives us the spin noise components

∂

∂t
ji(z, t) = i

√
γ
d0

∆

(
E

(−)
F [α, ji]f + f†[α, ji]E

(+)
F

)
.

From here the noise operators for canonical spin density
variables defined above as FX(z, t) and FP (z, t) are given
by

FX(P )(z, t)=
i
√
γd0

∆
√
n〈jax〉

(
E

(−)
F [α,jy(z)]f+f†[α, jy(z)]E

(+)
F

)
.

(79)
These are the noise operators introduced in (46). The
collective noise operators are obtained by averaging it
over the light pulse duration and the length of the atomic
ensemble

FX(P ) =
1√
LT

∫
L

dz

∫
T

dt FX(P )(z, t). (80)

When forming the combinations such as 〈FXFX〉 then,
since we have assumed that there are no photons in the
reservoir with frequency at ω0, the only combination
which survives is 〈f f†〉. Moreover, we have made the
assumption that the x (or y in case of orthogonal con-
figuration of light and spin polarizations) component of
the light field is dominating, so we will only have to con-
sider the xx(yy) element of the matrix ζ2

i = (i[α, ji])
2.

So ultimately what we will have left is

〈F 2
X(P )〉‖(⊥) =

|g|γ
2∆

Np
F
〈ζ2
y(z)〉‖(⊥) =

2

F

κ2

d
Cy(z)‖(⊥)

, (81)

Ci‖(⊥)
=
〈ζ2
i 〉‖(⊥)

(Fa1)2
.

The different 〈ζ2〉 are calculated in Appendix D 2 and
are generally quite complicated. Since any orientation
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FIG. 7. Spin noise coefficients Ci as functions of detuning
−∆ in MHz for Cesium with ground state F = 4. The solid
line represents y and z noise coefficients for x polarized atoms
and light. The dashed curves correspond to the orthogonal
configuration of atomic spin and light. The thick dashed curve
shows Cy⊥ and the thin dashed line is Cz⊥ .

besides the parallel and orthogonal will give too much
noise on the light as discussed above, we only consider
these two settings. The spin noise coefficients Ci required
for the calculation of canonical spin variables noises are
shown in Fig. 7, the explicit expressions are given in Ap-
pendix E. In the limit of high detuning the coefficients
for Cesium atoms with F = 4 read

Cy‖ , Cz‖ →
29

2
, Cy⊥ →

53

4
, Cz⊥ →

37

4
.

The cross correlations of the Langevin noise are closely
related to the spin decay rates as shown in Appendix D 4.
The commutator for noise reads

〈[FX , FP ]〉‖(⊥) =
i

F
(Γy + Γz − Γx)‖(⊥). (82)

Moreover, one can show that the anticommutator of the
noise terms is equal to zero.

V. SUMMARY

In this section we summarize the obtained results and
as an example we apply the results to determine the de-
cay rates and Langevin noises for the specific case of Ce-
sium atoms. First of all, the decay of the spins and light
is described by the Heisenberg-Langevin equations

∂

∂z
aµ = − γµ

2L
aµ + FL,µ, µ = {x, y},

∂

∂t
ji = −Γi

T
ji + Fi, i = {x, y, z}.

As it was mentioned earlier there are two preferable con-
figurations available. Either the light polarization is ori-
ented along the same axis as the spins of the atoms (x)
or the light is orthogonal to the atomic polarization (y).
In these cases the decay rates for light are given by (69)

and the atomic decay rates can be found in (78). They
read

γµ = 2
Na
Np

κ2

d
Aµ, Γi‖(⊥)

=
κ2

d
Bi‖(⊥)

,

Aµ =
〈α2〉µµ
Fa2

1

, Bi‖(⊥)
=

Ξi‖(⊥)

Fa2
1

.

From these expression we see that one can obtain a strong
interaction κ ∼ 1 with negligible decoherence provided a
that the atomic ensemble has a sufficiently high optical
depth d � 1. Furthermore the decoherence of the light
modes can be suppressed relative to the atomic decay
provided a larger number of photons than atoms is used
NP � NA. Most of these expressions are well known
from previous work in the field [6]. The main new result
in this work are the exact expressions for the coefficients
A, B and C, which are numbers of order unity, which
contain the information specific to the particular atom
one is considering. We will evaluate the required coeffi-
cients for 133Cs optically pumped to ground state F = 4.
In this case we have I = 7/2, J = 1/2, J ′ = 3/2, F = 4,

F̃ = 3. The coefficient a1 is given by (B9), which is

evaluated for F = F̃ = 4 and k = 1

a1 =
7

5760

(
176

7
− 3

1− ∆45

∆

− 5

1− ∆35

∆

)
. (83)

The matrix 〈α2〉 whose diagonal components enter in
Aµ can be found in Appendix D. The Cartesian com-
ponents of the matrix for the spin oriented along x-axis
are expressed via its spherical components by (D4) and
(D5). The required spherical components of the matrix
are given by (D3). One needs to know the coefficients

aFF̃k mentioned above and the coefficients ck given by
(B11). The result for Cs atoms is

〈α2〉xx =
1

80

(
1 +

7

3(1− ∆45

∆ )2

)
→ 1

24
,

〈α2〉yy =
1

720

(
23 +

21

8(1− ∆45

∆ )2
+

35

8(1− ∆35

∆ )2

)
→ 1

24
.

Since the spin is considered to be oriented along x, the
xx-element of the scattering matrix represents decay of
the field polarized along the spin, and the yy-component
is correspondingly the decay rate coefficient for the or-
thogonally polarized field configuration.

Calculation of the spin decay coefficients Ξ entering
the B coefficients is similar but a bit more lengthy since
it involves three spin projections and two possible config-
urations. The basic expressions for parallel and orthogo-
nal configurations of spin and light are given by (D25)–
(D30). The required spherical components of 〈ξµjν〉 are
defined in (D22)–(D24). The definitions involve the same

coefficients aFF̃k and ck used above for the evaluation of
the light decay rates. For reference we provide the result
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of the calculation for the expression 〈Ξy〉‖ for Cesium
atoms F = 4.

〈Ξy〉‖ =
7

1152

(
−152

175
− 7

12
(
1− ∆35

∆

) (
1− ∆45

∆

)
+

1

2
(
1− ∆35

∆

)2 +
76

75
(
1− ∆45

∆

) +
351

100
(
1− ∆45

∆

)2
)
.

The Langevin noise operators for the light modes (68)
are simply the minimal noise required to preserve the
commutation relation for the free field.

〈FL,µ(z, t)F †L,ν(z′, t′)〉 =
γµ
L
δµνδ(t− t′)δ(z − z′).

In the context of quantum information protocols it is
more convenient to study the evolution of the canonical
variables for the spin. In this case the decay process is
described according to (43) by

∂

∂t
XA = −ΓX

T
XA + FX(z, t),

∂

∂t
PA = −ΓP

T
PA + FP (z, t).

Here ΓX(P ) = Γy(z) − 1
2Γx, and FX(P ) = Fy(z)/

√
〈jx〉.

The Langevin noise correlator for the collective canonical
variables is found in (80) and (81) and it reads

〈F 2
X(P )〉‖(⊥) =

2

F

κ2

d
Cy(z)‖(⊥)

, Ci‖(⊥)
=
〈ζ2
i 〉‖(⊥)

Fa2
1

,

The averaged commutator for the noise is given by (82):

〈[FX , FP ]〉‖(⊥) =
i

F
(ΓX + ΓP )‖(⊥).

To evaluate this expression one needs to calculate the ma-
trix 〈ζ2

i 〉. The calculation of this is essentially the same
as for the spin decay coefficient. The expressions for the
Cartesian components via the spherical one are given by
(D13)–(D18). Spherical components for different F and

F̃ are found in (D10)–(D12). For reference we provide
the result of the calculation for the expression 〈ζ2

y 〉‖ for
Cesium atoms with F = 4.

〈ζ2
y 〉‖ =

7

2400

(
176

21
− 175

72
(
1− ∆35

∆

) (
1− ∆45

∆

)
+

25

12
(
1− ∆35

∆

)2 − 88

9
(
1− ∆45

∆

) +
83

8
(
1− ∆45

∆

)2
)
.

Expressions for all of the coefficients A, B, C for 133Cs
are explicitly given in Appendix E.

A. Example of application

Now we can use the derived expressions for the light
and and atomic decay rates to evaluate the Fidelity ob-
tained in section IV A. First, let us consider the cou-
pling constant κA given by (51) for the case of 133Cs. In

FIG. 8. Solution of the equation κA = 1 as a function of
the optical depth d = Naσ/A. The thin solid line corre-
sponds to the constraint without decoherence κ = 1. Thick
solid and dashed curves represent respectively the solutions
for the parallel and orthogonal atomic spin and light polariza-
tion configurations. The plot is calculated for Cesium atoms
with ground state F = 4 and detuning ∆ = −500 MHz.

Fig. 8 we show the solution of the equation κA = 1 which
gives us the required parameter regime for the quantum
memory based on direct mapping protocol. One can see
that within a wide range of values for the optical depth
d = Naσ/A the requirement κA = 1 coincides with the
condition κ = 1. However, when it reaches extreme val-
ues the decay processes significantly affect the system
evolution and one is required to provide κ > 1 in order
to fulfill the quantum memory condition for transfer of
the the mean amplitude.

For a given optical depth d one can express the fidelity
(54) by the approximation of small decay probability.
Consequently for the parameter regime where κA = 1
coincides with the constriction κ = 1 we have

F ≈
√

2

3

(
1− cL

( γ
∆

)2

d− cA
1

d

)
(84)

cL =
11

12

1

Fa2
1

〈α2〉 (85)

cA =
2

3(Fa1)2

[
〈ζ2
y 〉+ 2〈ζ2

z 〉 −
F

2
(Ξy−

1

2
Ξx)

]
(86)

In the limit of ∆→ −∞ we can neglect the noise on the
light the coefficients and the fidelity read

F →
√

2

3

(
1− cA

1

d

)
, (87)

cA‖(⊥)
→ 11

2

(
41

12

)
. (88)

In agreement with Ref. [6] the deviation of the fidelity
from the ideal one is inversely proportional to the optical
depth for large detunings. The results of the paper allow
us to identify the coefficient of this proportionality. It
shows an advantage of the orthogonal configuration of
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FIG. 9. Optimal fidelity as a function of optical depth for Ce-
sium with F = 4. Solid and dashed lines correspond respec-
tively to the parallel and orthogonal configurations of atomic
spin and light polarization. Thin solid line on top shows the
limiting value

√
2/3.

light and spin polarizations over the parallel one in the
particular quantum memory protocol discussed here for
illustration.

For a finite detuning the fidelity can be optimized by
varying the ratio of photon number to the number of
atoms and by changing the detuning from the resonance.
The resulting optimal fidelity as a function of optical
depth is shown in Fig. 9. The corresponding optimal
detuning and optimal ratio of photons to atoms as func-
tions of the optical depth are shown in Fig. 10 and Fig. 11
respectively. One has to take into account that these are
very flat maxima, and hence the precise value of the de-
tuning is not that important. This is illustrated in Fig. 12
where fidelities for several optical depths are shown as a
function of detuning. Furthermore one should also bear
in mind that experimentally other considerations such
as Doppler broadening may be important. Furthermore
to illustrate our method we have for simplicity neglected
the tensor part of the coherent interaction, and this may
alter the conclusion reached here.

VI. CONCLUSION

In this paper we have found in accordance with earlier
work that spontaneous emission occurs faster for par-
allel polarizations than perpendicular — a consequence
of selection rules and Clebsch–Gordan coefficients. We
have also found the precise decay rates and noise correla-
tions that take into account the full level structure of the
atom and our procedure can easily be applied to similar
systems. In this paper we have given a comprehensive
discussion of quantum noise from spontaneous emission
for light matter quantum interfaces based on the Fara-
day effect. Taking into account the full level structure of
the atoms we derive for the first time the full expressions
for the decay and quantum noise arising from sponta-

FIG. 10. Optimal detuning as a function of optical depth
for Cesium with F = 4. Solid and dashed lines correspond
respectively to the parallel and orthogonal configurations of
atomic spin and light polarization.

10 20 50 100 200 500 1000
d10

50

100

500

1000

Np�Na

FIG. 11. Optimal ratio of photons to atoms as a function
of optical depth for Cesium with F = 4. Solid and dashed
lines correspond respectively to the parallel and orthogonal
configurations of atomic spin and light polarization.

FIG. 12. Fidelity for different optical depths as function of
detuning for Cesium with F = 4. Solid, dashed, and thin
curves correspond to optical depths d = 30, 100, 1000 respec-
tively. The calculation is done for the parallel configuration
of atomic spin and light polarization.
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neous emission. In agreement with previous treatments
based on simplified models our theory shows that the de-
cay and noise can be made to vanish for a sufficiently
large optical depth of the ensemble. Given that experi-
ments will always work with a finite optical depth it is,
however, important to have a detailed understanding of
the noise. In particular, in view of the rapid experimental
advances a thorough understanding of fundamental noise
sources will be crucial for further increasing the efficiency
of quantum memories and for assessing the feasibility of
new advances for light matter quantum interfaces. The
tradeoff between the coherent dynamics and unavoidable
fundamental losses, investigated in full detail here, will
set the ultimate limits to the performance of future quan-
tum networks.
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Appendix A: Adiabatic elimination

The projections defined in the section II will be used for
our treatment of the operators and if we specifically apply
it to the dipole-operator d we get (Note that we do not
get any contributions from the terms PgdPg, PedPe since
d is a parity odd operator.)

d = (Pg + Pe)d(Pg + Pe) = PedPg + PgdPe

= d(+) + d(−). (A1)

Here d(+) is the raising operator raising the atoms from
the ground state |F,m〉 to the excited state |F ′,m′〉. In
the following we will go into the rotating frame with re-
spect to the laser frequency ω0, so the energy of the atom
is described by the Hamiltonian

HA =
∑
F ′

∆F ′PF ′ , (A2)

where ∆F ′ is the detuning of the exited stated from the
laser frequency. To ease notation we treat by both using
a symbol g or e to represent respectively ground states
|F,m〉 and exited states |F ′,m′〉.

Hint = −
∑
ge

E(−)d(−)
ge |g〉〈e|+ h.c. (A3)

Taking the commutator with HA + Hint we get the fol-
lowing equation

d

dt
|g〉〈e| = −i∆e|g〉〈e|

+ iE(+)(
∑
g′

d
(+)
eg′ |g〉〈g

′| −
∑
e′

d
(−)
ge′ |e

′〉〈e|). (A4)

So in the adiabatic regime we neglect the time derivative
and obtain

|g〉〈e| =
∑
g′

E(+) · d(+)
eg′

∆e
|g〉〈g′|. (A5)

Inserting this into the Hamiltonian we get the expression

Heff
int = Hint +HA = E(−) ·α ·E(+)

≡Hint, (A6)

α = −
∑
g′ge

d
(−)
g′e d

(+)
eg

∆e
|g′〉〈g| (A7)

Here d
(+)
g′e d

(−)
eg ∼ d

(+)
g′e ∧d

(−)
eg is the dyadic vector product

of the dipole operator with itself.

Appendix B: Construction of the Hamiltonian

The dipole moment d can be expanded in spherical
components by

d =
∑
q

dqe
∗
q =

∑
q

(−1)qd−qeq. (B1)

The component of d for the F → F ′ transition can thus
be expressed as

d
(+)
F ′F =

∑
q,m,m′

〈F ′m′|d(+)
q |Fm〉|F ′m′〉〈Fm|e∗q . (B2)

The Wigner-Eckart theorem states that the matrix ele-
ments can be expressed as

〈F ′m′|d(+)
q |Fm〉 = CF

′m′

Fm 1q〈F ′‖d‖F 〉

= (−1)F−1+m′√
2F ′ + 1

(
F 1 F ′

m q −m′
)
〈F ′‖d‖F 〉. (B3)

Some people use a different convention for the reduced
matrix element which is related to the convention used
here by (F‖d‖F ′) =

√
2F + 1〈F‖d‖F ′〉. We have here

used the following notation for Clebsch-Gordan coeffi-
cients CJMjmj′m′ = 〈jm j′m′|JM〉. It is convenient to de-

fine new operators σ+
F ′F = d

(+)
F ′F /〈F ′‖d‖F 〉. The ad-

joint is defined as σ−FF ′ = (σ+
F ′F )†. Then the po-

larizability tensor operator can be expressed as α =
−
∑
F ′F̃F (〈F̃‖d‖F ′〉〈F ′‖d‖F 〉/∆F ′F )σ−̃FF ′⊗σ+

F ′F . Using
the above definition one obtains

σ−F̃F ′⊗ σ+
F ′F = (2F ′ + 1)

∑
p,q

∑
n,m,m′

(−1)F+F̃−2+2m′

×
(
F̃ 1 F ′

n p −m′
)(

F 1 F ′

m q −m′
)
|F̃ n〉〈Fm|ep⊗ e∗q . (B4)

This expression can now be split into its operator and
tensor part by inserting the identity [32]

2∑
k=0

k∑
l=−k

(2k + 1)

(
1 1 k
−q p l

)(
1 1 k
−q̃ p̃ l

)
= δpp̃δqq̃. (B5)

such that
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σ−F̃F ′⊗ σ+
F ′F = (2F ′ + 1)(−1)F+F ′ ∑

k,l

(2k + 1)

∑
p̃,q̃

(−1)q̃
(

1 1 k
−q̃ p̃ l

)
ep̃ ⊗ e∗q̃


×

[∑
n,m

(−1)2F̃+F−n
∑
p,q,m′

(−1)F
′+2−p−m′−q

(
F ′ 1 F
−m′ q m

)(
1 1 k
−q p l

)(
1 F ′ F̃
−p m′ −n

)
|F̃ n〉〈Fm|

]
. (B6)

The expression for the operator part can be further simplified by evaluating the sum over p, q, and m′ using the
identity∑

µ1,µ2,µ3

(−1)l1+l2+l3−µ1−µ2−µ3

(
l2 l3 j1
−µ2 µ3 m1

)(
l3 l1 j2
−µ3 µ1 m2

)(
l1 l2 j3
−µ1 µ2 m3

)
=

(
j1 j2 j3
m1 m2 m3

){
j1 j2 j3
l1 l2 l3

}
. (B7)

Changing 3j-symbols to Clebsh-Gordan coefficients we get

σ−F̃F ′ ⊗σ+
F ′F = (2F ′+ 1)

(−1)F+F ′+1√
3(2F̃ + 1)

2∑
k=1

(2k+ 1)

{
F k F̃
1 F ′ 1

} k∑
l=−k

[∑
n,m

CF̃nFmkl |F̃ n〉〈Fm|

][∑
p,q

C1q
1p kl ep ⊗ e∗q

]
. (B8)

Finally, the overall polarizability can be written as α = −(2J ′ + 1)|〈J ′‖d‖J〉|2 1

∆

∑
k,F̃

aFF̃k (∆)Tk
FF̃

, where

aFF̃k (∆) = −(−1)F (2k + 1)ck

√
2F + 1

3

∑
F ′

(−1)F
′
(2F ′ + 1)

1− δF ′/∆
×
{
J ′ F ′ I
F J 1

}{
J ′ F ′ I

F̃ J 1

}{
F k F̃
1 F ′ 1

}
. (B9)

The hyperfine splitting is δF ′ = ∆−∆F ′ . Here we have
used that

〈F̃‖d(+)‖F ′〉〈F ′‖d(−)‖F 〉 =

= (−1)2(J′+I+F )+F̃−F ′
{
J ′ F ′ I
F J 1

}{
J ′ F ′ I

F̃ J 1

}
×
√

(2F + 1)(2F̃ + 1) (2J ′ + 1)
∣∣〈J ′‖d‖J〉∣∣2. (B10)

The coefficients ck read

c0 = 1, c1 =
1√

2F (F + 1)
,

c2 =
3√

10F (F + 1)(2F − 1)(2F + 3)
.

(B11)

These coefficients are chosen in such a way that the
resulting Hamiltonian contains spin component as irre-
ducible tensors. The irreducible tensors are defined as
follows

Tk
FF̃

=
1

ck

k∑
l=−k

Mk
l;FF̃

∑
p,q

C1q
1p kl ep⊗ e∗q (B12)

For F̃ = F we have

Mk
l;FF =

∑
n,m

CFnFmkl |Fn〉〈Fm|

if F̃ 6= F

Mk
l;FF̃

=
∑
n,m

(
CF̃nFmkl |F̃ n〉〈Fm|

+ (−1)lCF̃nFm;k,−l |Fm〉〈F̃ n|
)

(B13)

Appendix C: Transformation of the light equation of
motion

We will work in the paraxial approximation assuming a
flat transverse profile and write the forward electric field
as

EF(z, t) =

√
ω0

2ε0A

∑
σ

∫
d3k d2ρ

(2π)3
εσ(akσ(t)ei(kzz+k⊥ρ) + h.c.),

= |E|
∑
σ

εσ(aσ(z, t) + a†σ(z, t)). (C1)

Here |E| =
√

ω0

2ε0A
and we have defined the space depen-

dent operators aσ(z, t) =
∫
dkz
2π akzσ(t)eikzz, where it is

assumed that the different k are close to k0, so that the
operators oscillate at the common frequency ω0 = |k0|.
For the radiation field we have that

HL =
∑
σ

∫
dk

2π
ωka

†
kσakσ. (C2)
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Now we are to ready to form the EOM

∂

∂t
aσ(z, t) = i[Hint +HL, aσ(z, t)], (C3)

[HL, aσ(z, t)] =

∫
dk

2π
[HL, akσ(t)]eikz

= −
∫

dk

2π
ωkakσ(t)eikz. (C4)

But we also have from the explicit z-dependence that

∂

∂z
aσ(z, t) =

∫
dk

2π
ikakσ(t)eikz, (C5)

which we recognize as −i[HL, aσ(z, t)]. So we replace
the time evolution from the radiation field by minus the
derivative with respect to z and end up with(

∂

∂t
+

∂

∂z

)
aσ(z, t) = i[Hint, aσ(z, t)]. (C6)

This procedure is directly applicable for Stokes opera-
tors too. In the end we throw away the time derivative,
which is the same as ignoring retardation effects, but this
approimation can even be made exact by introducing a
suitable rescaled time. By doing this we have thus an
equation in position and not time for light observables.

Appendix D: Calculations of atomic spin noise and
decay rate coefficients for light and atoms

1. Light matrix α2

The dimensionless tensor polarizability can be written
as

α =
∑
k,F̃

aFF̃k (∆)Tk
FF̃
. (D1)

We assume that the atomic spin is polarized along x
axis and during interaction the collective spin experiences
merely small rotations. Having the quantization axis to
be the x-axis we have to linearize the spin dependent
operators around the initial state |FF 〉. Using the ex-
pression for the irreduccible tensors (B12) and averaging
over the initial spin state we obtain

〈α2〉 =
∑
k,k′,F̃

aFF̃k aFF̃k′

ckck′

∑
p,q

∑
r,s,l,l′

CFF
F̃r kl

CF̃ r
FF k′l′

× C1s
1p klC

1q
1s k′l′ep⊗ e∗q . (D2)

We have changed the notation for Clebsch-Gordan co-
efficients to the shorter form 〈jm j′m′|JM〉 = CJMjmj′m′ .
Taking into account restrictions on momentum projec-
tions given by Clebsch-Gordans the sum over four indexes
is reduced to a sum over a single index. We have p = q,

l = s− q, l′ = −l, r = F + q − s, and hence

〈α2〉 =
∑
k,k′,F̃

aFF̃k aFF̃k′

ckck′

∑
q,s

CFF
F̃ ,F+q−s;k,s−qC

F̃ ,F+q−s
FF ;k′,q−s

× C1s
1q;k,s−qC

1q
1s;k′,q−seq⊗ e∗q . (D3)

The required elements of the matrix α2 for the atomic
spin aligned in the x-direction in Cartesian coordinates
read

〈α2〉xx = 〈α2〉00 (D4)

〈α2〉yy =
1

2

(
〈α2〉−− + 〈α2〉++

)
(D5)

〈α2〉xy = 0. (D6)

2. Atomic Langevin noise (i[α, ji])
2

Let us consider the matrix ζi = i[α, ji]. The commu-
tator of an irreducible tensor and spherical spin compo-
nents reads

[Mk
l;FF , jµ] = −

√
k(k + 1)Ck,l+µkl;1µ Mk

l+µ;FF . (D7)

This is true for an irreducible tensor defined for a single
spin state therefore we consider the case of F̃ = F .

ζFFµ = −i
∑
k

aFFk
ck

√
k(k + 1)

∑
l,p,q

× Ck,l+µkl;1µ Mk
l+µ;FFC

1q
1p;klep⊗ e∗q . (D8)

Using the same method as in the previous subsection one
obtains

〈ζµζν〉FF = −
∑
k,k′

aFFk aFFk′

ckck′

√
k(k + 1)k′(k′ + 1)

∑
p,q

∑
r,s,l,l′

× Ck,l+µkl;1µ C
k′,l′+ν
k′l′;1νC

FF
Fr;k,l+µC

Fr
FF ;k′l′+ν

× C1s
1p;klC

1q
1s;k′l′ep⊗ e∗q (D9)

After some transformations one comes to the following
expression

〈ζµζν〉FFpq = −
∑
k,k′

aFFk aFFk′

ckck′

√
k(k + 1)k′(k′ + 1)

∑
s

× δp,q+µ+νC
k,s−q−ν
k,s−p;1µC

k′,q−s+ν
k′,q−s;1ν

× CFFF,F+q−s+ν;k,s−q−νC
F,F+q−s+ν
FF ;k′,q−s+ν

× C1s
1,p;k,s−pC

1q
1s;k′,q−s (D10)

The case of F̃ 6= F has to be considered specifically. The
commutator with spin components doesn’t have a nice
form anymore

[Mk
l;FF̃ , jµ] =

√
F (F + 1)

∑
m,n,r

[
CF̃nFr;klC

Fr
Fm;1µ|F̃ n〉〈Fm|

− (−1)lCF̃nFr;k−lC
Fm
Fr;1µ|Fm〉〈F̃ n|

]
.
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Using this expression for the commutator and doing some
algebra we obtain

〈ζµζν〉FF̃pq = (−1)s−pδp,q+µ+νF (F + 1)

× CFFF,F−µ;1µC
F,F−ν
FF ;1ν

∑
k,k′

aFF̃k aFF̃k′

ckck′

×
∑
s

CF̃ ,F+q−s+ν
F,F−µ;k,p−sC

F̃ ,F+q−s+ν
F,F+ν;k′,q−s

× C1s
1,p;k,s−pC

1q
1s;k′,q−s. (D11)

The full matrix 〈ζ2〉 is just a sum of all of these contri-

butions for different F̃ .

〈ζµζν〉pq =
∑
F̃

〈ζµζν〉FF̃pq . (D12)

Since the spin is prepared in a polarized state along the
x direction the spin noise coefficient for i-th spin com-
ponent in presence of the driving field polarized parallel
to the spin is given by the xx components of the matrix
〈ζ2
i 〉. The case of the orthogonal configuration of the spin

and light is described by the yy element of the matrix.

〈ζ2
x〉‖ = 〈ζ0ζ0〉00, (D13)

〈ζ2
y 〉‖ = −1

2
{〈ζ−ζ+〉00 + 〈ζ+ζ−〉00} , (D14)

〈ζ2
z 〉‖ = 〈ζ2

y 〉‖, (D15)

〈ζ2
x〉⊥ =

1

2
{〈ζ0ζ0〉−− + 〈ζ0ζ0〉++} , (D16)

〈ζ2
y 〉⊥ = −1

4
{〈ζ−ζ−〉−+ + 〈ζ+ζ+〉+− + 〈ζ−ζ+〉−−

+ 〈ζ−ζ+〉++ + 〈ζ+ζ−〉−− + 〈ζ+ζ−〉++} , (D17)

〈ζ2
z 〉⊥ =

1

4
{〈ζ−ζ−〉−+ + 〈ζ+ζ+〉+− − 〈ζ−ζ+〉−−

− 〈ζ−ζ+〉++ − 〈ζ+ζ−〉−− − 〈ζ+ζ−〉++} . (D18)

3. Spin decay rates and ξi

In this subsection we derive expressions for the spin
decay rates. The coefficients for the spin components
decays are defined via linearization of the operator ξi =
α2ji + jiα

2 − 2αjiα = −i[α, ζi] for the given polarized
spin state. We want to have ξi ∼ Ξiji which implies

〈ξi〉 = Ξi〈ji〉, 〈ξiji〉 = Ξi〈j2
i 〉. (D19)

The last equality is always nontrivial so we can use it
for defining Ξi = 〈ξiji〉/〈j2

i 〉. Using expressions (D1) and
(D8) we proceed

ξFFµ = −
∑
k,k′

aFFk aFFk′

ckck′

√
k(k + 1)

∑
p,q

∑
r,s,l,l′

Ck,l+µkl;1µ

×
[
CFnFr;k′l′C

Fr
Fm;k,l+µC

1s
1p;k′l′C

1q
1s;kl

− CFnFr;k,l+µC
Fr
Fm;k′l′C

1s
1p;klC

1q
1s;k′l′

]
× |Fn〉〈Fm| ep⊗ e∗q . (D20)

After averaging over the initial spin polarized state |FF 〉
we obtain the required matrix elements in the spherical
basis

〈ξµjν〉FFpq = −
∑
k,k′

aFFk aFFk′

ckck′

√
k(k + 1)F (F + 1)

×
∑
r,s,l,l′

Ck,l+µkl;1µ C
F,F+ν
FF ;1ν

×
[
CFFFr;k′l′C

Fr
F,F+ν;k,l+µC

1s
1p;k′l′C

1q
1s;kl

− CFFFr;k,l+µC
Fr
F,F+ν;k′l′C

1s
1p;klC

1q
1s;k′l′

]
.

(D21)

The Clebsch-Gordans require the following constraints
on the indexes to be fulfilled for the first term r = F +
p − s, l = q − s, l′ = s − p and for the second term
r = F + q − s + ν, l = s − p, l′ = q − s plus the usual
condition p = q + µ+ ν. Finally, we obtain

〈ξµjν〉FFpq = −δp,q+µ+ν

∑
k,k′

aFFk aFFk′

ckck′
CF,F+ν
FF ;1ν

×
√
k(k + 1)F (F + 1)

∑
s

×
[
CFFF,F+p−s;k′,s−pC

F,F+p−s
F,F+ν;k,q−s+µ

× Ck,q−s+µk,q−s;1µC
1s
1p;k′,s−pC

1q
1s;k,q−s

− CFFF,F+q−s+ν;k,s−p+µC
F,F+q−s+ν
F,F+ν;k′,q−s

× Ck,s−p+µk,s−p;1µC
1s
1p;k,s−pC

1q
1s;k′,q−s

]
. (D22)

In case of F̃ 6= F essentially the same calculations provide
us with the necessary expression

〈ξµjν〉FF̃pq = δp,q+µ+ν

∑
k,k′

aFF̃k aFF̃k′

ckck′
F (F + 1)CF,F+ν

FF ;1ν

×
∑
s

(−1)s−pC1s
1p;k,s−pC

1q
1s;k′,q−s

×
[
CF̃ ,F−s+pFF ;k,p−sC

F̃ ,F−s+p
F,F+µ+ν;k′,q−sC

F,F+µ+ν
F,F+ν;1µ

+ CFFF,F−µ;1µC
F̃ ,F+q−s+ν
F,F−µ;k,p−sC

F̃ ,F+q−s+ν
F,F+ν;k′,q−s

]
.

(D23)

The full matrix 〈ξµjν〉 can be found by summation over

all F̃

〈ξµjν〉pq =
∑
F̃

〈ξµjν〉FF̃pq . (D24)

We recall that the spin is prepared in a polarized state
along the x direction. Then the decay rate coefficient for
ji in presence of the driving field polarized parallel to the
spin is given by the xx-component of the matrix 〈ξiji〉.
The case of the orthogonal configuration of the spin and
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light is described by yy-element of the matrix.

Ξx‖ =
1

F 2
〈ξ0j0〉00, (D25)

Ξy‖ = − 1

F
{〈ξ−j+〉00 + 〈ξ+j−〉00} , (D26)

Ξz‖ = Ξy‖ , (D27)

Ξx⊥ =
1

2F 2
{〈ξ0j0〉−− + 〈ξ0j0〉++} , (D28)

Ξy⊥ = − 1

2F
{〈ξ−j−〉−+ + 〈ξ+j+〉+− + 〈ξ−j+〉−−

+ 〈ξ−j+〉++ + 〈ξ+j−〉−− + 〈ξ+j−〉++} , (D29)

Ξz⊥ =
1

2F
{〈ξ−j−〉−+ + 〈ξ+j+〉+− − 〈ξ−j+〉−−

− 〈ξ−j+〉++ − 〈ξ+j−〉−− − 〈ξ+j−〉++} . (D30)

4. Relation between the spin decay and the spin
noise

Let us consider the commutator of the Langevin noises
for spin polarized atoms 〈[Fi, Fj ]〉. The noise is defined
by the matrix ζi = i[α, ji] calculated in Appendix D 2.
Therefore, one can consider the mean value of the com-
mutator 〈[ζy, ζz]〉 = −〈[[α, jy], [α, jz]]〉. On the over
hand, the spin decay rate is given by the operator
ξi = α2ji + jiα

2 − 2αjiα. In the previous subsection
of the appendix we have shown that for spin polarized
atoms the operator is proportional to the spin projection
〈ξi〉 ∼ Ξi〈ji〉. Using this fact one can show that

〈[ζy, ζz]〉 =
i

2
(Ξy + Ξz − Ξx)〈jx〉. (D31)

This holds true for any cyclic permutation of x, y, z.

Appendix E: Expressions for 133Cs

In this section we evaluate the A, B, C coefficients for
133Cs optically pumped to the ground state F = 4. In
this case we have I = 7/2, J = 1/2, J ′ = 3/2, F = 4,

F̃ = 3. In order to simplify the expressions we use the

following notations: ak for aFFk and bk for aFF̃k .

a0 =
7

144

(
44

21
+

1

1− ∆45

∆

+
1

3
(
1− ∆35

∆

)) , (E1)

a1 =
7

5760

(
176

7
− 3

1− ∆45

∆

− 5

1− ∆35

∆

)
, (E2)

a2 =
1

5760

(
16− 21

1− ∆45

∆

+
5

1− ∆35

∆

)
, (E3)

b1 =
1

128
√

5

(
5

1− ∆45

∆

+
3

1− ∆35

∆

)
, (E4)

b2 =
3

128
√

77

(
1

1− ∆45

∆

− 1

1− ∆35

∆

)
. (E5)

Light coefficients Aµ:

Ax =
1

4a2
1

[a2
0 + 4a2

1 + 56a1a2 −
112

3
a0a2 +

4900

9
a2

2

+
140

9
(b21 +

77

5
b22 + 2

√
77

5
b1b2)], (E6)

Ay =
1

4a2
1

[a2
0 + 18a2

1 − 28a1a2 +
56

3
a0a2 +

2170

9
a2

2

+
70

9
(b21 +

539

15
b22 − 2

√
77

5
b1b2)]. (E7)

Spin decay coefficients Bi:

Bx‖ =
1

2a2
1

[a2
1 + 14a2a1 + 49a2

2

+
140

9
(b21 +

77

5
b22 + 2

√
77

5
b1b2)], (E8)

By‖ =
1

4a2
1

[a2
1 − 98a2a1 + 273a2

2

+
245

9
(b21 +

55

3
b22 + 2

√
55

7
b1b2)], (E9)

Bz‖ = By‖ , (E10)

Bx⊥ =
1

4a2
1

[a2
1 − 14a2a1 + 105a2

2

+
140

9
(b21 +

539

15
b22 − 2

√
77

5
b1b2)], (E11)

By⊥ =
1

2a2
1

[a2
1 + 56a2a1 − 35a2

2

+
175

18
(b21 +

693

25
b22 −

2

5

√
77

5
b1b2)], (E12)

Bz⊥ = Bx⊥ . (E13)

Spin noise coefficients Ci:

Cx‖ =
1

a2
1

[a2
1 + 14a2a1 + 49a2

2

+
560

9
(b21 +

77

5
b22 + 2

√
77

5
b1b2)], (E14)

Cy‖ =
1

a2
1

[4a2
1 + 308a2

2

+
35

6
(b21 +

1001

45
b22 +

2

3

√
77

5
b1b2)], (E15)

Cz‖ = Cy‖ , (E16)
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Cx⊥ =
1

2a2
1

[a2
1 − 14a2a1 + 161a2

2 +
560

9
(b21 +

539

15
b22 − 2

√
77

5
b1b2)], (E17)

Cy⊥ =
1

2a2
1

[9a2
1 − 14a2a1 + 63a2

2 +
175

18
(b21 +

693

25
b22 −

2

5

√
77

5
b1b2)], (E18)

Cz⊥ =
1

2a2
1

[a2
1 + 14a2a1 + 651a2

2 +
175

18
(b21 +

693

25
b22 −

2

5

√
77

5
b1b2)]. (E19)
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[3] A. Gorshkov, A. André, M. Lukin, and A. Sørensen. Pho-
ton storage in -type optically dense atomic media. ii.
free-space model. Phys. Rev. A, 76(3):033805, September
2007.
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