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Stochastic Thermodynamics of Entropic Transport
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Seifert derived an exact fluctuation relation for diffusion processes using the concept of “stochastic
system entropy”. In this paper we extend his formalism to entropic transport. We introduce the
notion of relative stochastic entropy and use it to generalize Seifert’s system/medium decomposi-
tion of the total entropy. This result allows to apply the concepts of stochastic thermodynamics to
diffusion processes in confined geometries, such as ion channels, cellular pores or nanoporous mate-
rials. It can be seen as the equivalent for diffusion processes of Esposito’s and Schaller’s generalized
fluctuation theorem for “Maxwell demon feedbacks”.
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From a mathematical perspective, the fluctuation re-
lations of non-equilibrium statistical mechanics [1] boil
down to a couple of—almost-tautological—facts:

• If ω is a random variable, P (ω) and P ′(ω) are two
probability distributions on ω and

R(ω) = ln
P (ω)

P ′(ω)
, (1)

then the normalization of P ′ implies

〈e−R〉 ≡
∑

ω

P (ω) e−R(ω) = 1, (2)

and therefore, by Jensen’s inequality,

〈R〉 ≥ 0. (3)

• In the particular case where P ′(ω) = P (ω†) for
some involution ( · )† (viz. ω†† = ω), then we have
the stronger relation

Prob
(

R(ω) = −r
)

= e−r Prob
(

R(ω) = r
)

. (4)

As stressed by Maes [2–4], the relevance of these lem-
mas for non-equilibrium statistical mechanics becomes
apparent relevant when (i) ω represents a path in the
(suitably coarse-grained) state space of a mesoscopic sys-
tem and (ii) ( · )† is the time-reversal operation. In this
case, indeed, the quantity R(ω) often turns out to have
a thermodynamic interpretation, in terms of the work
received by the system, the heat dissipated or the en-
tropy produced along ω. The identity (4) then becomes
a Gallavotti-Cohen [5] type detailed fluctuation relation

(DFR), the more general identity (2) becomes a Jarzyn-
ski [6] type integral fluctuation relation (IFR), and the
inequality (3) becomes the second law inequality. This
unifying perspective on the non-equilibrium fluctuation
relations is developed in [7, 8].

In the context of overdamped Brownian motion, where
ω = (xt)0≤t≤T denotes the stochastic trajectory of a par-
ticle driven by a protocol-dependent force F (x, λ) (in con-
tact with a bath at inverse temperature β), this thermo-
dynamic interpretation was clarified by Seifert in [9]: due
to the Markovian nature of Brownian motion, the irre-
versibility function R(ω) splits into a “boundary” term

∆s(ω) = − ln p(xT , T ) + ln p(x0, 0), (5)

where p(x, t) is the solution of the corresponding Fokker-
Planck equation with initial condition p(x, 0), and a
“bulk” term1

βQ(ω) = β

∫ T

0

F (xt, λt) · dxt. (6)

The interpretations of these terms are, respectively, the
stochastic system entropy—we prefer the term “surprisal”
[10]—variation, and (β times) the dissipated heat along
ω. In other words, R(ω) is nothing but the total entropy

variation

R(ω) = ∆stot(ω) = ∆s(ω) + βQ(ω). (7)

The identities (2), and (4) in the case of steady states,
provide fluctuation relations for the total entropy produc-
tion. This interpretation forms the backbone of stochastic
thermodynamics [8, 11].
The purpose of this note is to point out that Seifert’s

interpretation (7) must be generalized to become appli-
cable for entropic transport, that is, to diffusion processes
where the density (or degeneracy) of states Ω(x)—hence
the hence the free equilibrium state p∗(x) ∝ Ω(x)—is
state-dependent. An example of such situation is the “en-
tropic barrier” studied by Jacobs [12] and Zwanzig [13]:
a narrow channel whose sectional area A(z) = πR2(z)

1 The stochastic integral should be interpreted in the Stratonovitch
sense.
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varies along the main axis z. This entropic barrier mod-
els various physically, chemically and biologically relevant
transport processes, including tracer diffusion accross ion
channels, biological membranes, zeolites and nano-porous
materials; see [14] for a review. Provided the transverse
dimensions are small enough for the corresponding diffu-
sion times to be negligible, and assuming that |R′(z)| . 1,
the Fokker-Planck equation for the longitudinal motion
(in the absence of forcing) is the Fick-Jacobs equation
[12, 13]

∂tp(z, t) = ∂z

(

D(z)A(z)∂z

(p(z, t)

A(z)

)

)

. (8)

where D(z) is an effective state-dependent diffusivity.
The density of states of this projected diffusion process
is Ω(z) = A(z), and the equilibrium state takes the form
p∗(z) ∝ A(z).2 More generally, entropic transport phe-
nomena are modeled by general Fokker-Planck equation
of the form

∂tp(x, t) = ∇ ·

(

µ(x)F (x, λ)p(x, t) +D(x)∇
(p(x, t)

Ω(x)

)

)

,

(9)
with the local Einstein relation µ(x) = βD(x).
It is easy to see that Seifert’s intepretation (7) does

not hold for these state-dependent diffusion processes.
Consider for simplicity the forcing-free case, F = 0 in
(9). Because the conventional (“Gibbs”) entropy is max-
imized by uniform distributions, and p∗(x) 6= const., it
suffices to take p(x0, 0) = const to find

〈∆stot〉 = 〈∆s〉 = ∆

(

−

∫

dx p(x, t) ln p(x, t)

)

< 0,

(10)
in direct violation of (3). This shows that R(ω) 6=
∆stot(ω) in this case, i.e. that the irreversibility of en-
tropic transport is not measured by the combination of
the “surprisal” − ln p(xt, t) and the dissipated heat Q(ω),
as in Seifert’s relation (7). In Bayesian terms, this is be-
cause the non-trivial density of states Ω(x) is a relevant
prior, which must be taken into account in the very def-
inition of the surprisal.
Taking our cues from Kullback and Leibler’s definition

of relative entropy [16],

DKL[p|Ω] = −

∫

dx p(x, t) ln
p(x, t)

Ω(x)
, (11)

which is well-known to satisfy ḊKL[p|Ω] ≥ 0 for any solu-
tion p(x, t) of the Fokker-Planck equation (9) with F = 0,

2 Such non-standard Fokker-Planck equations, with space-
dependent density of states, arise in other contexts as well, in-
cluding general relativity [15]. In this case, the role of the
spatially-varying density of states Ω(x) is played by the inverse
of the comoving lapse function.

let us define the relative system entropy variation or rel-
ative surprisal variation by

∆srel(ω, t|Ω) ≡ − ln
p(xT , T )

Ω(xT )
+ ln

p(x0, 0)

Ω(x0)
. (12)

Here as before, p(x, t) is the solution of the Fokker-Planck
equation with initial condition p(x, 0). The Bayesian
interpretation of the relative surprisal srel(ω, t|Ω) ≡
− ln p(xt, t)/Ω(xt) is the following: srel(ω, t|Ω) is the sur-
prise experienced by an observer finding the system in
state xt at time t when she expected to find it in the
forcing-free equilibrium state p∗(x) ∝ Ω(x).
Now the main point: for a diffusion process described

by the Fokker-Planck equation (9), consider the proba-
bility P [ω] of a path ω = (xt)0≤t≤T under the driving
λ = (λt)0≤t≤T , and the probability P ′[ω] ≡ DP †[ω†]
of the time-reversed path ω† ≡ (xT−t)0≤t≤T under the
time-reversed protocol λ† ≡ (λT−t)0≤t≤T . Then the irre-
versibility function R(ω) defined by (1) decomposes as

R(ω) = ∆srel(ω|Ω) + βQ(ω). (13)

To show this, first isolate the initial and distributions
p(·, 0) and p(·, T ),

R(ω) = ln
p(y0, 0)

p(y1, T )
+ ln

P [ω|x0 = y0]

P †[ω†|xT = y1]
(14)

and, second, use the Girsanov formula as in [17],

ln
P [ω|x0 = y0]

P †[ω†|xT = y1]
=

∫ T

0

µ(xt)F (xt, λt)−D(xt)∇Ω−1(xt)

D(xt)Ω−1(xt)
· dxt. (15)

With the Einstein relation βD(x) = µ(x), this gives

ln
DP [ω|x0 = y0]

DP [ω†|xT = y1]
= βQ(ω)−

∫ T

0

∇Ω−1(xt)

Ω−1(xt)
· dxt, (16)

and evaluating the second integral explicitly, we arrive at

ln
DP [ω|x0 = y0]

DP †[ω†|xT = y1]
= βQ(ω) + ln

Ω(y1)

Ω(y0)
. (17)

Combining (17) with (14) gives the desired result (13).
Accordingly, the IFR for entropic transport can be

written

〈e−∆srel(ω|Ω)+βQ(ω)〉 = 1. (18)

In the special case of steady states, p(·, 0) = p(·, T ), with
steady forcing λT−t = λt—in which case P † = P—we
have the corresponding DFR

Prob
(

∆srel(ω|Ω)− βQ(ω) = −r
)

= e−r Prob
(

∆srel(ω|Ω)− βQ(ω) = r
)

. (19)
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The second law inequality, in turn, reads

DKL[p( · , T )|Ω]−DKL[p( · , 0)|Ω] ≥ β〈Q〉. (20)

These relations extend the framework of stochastic ther-
modynamics to entropic transport.
We close by observing that our results are somewhat

complementary to those of [18]. In that paper, Esposito
and Schaller study, within the framework of Markov jump
processes, the stochastic thermodynamics of “Maxwell
demon feedbacks”. These are defined as systems satis-
fying a modified detailed balance condition of the form

ln
Wmm′

Wm′m

= −β
(

(ǫ− ǫm)−µ(Nm−Nm′)
)

+ fmm′ , (21)

where m is a state, ǫm its energy, Nm its number of par-
ticles, µ the chemical potential, Wmm′ the m → m′ tran-
sition rate, and fmm′ a “feedback parameter” such that
fmm = 0 and fmm′ = −fm′m, measuring the departure
for the standard detailed balance condition. Comparing
with (17), we see that the feedback parameters play the
same role in Esposito’s and Schaller’s setting as a non-
trivial density of states Ω(x) in ours. This is intuitively
clear: a gradient∇Ω(x) 6= 0 effectively acts as a “Maxwell
demon” for the diffusing particles, biasing their Brownian
motion towards regions of high Ω(x). As emphasized in
[18], the term lnΩ(xT )/Ω(x0) in (17) can be interpreted
as the integral of an “information current”.
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