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The spinfoam approach to quantum gravity rests on a “quantization” of BF theory using 2-complexes
and group representations. We explain why, in dimension three and higher, this “spinfoam quanti-
zation” must be amended to be made consistent with the gauge symmetries of discrete BF theory.
We discuss a suitable generalization, called “cellular quantization”, which (1) is finite, (2) produces
a topological invariant, (3) matches with the properties of the continuum BF theory, (4) corresponds
to its loop quantization. These results significantly clarify the foundations – and limitations – of
the spinfoam formalism, and open the path to understanding, in a discrete setting, the symmetry-
breaking which reduces BF theory to gravity.

Introduction. Since it was first advocated by Baez [1],
Reisenberger [2] and Rovelli [3], the spinfoam approach to
quantum gravity has attracted considerable interest, re-
sulting in over a hundred papers published on the topic
every year. In a nutshell, the idea underlying this activity
is that a “spacetime-covariant, Feynman-style” sum-over-
histories formulation of background-independent field
theories exists in the form of a weighted sum over 2-
dimensional cell complexes [3]. This approach is believed
to provide a successful quantization of the topological BF
theory [4, 5], in the form of the Ponzano-Regge [6] and
Ooguri [7] models (in three and four dimensions respec-
tively), and work is underway to adapt it to general rela-
tivity, understood as “BF theory with extra constraints”
[8]. Standard reviews of the spinfoam formalism are [5, 9];
the state of the art is presented in [10].
In spite of strong efforts and promising results [11–18]

(and more references in [17]), several outstanding prob-
lems with the Ponzano-Regge and Ooguri (PRO) models
have remained open so far. We may list them as follows.

1. Bubble divergences. The original PRO partition
functions are in general divergent. How should one
regularize them?

2. Topological invariance. The PRO partition func-
tions are formally invariant under changes of tri-
angulations, up to divergent factors. How can one
turn them into finite topological invariants?

3. Relationship to the canonical theory. The connec-
tion between the Ponzano-Regge model and loop
quantum gravity in 3 dimensions was established
in [13]. Can this connection be extended to 4 di-
mensions and higher?

4. Relationship to the continuum theory. BF theory
was quantized in the continuum in [21, 22], and

was showed to be related to the Ray-Singer tor-
sion. Are the PRO models similarly related to
torsion? (See [14] for a positive answer in certain
three-dimensional cases.)

5. Diffeomorphism symmetry. Both the continuum
BF action and the Einstein-Hilbert action are
diffeomorphism-invariant. What is the fate of this
symmetry in the PRO models?

Mostly thanks to the work of Freidel et al. [11, 12], it
has become clear that all five problems are related to the
issue of identifying the BF shift symmetry in a discrete

setting and gauge-fixing it. No complete solution to this
issue, however, has been proposed in the literature. The
purpose of this letter is to argue that there is a good
reason for this: when dealing with 2-complexes only, as
in the spinfoam formalism, there is no shift symmetry.
To identify this symmetry, one must instead resort to
an extension of the spinfoam formalism including higher-
dimensional cells. This realization paves the way to what
we call cellular quantization. This cellular quantization
solves problems 1 to 4, and sheds interesting new light on
problem 5.
The letter is organized as follows. We start by review-

ing the basic properties of the continuum BF theory, em-
phasizing its gauge symmetries and relationship to ana-
lytic torsion. We then describe the “spinfoam quantiza-
tion” of BF theory, as described e.g. in Baez’s reference
paper [5]. We show how to identify the gauge symmetries
in a discrete setting and perform a quantization which
does preserve the topological features of the continuum
theory. Finally we establish that this cellular quantiza-
tion corresponds to the loop canonical quantization.
Let us also mention that more details on our results

will be given in a separate paper [19]; in particular, an
explicit proof of the breakdown of topological invariance
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of the PRO models regularized on 2-complexes will ap-
pear there.
Continuum BF theory. BF theory was introduced by

Horowitz [20] and Blau and Thompson [21] as an exactly
soluble diffeomorphism invariant theory, illustrating the
connection between quantum gauge systems and mani-
fold topology previously discovered by Schwarz [23]. De-
fined in terms of a gauge field (or gauge connection) A
and a g-valued (d − 2)-form B on spacetime M , where
d = dimM and g is the Lie algebra of the gauge group
G, its classical action reads

SBF(B,A) =

∫

M

〈B ∧ F (A)〉. (1)

Here F (A) is the field strength of A and the bracket de-
notes a non-degenerate symmetric bilinear form in g, typ-
ically the Killing form when g is semisimple. The corre-
sponding field equations are F (A) = 0 and Dk−2

A B = 0,
with Dk

A the covariant exterior derivative associated to A
acting on g-valued k-forms.1

In addition to the usual gauge symmetry of a gauge
field, the action (1) is invariant under the shift symmetry

B 7→ B +Dd−3
A λd−3, (2)

where λd−3 ∈ Ωd−3(M, g) is any g-valued (d − 3)-form.
When d ≥ 4, this gauge symmetry is on-shell reducible:
given a flat connection φ, i.e. one such that F (φ) = 0,
the map λd−3 7→ Dd−3

φ λd−3 is many-to-one. This is to
say that the gauge modes λd−3 (the “ghosts”) themselves
possess a gauge symmetry, namely

λd−3 7→ λd−3 +Dd−4
φ λd−4, (3)

with λd−4 ∈ Ωd−4(M, g) representing “ghosts for ghosts”.
In turn, these new variables themselves may have a shift
symmetry, and so on.
This structure naturally fits in the so-called twisted de

Rham complex

0 → Ω0(M, g)
D0

φ

−−→ · · ·
Dd−1

φ

−−−→ Ωd(M, g) → 0. (4)

In this cochain complex, the coboundary maps are the
covariant exterior derivative Dk

φ and the k-cochains are

elements of Ωk(M, g), viz. (d− 2− k)-stage ghosts. Also

1 Note that Dk

A
is not the k-fold of composition of the covariant

exterior derivative with itself.

note that, for a given flat connection φ, the space of solu-
tions of the field equation for B is the cohomology space
Hd−2

φ derived from (4).
The path-integral quantization of BF theory requires

the gauge-fixing of this shift symmetry. This can be
achieved by means of the resolvent method, a general-
ization of the Faddeev-Popov trick to reducible gauge
symmetries devised by Schwarz [23]. Starting from the
formal, pre-gauge-fixing expression

ZBF =

∫

DA

∫

DB eiSBF(B,A), (5)

the resolvent method consists in extracting the “volume”
of the space ImDd−3

A arising in (2) by means of the com-
plex (4). This method will be outlined below, when we
apply it to gauge-fix the discrete counterpart of BF the-
ory. For now, let us simply state the result of this proce-
dure in the continuum: the gauge-fixed partition function
Z ′
BF can be written as a sum over the moduli space M

of flat connections on P , with a summand given by the
analytic torsion of the complex (4), viz.

Tor[φ] =

d−1
∏

j=0

det
(

(Dj
φ)

†Dj
φ

)(−1)j/2

. (6)

Here [φ] denotes the gauge equivalence class of a flat con-
nection φ, and the dagger denotes the adjoint with re-
spect to arbitrary inner products in the spaces Ωk(M, g);
the Ray-Singer torsion is independent on these inner
products. In particular, Z ′

BF is a topological invariant
of M [21].2

The torsion also provides the measure for transition
amplitudes and for the inner product between boundary
wave-functions. Assume that M has two disconnected
boundaries N1, N2. Wave-functions are square-integrable
functions over the moduli space of flat gauge fields on
N1,2. The transition from an initial state Ψ1 to a final
state Ψ2 through M reads

〈Ψ2|Z
′
BF|Ψ1〉 =

∑

[φ]∈M

Ψ∗
2([φ]) Tor[φ] Ψ1([φ]). (7)

From our perspective, the moral of this review is that,
if classical BF theory can be thought of as a theory of

2 Strictly speaking, these results hold when the twisted de Rham
complex is acyclic (i.e. has vanishing cohomology) for all flat
connections φ, implying that the moduli space of flat connections
is discrete. An extension to the general case is discussed in [21];
see also [24].
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connections and (d−2)-forms, quantum BF theory on the
other hand involves the entire twisted de Rham complex
(4), with forms of all degrees.
“Spinfoam quantization”. Let us now describe the

“spinfoam quantization” of BF theory, as presented e.g.
in [5]. Assume that G is compact, and thatM is equipped
with a triangulation ∆ and its dual cell complex K. De-
fine a discrete connection on ∆ as an assignment of an
element ge of the gauge group G to each edge (1-cell) e of
K. Then for each face (2-cell) f of K, define the holon-
omy Hf along f as the ordered product of ge attached
to the edges on the boundary of f . The set of group el-
ements H = (Hf )f is the discrete analogue of the field
strength F (A) in the continuum.
Now, consider again the formal expression (5), and “in-

tegrate over the B-field”. This gives

ZBF =

∫

DA δ
(

F (A)
)

(8)

with a functional delta function implementing the flatness
of the connection. Thanks to the discretization on K, the
formal measure DA can be defined by means of the Haar
measure dg on G, and we can set

ZBF =

∫

GE

∏

e

dge
∏

f

δ(Hf ). (9)

Now, let us expand the Dirac delta on G in characters,

δ(g) =
∑

j

dim(j) trDj(g), (10)

where j ranges over the equivalence classes of unitary
irreps Dj(g) of G, and recall the identity

∫

G

dg

d
⊗

l=1

Djl(g) =
∑

ι

|ι〉〈ι| (11)

for the projector on theG-invariant subspace of the tensor
representation

⊗

jl, of which the “intertwiners” ι spans
an orthonormal basis. Plugging (10) and (11) into (9)
then gives, after some easy algebra,

ZBF =
∑

(jf )

∏

f

dim(jf )
∏

v

{Ndj}. (12)

Here Nd = 3(d + 1)(d − 2)/2, and {Ndj} is the Wigner
Ndj symbol. This expression defines the Ponzano-Regge
(d = 3) and Ooguri (d = 4) models.
Unfortunately, (12) is known to be ill-defined in gen-

eral; when the sum over representations in (12) is trun-
cated to a finite value Λ, the sum diverges as Λ → ∞.

This phenomenon has been coined “bubble divergences”
[25], and was interpreted as an “infrared effect” [5, 25].
The connection between these divergences and the BF
shift symmetry was understood in 3 dimensions by Freidel
and Louapre [11], and a “gauge-fixing” scheme consisting
in removing certain faces of K was proposed [11, 12]. For
non-trivial topologies, however, this scheme turned out
to fail turning (12) into a finite number [26].
It should be clear from the above discussion that the

spinfoam scheme, which only relies on the 2-skeleton of
K, does not implement any gauge-fixing of the discrete
shift symmetry; it simply amounts to a rewriting of the
unfixed partition fonction (5). This is consistent when
d = 2, in which case BF theory is nothing but the zero-
coupling limit of Yang-Mills theory; but it is inconsistent
when d ≥ 3, as the gauge redundancy then makes the
expression (12) ill-defined. It is these divergences which
prevent (12) from defining a bona fide topological invari-
ant, and cramp any connection with Ray-Singer torsion.
Cellular quantization. Suppose now that d ≥ 3. Let

A = GE denote the space of discrete connections on K,
and F the subspace of flat discrete connections, namely
those for which Hf = 1 for all faces f . In the neigh-
borhood of F , a discrete connection A can be seen as an
element (φ, aφ) ∈ F × NφF of the normal bundle to F ,
according to A = expφ(aφ).

3 Furthermore, the holonomy
can be expanded as

Hf = (dHf )φ(aφ) +O(a2φ). (13)

and the Haar measure dA on A splits as

dA = dφ daφ, (14)

where dφ is the induced Riemannian measure on F and
daφ is the Lebesgue measure on the fiber NφF normal to
F . Finally we have

δ(Hf ) =

∫

g

dbf ei〈bf ,(dHf )φ(aφ)〉. (15)

Hence (9) can be rewritten as
∫

F
dφ zφ, where zφ has the

BF-like form

zφ =

∫

NφF

daφ

∫

gF

db eis(b,aφ) (16)

where b = (bf )f and

s(b, aφ) =
∑

f

〈bf , (dHf )φ(aφ)〉. (17)

3 We disregard the possibility that F may contain singularities; see
[28] for a discussion of this issue.
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To proceed with the quantization of discrete BF theory,
we must now identify the gauge symmetries of (16). To
this effect, consider the discrete twisted de Rham complex

0 → g
c0

δ0φ
−→ . . .

δd−1

φ

−−−→ g
cd → 0. (18)

where ck is the number of k-cells ofK. The cochain space
g
ck is the discrete analogue of Ωk(M, g), and δkφ is the

discrete covariant exterior derivative defined in [14, 26],
satisfying δk+1

φ ◦ δkφ = 0. In particular, if µ is the Maurer-

Cartan form on G and a = µ(aφ), then δ1φ(a) = dHφ(aφ).
Using the bracket in g, we can also consider the adjoint
maps ∂φ

k = (δk−1
φ )†, defining the dual complex to (18),

namely

0 → g
cd

∂φ

d−−→ . . .
∂φ
1−−→ g

c0 → 0. (19)

Thanks to this cohomological structure, it is easy to
identify the gauge symmetries of (17): it is simply

b 7→ b + ∂φ
3 (X3) (20)

with X3 ∈ g
c3 . Indeed, we have

〈∂φ
3 (X3), dHφ(aφ)〉 = 〈X3, δ

2
φ ◦ δ1φ(a)〉 = 0. (21)

This is nothing but the discrete counterpart of the shift
symmetry (2). When d ≥ 4, this symmetry is reducible,

as Im ∂φ
4 ⊂ Ker ∂φ

3 , etc. That is, just as in the continuum,
the reducible symmetries of the action (17) involves all
the chain groups in (19), hence cells of all dimensions.
Let us now use the resolvent method to gauge-fix the

discrete shift symmetry. Assume that (18) and (19) are

acyclic,4 so that Im ∂φ
3 exhausts the kernel of (17). Then

the goal is to restrict the integral over b in (16) to an

integral over (Im ∂φ
3 )

⊥. Write formally
∫

gF

db eis(b,aφ) = Vol(Im ∂φ
3 )

∫

(Im∂φ
3
)⊥

db⊥ eis(b,aφ) (22)

and observe that, since ∂φ
3 provides an isomorphism be-

tween g
c3/Ker∂φ

3 = g
c3/ Im∂φ

4 and Im ∂φ
3 , and moreover

δ2φ = (∂φ
3 )

†, we can write

Vol(Im ∂φ
3 ) = det(δ2φ∂

φ
3 )

1/2 Vol(gc3)

Vol(Im ∂φ
4 )

. (23)

4 In the case where the complex (18) is not acyclic, and in par-
ticular when the moduli space of flat connections is not discrete,
this method can be amended along the lines of [24]. This yields
a similar result, except for a few more determinants.

Iterating this recursive relation, we get

Vol(Im ∂φ
3 ) =

d−1
∏

j=2

det(δjφ∂
φ
j+1)

(−1)j/2 Vol(gcj)(−1)j . (24)

Now, let us pretend that the chain spaces g
cj have unit

volume: this is the meaning of the expression “dividing
by an infinite volume” underlying the gauge-fixing proce-
dure. (Precisely the same step is taken in the continuum
quantization of BF theory.) Then we can replace (22) by
the finite quantity

d−1
∏

j=2

det(δjφ∂
φ
j+1)

(−1)j/2

∫

(Ker∂φ
3
)⊥

db⊥e
is(b⊥,aφ). (25)

Hence, returning to (16) and performing the integral over
b⊥, we get as the definition of gauge-fixed version of zφ

z′φ =

d−1
∏

j=2

det(δjφ∂
φ
j+1)

(−1)j/2

∫

NφF

daφ δ
(

dHφ(aφ)
)

. (26)

The remaining integral over aφ is now well-defined and

gives det(δ1φ∂
φ
2 )

−1/2. Hence we obtain for the gauge-fixed

partition function Z ′
BF =

∫

F dφ z′φ:

Z ′
BF =

∫

F

dφ

d−1
∏

j=1

det(δjφ∂
φ
j+1)

(−1)j/2. (27)

The integral over F can be pulled back to to the mod-
uli space of flat discrete connections M = F/Gc0 by in-
tegrating along the gauge orbits of each flat connection
[14, 28]. This yields one more determinant det(δ0φ∂

φ
1 )

1/2,
and thus

Z ′
BF =

∑

[φ]∈M

Tor[φ] (28)

with

Tor[φ] =

d−1
∏

j=0

det(∂φ
j+1δ

j
φ)

(−1)j/2. (29)

The expression (28) is a topological invariant of K. In
particular, the quantity Tor[φ](K,G) is the twisted Rei-
demeister torsion, which is known to coincide with the
twisted analytic torsion. Thus, (28) matches with the
continuum result, consistently with the general expec-
tation that, for a TQFT with finitely many degrees of
freedom, discretization should play no physical rôle.
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Relation to the loop formalism. The above method
naturally gives rise to the loop quantization of BF theory.
In the loop approach, one quantizes before restricting to
flat gauge fields. Given an embedded, closed graph γ,
cylindrical wave functions are functions of the Wilson
lines along the lines of γ. For each graph there is a Hilbert
space whose measure is given by the Haar measure of G
on each line,

∏

e dge. The Hilbert spaces of two different
graphs are orthogonal. The standard gauge symmetry
requires invariance under G-translation on the source and
end nodes of the lines.

Heuristically, the transition amplitudes in the contin-
uum (7) suggest that they can be formulated in the loop
approach by taking as boundary states cylindrical func-
tions restricted to the moduli space M, the torsion still
providing the measure. Assume M has two disconnected
boundaries N1, N2, with two closed, embedded graphs
γ1, γ2 associated with two cylindrical functions Ψγ1

,Ψγ2
.

The transition is regularized by choosing a cell decom-
position K of M such that γ1, γ2 are included into the
1-skeleton. The ungauge-fixed transition amplitude reads

〈Ψγ2
|ZBF|Ψγ1

〉 =

∫

∏

e

dge Ψ∗
γ2
(ge)Ψγ1

(ge)
∏

f

δ(Hf ).

(30)
As the shift symmetry does not act on Wilson lines,
the process of the previous section applies. The wave-
functions are evaluated on M because there are no fluc-
tuations around flat connections, yielding

〈Ψγ2
|Z ′

BF|Ψγ1
〉 =

∑

[φ]∈M

Ψ∗
γ2
([φ]) Tor[φ] Ψγ1

([φ]). (31)

Finally, the regulator K can be removed thanks to the
topological invariance of the torsion, which makes the
continuum limit result into the above formula. Let us
mention an outcome of this result: the loop quantization
of the BF model does not distinguish knottings of the
graphs γ1,2.
Conclusion. We have performed a topological quan-

tization of discrete BF theory, proving its equivalence
to the usual quantization in the continuum. This result
solves several open problems of the field and extends pre-
vious results obtained in dimension 3 to arbitrary dimen-
sions: (1) transition amplitudes are finite, answering the
issue of bubble divergences [11, 28]; (2) the gauge sym-
metries in the discrete setting exist, generalizing [11, 12],
and (3) they can be gauge-fixed to derive the loop quanti-
zation, generalizing [13]; (4) as a result, one gets a topo-
logical invariant, which proves that the classical gauge
symmetries are correctly promoted to the quantum level.

The crucial steps of our quantization require to take
into account cells of all dimensions in the cell complex,
and not just its 2-skeleton like in the “spinfoam quanti-
zation”. A challenge for future investigations is to find a
representation of (31) as a state-sum, as is done in the
latter approach.5

The last issue we mentioned in the introduction is
the major difficulty in quantum gravity: understand-
ing the quantum version of diffeomorphism-invariance.
It is well-known that diffeomorphism-invariance in the
BF model is contained within its shift symmetry [20].
Hence the substance of general relativity is to break the
topological invariance while preserving diffeomorphism-
invariance. Spinfoam models for quantum gravity are
very much in line with this idea, as they start by quan-
tizing BF theory and then introduce some breaking of the
shift symmetry to restore the local degrees of freedom. It
is also known that discrete models of gravity generically
break diffeomorphism-invariance [17]. Showing that it
is restored in the continuum limit (after some coarse-
graining, or summing over spinfoams appropriately) is
one of the main programs in the spinfoam approach. Now
that the shift symmetry is correctly controlled in the dis-
crete setting, we feel that the noose is tightening around
diffeomorphisms.
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