English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural characterization of supramolecular assemblies by 13C spin dilution and 3D solid-state NMR.

MPS-Authors
/persons/resource/persons79129

Habenstein,  B.
Research Group of Solid-State NMR, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons36494

Loquet,  A.
Research Group of Solid-State NMR, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons36496

Giller,  K.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons14824

Becker,  S.
Department of NMR Based Structural Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15414

Lange,  A.
Research Group of Solid-State NMR, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1694967.pdf
(Publisher version), 960KB

Supplementary Material (public)

1694967-Suppl.doc
(Supplementary material), 700KB

Citation

Habenstein, B., Loquet, A., Giller, K., Becker, S., & Lange, A. (2013). Structural characterization of supramolecular assemblies by 13C spin dilution and 3D solid-state NMR. Journal of biomolecular NMR, 55(1), 1-9. doi:10.1007/s10858-012-9691-9.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-E517-0
Abstract
13C spin diluted protein samples can be produced using [1-13C] and [2-13C]-glucose (Glc) carbon sources in the bacterial growth medium. The 13C spin dilution results in favorable 13C spectral resolution and polarization transfer behavior. We recently reported the combined use of [1-13C]- and [2-13C]-Glc labeling to facilitate the structural analysis of insoluble and non-crystalline biological systems by solid-state NMR (ssNMR), including sequential assignment, detection of long-range contacts and structure determination of macromolecular assemblies. In solution NMR the beneficial properties of sparsely labeled samples using [2-13C]-glycerol (13C labeled Cα sites on a 12C diluted background) have recently been exploited to provide a bi-directional assignment method (Takeuchi et al. in J Biomol NMR 49(1):17–26, 2011 ). Inspired by this approach and our own recent results using [2-13C]-Glc as carbon sources for the simplification of ssNMR spectra, we present a strategy for a bi-directional sequential assignment of solid-state NMR resonances and additionally the detection of long-range contacts using the combination of 13C spin dilution and 3D NMR spectroscopy. We illustrate our results with the sequential assignment and the collection of distance restraints on an insoluble and non-crystalline supramolecular assembly, the Salmonella typhimurium type III secretion system needle.