日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment

MPS-Authors
/persons/resource/persons62549

Schulze,  E. D.
Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62484

Middelhoff,  C.
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62551

Schumacher,  J.
Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62578

Temperton,  V. M.
Research Group Biodiversity Ecosystem, Dr. N. Buchmann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Scherber, C., Eisenhauer, N., Weisser, W. W., Schmid, B., Voigt, W., Fischer, M., Schulze, E. D., Roscher, C., Weigelt, A., Allan, E., Bessler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, L. W., Ebeling, A., Engels, C., Halle, S., Kertscher, I., Klein, A. M., Koller, R., König, S., Kowalski, E., Kummer, V., Kuu, A., Lange, M., Lauterbach, D., Middelhoff, C., Migunova, V. D., Milcu, A., Müller, R., Partsch, S., Petermann, J. S., Renker, C., Rottstock, T., Sabais, A., Scheu, S., Schumacher, J., Temperton, V. M., & Tscharntke, T. (2010). Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468(7323), 553-556. doi:10.1038/nature09492.


引用: https://hdl.handle.net/11858/00-001M-0000-000E-DAAE-C
要旨
Biodiversity is rapidly declining(1), and this may negatively affect ecosystem processes(2), including economically important ecosystem services(3). Previous studies have shown that biodiversity has positive effects on organisms and processes(4) across trophic levels(5). However, only a few studies have so far incorporated an explicit food-web perspective(6). In an eight-year biodiversity experiment, we studied an unprecedented range of above-and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.