English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns

MPS-Authors
/persons/resource/persons62602

Werner,  M.
Research Group Paleo-Climatology, Dr. S. P. Harrison, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Demuzere, M., Werner, M., Van Lipzig, N. P. M., & Roeckner, E. (2009). An analysis of present and future ECHAM5 pressure fields using a classification of circulation patterns. International Journal of Climatology, 29(12), 1796-1810. doi:10.1002/joc.1821.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-D7E7-D
Abstract
Several Subjective and objective methods for the classification of circulation patterns into categories have been developed over the past century. In this study, we used the automated Lamb weather type (WT) classification method. based on mean sea level pressure (MSI-P) to examine prescrit and future circulalion patterns above Western and Central Europe First, the European Center for Medium-Range Weather Forecast 40-year reanalysis data (ECMWF-ERA40) is used to evaluate the occurring WTs within the newly developed ECHAM5-MPI/OM model for the period 1961-2000 Our analysis shows that the ECHAM5 model is capable of reproducing circulation patterns for the October to April season. For the remaining part of the year, there are some significant differences in eastern and western directional circulation types Therefore, in the second part of this study. past. present and future ECHAM5 pressure fields are investigated for the autumn and winter season only Finally, long-term trends of MSLP field, of the A I B scenario simulation using ECHAM5-MPI/OM for the period 1860-2100 show a significant increase in western circulation and anticyclonic WTs over Western and Central Europe, accompanied by a decrease in eastern circulation and cyclonic WTs Copyright Cc) 2008 Royal Meteorological Society