Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Temperature sensitivity of the turnover times of soil organic matter in forests

MPG-Autoren
/persons/resource/persons62395

Hakkenberg,  R.
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62356

Churkina,  G.
Department Biogeochemical Systems, Prof. M. Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62341

Börner,  A.
Department Biogeochemical Processes, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62571

Steinhof,  A.
Service Facility 14C Lab, Dr. A. Steinhof, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hakkenberg, R., Churkina, G., Rodeghiero, M., Börner, A., Steinhof, A., & Cescatti, A. (2008). Temperature sensitivity of the turnover times of soil organic matter in forests. Ecological Applications, 18(1), 119-131.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-D685-F
Zusammenfassung
Soils represent the largest carbon pool in the terrestrial biosphere, and climate change might affect the main carbon fluxes associated with this pool. These fluxes are the production of aboveground litter and root litter, and decomposition of the soil organic matter (SOM) pool by soil microorganisms. Knowledge about the temperature sensitivity of the decomposition of different SOM fractions is crucial in order to understand how climate change might affect carbon storage in soils. In this study, the temperature sensitivity of the turnover times of three different SOM fractions (labile, intermediate, and stabilized) was investigated for I I forest sites along a temperature gradient. Carbon-14 isotope analyses of the SOM fractions combined with a model provided estimates of their turnover times. The turnover times of the labile SOM fraction were not correlated with mean annual soil temperature. Therefore it was not possible to estimate temperature sensitivity for the labile SOM fraction. Given considerable evidence elsewhere for significant temperature sensitivities of labile SOM, lack of temperature sensitivity here most likely indicates limitations of the applied methodology for the labile SOM fraction. The turnover times of the intermediate and the stabilized SOM fractions were both correlated with mean annual soil temperatures. The temperature sensitivity of the stabilized SOM fraction was at least equal to that of the intermediate SOM fraction and possibly more than twice as high. A correction for confounding effects of soil acidity and clay content on the temperature sensitivities of the, intermediate and stabilized SOM fractions was included in the analysis. The results as observed here for the three SOM fractions may have been influenced by (1) modeling assumptions for the estimation of SOM turnover times of leaf and needle longevities, constant annual carbon inputs, and steady-state SOM pools, (2) the occurrence of summer drought at some sites, (3) differences between sites in quality of the SOM fractions, or (4) the relatively small temperature range. Our results suggested that a VC increase in temperature could lead to decreases in turnover times of 4-11% and 8-16%, for the intermediate and stabilized SOM fractions, respectively.