Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The application and interpretation of Keeling plots in terrestrial carbon cycle research

MPG-Autoren
/persons/resource/persons62349

Buchmann,  N.
Research Group Biodiversity Ecosystem, Dr. N. Buchmann, Max Planck Institute for Biogeochemistry, Max Planck Society;

/persons/resource/persons62429

Kaplan,  J. O.
Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society;
Department Biogeochemical Systems, Prof. D. Schimel, Max Planck Institute for Biogeochemistry, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pataki, D. E., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R., Still, C. J., et al. (2003). The application and interpretation of Keeling plots in terrestrial carbon cycle research. Global Biogeochemical Cycles, 17(1), 1022. doi:10.1029/2001GB001850.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-D0C5-2
Zusammenfassung
[1] Photosynthesis and respiration impart distinct isotopic signatures to the atmosphere that are used to constrain global carbon source/sink estimates and partition ecosystem fluxes. Increasingly, the "Keeling plot'' method is being used to determine the carbon isotope composition of ecosystem respiration (delta(13)C(R)) in order to better understand the processes controlling ecosystem isotope discrimination. In this paper we synthesize emergent patterns in delta(13)C(R) by analyzing 146 Keeling plots constructed at 33 sites across North and South America. In order to interpret results from disparate studies, we discuss the assumptions underlying the Keeling plot method and recommend standardized methods for determining delta(13)C(R). These include the use of regression calculations that account for error in the x variable, and constraining estimates of delta(13)C(R) to nighttime periods. We then recalculate delta(13)C(R) uniformly for all sites. We found a high degree of temporal and spatial variability in C-3 ecosystems, with individual observations ranging from -19.0 to -32.6parts per thousand. Mean C-3 ecosystem discrimination was 18.3parts per thousand. Precipitation was a major driver of both temporal and spatial variability of delta(13)C(R), suggesting (1) a large influence of recently fixed carbon on ecosystem respiration and (2) a significant effect of previous climatic effects on delta(13)CR. These results illustrate the importance of water availability as a key control on atmospheric (CO2)-C-13 and highlight the potential of delta(13)C(R) as a useful tool for integrating environmental effects on dynamic canopy and ecosystem processes.