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I. INTRODUCTION

Galileon theories of a real scalar field are special because they have two-derivative equa-

tions of motion despite having higher-derivative Lagrangians. They are a sub-class of the

most general scalar theories with two-derivative equations of motion, known as Horndeski’s

theories [1] (see also [2]). The “standard” Galileons [3] have the additional property that

in the equations of motion there are precisely two derivatives acting on each field. An im-

mediate consequence is that the standard Galileons are invariant under a so-called Galilean

shift symmetry φ → φ+ c+ bµx
µ with c, bµ being constants, whence they derive their name.

The property of having equations of motion with no more than two derivatives acting on

a field is crucial since it helps to evade Ostrogradsky’s theorem [4]. That is, despite the

higher-derivative nature of the Lagrangians, these theories do not contain ghosts.

Galileons have attracted considerable interest due to their rather remarkable properties.

For example, they admit de-Sitter-like solutions in the absence of a cosmological constant [5–

7] and they lead to a Vainshtein-type screening mechanism so that they can be in agreement

with solar system “fifth force” constraints while contributing a fifth force on large scales [8, 9].

Moreover, they allow for solutions that violate the null energy condition without leading

to the appearance of ghosts [10, 11]. This last property means that Galileons also have

applications to early universe cosmology, allowing the construction of emergent cosmologies

(see, for example, the model of Galilean genesis [12]) and non-singular bouncing cosmologies

such as new ekpyrotic theory [13–18] or the matter bounce model [19]. Such alternative

models to inflation even play a significant role in eternal inflation [20–22].

There exists a suggestive construction of Galileon Lagrangians as the theories describ-

ing the dynamics of co-dimension one branes [23]. This has led people to speculate that

Galileons might arise naturally out of string theory and, hence, enjoy a more fundamental

status than other higher-derivative terms, in analogy to the Dirac-Born-Infeld action. Brane

backgrounds in string theory typically preserve some amount of unbroken supersymmetry.

Therefore, if Galileons are to arise from string theory it will be in a supersymmetric context.

Hence, it is of importance to study the supersymmetric extensions of Galileon theories. In

previous work [24], it was shown that conformal Galileons can be made globally N = 1

supersymmetric–these theories arising naturally as a way of obtaining correct sign spatial

gradients in supersymmetric ghost-condensates (see also [25, 26]). It was found that the



3

new fields required by supersymmetry (a second real scalar, a spin 1
2
fermion and a com-

plex auxiliary field) admit stable, positive-energy fluctuations around specific backgrounds,

namely those where the second scalar field is constant. However, possible ghost instabili-

ties associated with vacua with a spacetime dependent second scalar were not explored. We

will do this in the present paper, restricting our discussion, for simplicity, to the standard

Galileons of [3] within the context of four-dimensional global N = 1 supersymmetry.

To begin, we present complex scalar Galileons which, when the second scalar is set to zero,

reduce to real Galileons of the L3, L4 and L5 type. These possess manifestly two-derivative

equations of motion and a Galilean symmetry for the two constituent real scalars fields.

We then show, however, that such complex Galileon theories cannot be obtained in N = 1

supersymmetry. We next consider the cubic-in-the-field, four-derivative L3 Lagrangian, and

show that there is a unique possible N = 1 supersymmetric generalization. However, it is

demonstrated that this Lagrangian leads to higher-derivative equations of motion! An im-

mediate consequence is that, around general backgrounds, this theory admits a ghost, whose

existence we explicitly demonstrate. In the effective field theory context, we then calculate

the mass of the ghost and argue that for a sufficiently low cut-off scale the ghost degree of

freedom can be safely ignored. In the final technical section before the discussion, we ex-

tend our analysis to supersymmetrize the quartic-in-the-field, six-derivative L4 Lagrangian.

Again, it is found to lead to higher-derivative equations of motion. This time we perform

the stability analysis using the canonical Hamiltonian formalism, and explicitly demonstrate

the existence of ghosts as well as the unboundedness of the Hamiltonian. Our results imme-

diately generalize to supersymmetrized L5 as well. The implication is that supersymmetric

Galileons cannot be considered as fundamental, but must be treated in an effective field

theory context in the same manner as generic higher-derivative terms. It is notable that, for

once, the inclusion of supersymmetry does not improve the stability properties of a theory

– quite to the contrary!

We note that our conclusions only apply to L3, L4 and L5, but not to L1, L2 since the

latter two Lagrangians do not contain higher derivatives to start with. Furthermore, we have

performed our analysis within the context of global rather than local supersymmetry. How-

ever, the generic supersymmetric structure of the higher-derivative scalar field Lagrangians

is not substantially altered in the presence of gravity (see e.g. [27, 28]). That is, the exis-

tence of ghosts in the L3, L4 and L5 Galileons will persist when these are coupled to N = 1
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supergravity. Finally, recall that our results are derived for the “standard” Galileon theories.

Many variants of the original model have been constructed, such as conformal Galileons [10],

DBI Galileons [23], Galileons with an internal symmetry [29, 30], bi-Galileons [31, 32] and so

on. We do not have a proof that our results extend to these variants as well, but preliminary

calculations strongly suggest that they do. This will be discussed elsewhere.

II. GALILEONS AND COMPLEX FIELDS

In this and the following two sections, we will focus on the simplest non-trivial Galileon

Lagrangian given by [3]

L3 = −1

2
(∂φ)2�φ. (II.1)

By varying with respect to φ, one can immediately see that the equation of motion is second

order and given by

(�φ)2 − φ,µνφ,µν = 0. (II.2)

Thus, despite the higher-derivative nature of the Lagrangian, the equation of motion is well-

behaved and the Cauchy problem is well-posed. In four dimensions, there are two more such

Galileon Lagrangians,

L4 = −1

2
(∂φ)2

(

(�φ)2 − φ,µνφ,µν

)

, (II.3)

L5 = −1

2
(∂φ)2

(

(�φ)3 − 3�φφ,µνφ,µν + 2φ,µνφ,µρφ,ν
ρ
)

(II.4)

which also lead to second-order equations of motion. For example, the equation of motion

for L4 is given by

(�φ)3 − 3�φφ,µνφ,µν + 2φ,µνφ,µρφ,ν
ρ = 0. (II.5)

A detailed discussion of the L4 Lagrangian and its supersymmetric extension will be dis-

cussed below in the final technical section.

In N = 1 supersymmetry, scalar field theories can be constructed using chiral superfields

Φ. The lowest component of such a superfield is a complex scalar A, which can be decomposed

into two real scalars as

A =
1√
2
(φ+ iξ). (II.6)
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One consequence is that supersymmetric scalar field actions can always be written as her-

mitian combinations of A and its complex conjugate A∗. At this point, it is interesting to

note that there is an immediate generalization of Galileons to complex Galileons. These are

obtained by replacing φ →
√
2A and then taking the real part. For L3 above, this amounts

to considering the Lagrangian

LC

3 = − 1√
2
(∂A)2�A + h.c. , (II.7)

where h.c. stands for “hermitian conjugate”. It is then evident that the resulting equations

of motion are still second order, since they are given by

(�A)2 − A,µνA,µν = 0, (�A∗)2 −A∗,µνA∗
,µν = 0. (II.8)

In terms of the real scalars φ and ξ, the Lagrangian and equations of motion are

LC

3 = −1

2

(

(∂φ)2�φ− (∂ξ)2�φ − 2∂φ · ∂ξ�ξ
)

, (II.9)

0 = (�φ)2 − φ,µνφ,µν − (�ξ)2 + ξ,µνξ,µν , (II.10)

0 = �φ�ξ − φ,µνξ,µν , (II.11)

clearly exhibiting that we now have a coupled two-field Galileon system. Not only are the

equations of motion of second order, but both fields admit independent Galileon-type shift

symmetries φ → φ+ c(φ) + b
(φ)
µ xµ and ξ → ξ + c(ξ) + b

(ξ)
µ xµ respectively.

Note that other actions, involving both A and A∗ in a single term, do not lead to second-

order equations of motion. To illustrate this important point, consider the action

L̃C

3 = − 1√
2
∂A · ∂A∗

�A + h.c. (II.12)

= −1

2

(

(∂φ)2�φ+ (∂ξ)2�φ
)

, (II.13)

leading to the equations of motion

0 = (�φ)2 − φ,µνφ,µν − ξ,µνξ,µν − ξ,µξ,ν
νµ, (II.14)

0 = �ξ�φ+ ξ,µφ,ν
νµ. (II.15)



6

Clearly, these are higher-order in time and, thus, by Ostrogradsky’s theorem [4], lead to the

appearance of ghosts.

III. SUPERSYMMETRIC GALILEONS

In this section, we will construct all possible supersymmetric Lagrangians involving the

product of three fields and four space-time derivatives, in order to see if there might exist

inequivalent supersymmetric extensions of the L3 Lagrangian (II.1). We will work in N = 1

superspace (for a detailed exposition see [33]). Here, in addition to ordinary four-dimensional

bosonic spacetime one adds four fermionic, Grassmann-valued dimensions. These have coor-

dinates θα and θ̄α̇, transforming as a two-component Weyl spinor and conjugate Weyl spinor

respectively. One can then define the superspace derivatives

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ, D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ (III.1)

which satisfy the supersymmetry algebra

{Dα, D̄α̇} = −2iσµ
αα̇∂µ . (III.2)

Any superfield can be expanded in the anti-commuting coordinates θ, θ̄, with the expansion

terminating at order θθθ̄θ̄ because of the Grassmann nature of the fermionic coordinates. A

chiral superfield Φ is defined by the constraint

D̄Φ = 0 . (III.3)

This has the expansion

Φ = A(x) +
√
2θχ(x) + θθF (x)

+iθσmθ̄∂mA(x)−
i√
2
θθ∂mχ(x)σ

mθ̄ +
1

4
θθθ̄θ̄�A(x), (III.4)

where A is a complex scalar, χα is a spin-1
2
fermion and F is a complex auxiliary field. In

this paper, we will ignore the fermion. Furthermore, since we are only interested in the

structure of kinetic energy terms, we need not introduce a superpotential – in the absence
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of which the F field can, and will, be consistently set to zero.

What makes superspace so useful is that the top component (that is, the θθθ̄θ̄ com-

ponent) of a superfield transforms under supersymmetry into a total spacetime derivative.

Hence, one can use this top component to construct supersymmetric Lagrangians. The

top component can be isolated by integrating the superfield Lagrangian over superspace

with d4θ = d2θd2θ̄ or, alternatively, by acting on it with D2D̄2. The supersymmetry algebra

(III.2) then implies that the top component of a superfield will contain two additional space-

time derivatives compared to its lowest component or compared to the superfield expression

itself. For example, ordinary two-derivative scalar field theories are obtained by isolating

the top component of the Kähler potential, which is an hermitian function of the chiral

superfield Φ and its hermitian conjugate Φ† involving no spacetime derivatives.

In our case, we are interested in Lagrangians involving the cubic product of a scalar field

and four spacetime derivatives. This means that we should consider all possible superfield

expressions involving the cubic product of a chiral superfield and two spacetime derivatives

(and linear combinations of all such terms). The superfield Lagrangians of potential interest

are straightforward to write down. They are given by the θθθ̄θ̄ components of the following

expressions (where derivatives act only on the immediately following superfield):

∂µΦ∂µΦΦ + h.c. (III.5)

∂µΦ∂µΦ
†Φ + h.c. (III.6)

∂µΦ∂µΦΦ
† + h.c. (III.7)

All other terms of potential interest can be related to these using integration by parts.

Note that only the first of these expressions can possibly lead to the complex Galileon

LC

3 given in (II.7) of the previous section. This follows from the fact that it is the sole term

containing only Φ’s or only Φ†’s in a single term. However, the chirality of Φ immediately

implies that this term is, in fact, zero. To see this, instead of integrating over d4θ, one can

make use of the Grassmann nature of the θ, θ̄ coordinates and replace d4θ by a D2D̄2 deriva-

tive of the corresponding superfield expression. Since D̄ commutes with partial derivatives,

it immediately follows that superfield expressions constructed exclusively out of Φ’s and

partial derivatives must vanish, since the D̄ derivative will necessarily act on a chiral field

Φ thus yielding zero. Note that this no-go argument relies solely on holomorphicity and,
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thus, also extends to potential supersymmetric extensions of complex Galileons with higher

powers of fields, such as LC

4 and LC

5 . Hence, it is now clear that N = 1 supersymmetry

forbids a complex extension of the L3 Galileon with two-derivative equations of motion!

Instead, supersymmetry yields the following actions (and their hermitian conjugates):

∫

d4xd4θ∂µΦ∂µΦ
†Φ =

∫

d4x
(

− A�A�A∗ −�A∗(∂A)2
)

, (III.8)
∫

d4xd4θ∂µΦ∂µΦΦ
† =

∫

d4x�A∗(∂A)2. (III.9)

In presenting these component actions, we have used integration by parts to simplify them

as much as possible. The first term on the right-hand side of (III.8) is uninteresting for our

present purposes since, even for the first real scalar field φ, it does not lead to a Galileon

Lagrangian. Hence, we are left with a single possible supersymmetric extension of the

L3 Galileon Lagrangian, namely the real part of (III.9). We note that this Lagrangian is

equivalent to the supersymmetric Galileon Lagrangian used in [24]. Thus, we define the

supersymmetric extension of L3 as

LSUSY
3 ≡ − 1√

2

∫

d4 θ∂µΦ∂µΦΦ
† + h.c.

= − 1√
2
�A∗(∂A)2 + h.c.

= −1

2

(

(∂φ)2�φ− (∂ξ)2�φ + 2∂φ · ∂ξ�ξ
)

. (III.10)

Compared to the complex Galileon (II.9), only the sign of the last term has changed! Nev-

ertheless, this has profound consequences, since the resulting equations of motion are now

of third order in derivatives. They read

0 = (�φ)2 − φ,µνφ,µν + (�ξ)2 + ξ,µνξ,µν + 2ξ,µξ,ν
νµ, (III.11)

0 = ξ,µνφ,µν + ξ,µφ,ν
νµ. (III.12)

As one can clearly see, it is the presence of the second scalar ξ that induces the dangerous

higher-derivative terms. We will show explicitly in the next section that the presence of

these higher derivatives leads to the appearance of a ghost.
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IV. HIDING FROM THE GHOST

We would now like to explicitly demonstrate the ghost degree of freedom in LSUSY
3 . The

presence of a ghost is already implied by Ostrogradsky’s theorem [4] and we will, in fact,

analyze LSUSY
4 from this point of view in the following section. Nevertheless, we prefer to

also analyze the Lagrangian LSUSY
3 directly, both because it is instructive to see the ghost

appearing at the level of the Lagrangian and because such an analysis elucidates in what

regime the ghost can be harmless. For this purpose, it suffices to look at the time-derivative

terms in the Lagrangian, since it is these that are associated with ghosts. Adding a canonical

kinetic term LSUSY
2 =

∫

d4θΦΦ† = −∂µA∂µA
∗, as well as an overall constant c3 in front of

the LSUSY
3 Lagrangian, the Lagrangian of interest becomes

LSUSY
2+3 ≡ LSUSY

2 + c3L
SUSY
3 =

1

2
φ̇2 +

1

2
ξ̇2 + c3ξ̇

2φ̈, (IV.1)

where we have integrated by parts in order to place all double derivatives on φ rather than

ξ. Note that this is a completely arbitrary choice and does not reduce the generality of our

analysis. We consider a time-dependent background and would like to study perturbations

around it. Thus, we define

φ = φ̄(t) + δφ(xµ), ξ = ξ̄(t) + δξ(xµ). (IV.2)

Even though the perturbations depend on both time and space, we will only be interested in

the time dependence here. To quadratic order in fluctuations, the Lagrangian then becomes

LSUSY
2+3 quad =

1

2
( ˙δφ)2 +

1

2
(1 + 2c3

¨̄φ)(δ̇ξ)2 + 2c3
˙̄ξ δ̇ξδ̈φ. (IV.3)

By defining a new fluctuation variable

δ̇b ≡ δ̇ξ +
2c3

˙̄ξ

1 + 2c3
¨̄φ
δ̈φ , (IV.4)



10

the quadratic Lagrangian can then be diagonalized to become

LSUSY
2+3 quad =

1

2
( ˙δφ)2 +

1

2
(1 + 2c3

¨̄φ)
(

(δ̇b)2 − 4c23
˙̄ξ2

(1 + 2c3
¨̄φ)2

(δ̈φ)2
)

. (IV.5)

Note that (δ̇b)2 and (δ̈φ)2 enter with opposite signs and, hence, one of these two terms is

ghost-like1. Assuming that the factor (1 + 2c3
¨̄φ) is positive, the ghost then resides in δ̈φ.

As the Lagrangian shows, the significance of the ghost is essentially controlled by the size

of c3
˙̄ξ. This can be confirmed by looking at the dispersion relation of δφ. If one denotes the

four-momentum of δφ by pµ, then the associated dispersion relation, which can be read off

from (IV.5), is given by

p20
(

1 +
4c23

˙̄ξ2

(1 + 2c3
¨̄φ)
p20
)

= 0 . (IV.6)

The mass m is defined via p2 = −p20 = −m2 and, hence, the dispersion relation implies

that δφ consists of two modes. The first is a massless mode which arises from the ordinary

correct-sign kinetic term. The second is the ghost, which has a tachyonic mass

m2
g = −(1 + 2c3

¨̄φ)

4c23
˙̄ξ2

. (IV.7)

Thus, as long as we are considering fluctuations with energy belowmg, the ghost does not get

excited. From an effective field theory point of view, we are protected from the associated

catastrophic instabilities. In other words, one must take the cut-off Λ of the effective field

theory to lie below |mg|. At the same time, one must ensure that the background itself,

that is, ˙̄ξ, remains within the range of validity of the effective theory. Hence, an additional

requirement is that | ˙̄ξ| < Λ2. Together with the requirement Λ < |mg|, this implies that we

must impose (assuming |c3 ¨̄φ| ≪ 1)

| ˙̄ξ| < 1

|c3|2/3
(IV.8)

in order to safely suppress the ghost. Thus, as expected, for general backgrounds one must

take the prefactor of the Galileon term to be small for consistency.

1 This ghost was not seen in [24] because in that paper the perturbation analysis was performed solely

around ξ̄ = constant backgrounds.
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V. L4 AND THE HAMILTONIAN ANALYSIS

In this section, we discuss in detail the four-field Galileon Lagrangian L4 and its super-

symmetric extension. This Lagrangian was presented in Eq. (II.3) for a single real scalar φ.

First, we want to point out that the holomorphicity argument presented in section III im-

plies that it is impossible to construct a corresponding supersymmetric version with purely

two-derivative equations of motion for both real scalars φ, ξ. However, it is not hard to find

a supersymmetric extension of L4 after rewriting it using integration by parts:

L4 = −1

2
(∂φ)2

(

(�φ)2 − φ,µνφ,µν

)

= −1

4
∂µ(∂φ)2∂µ(∂φ)

2 +
1

2
∂µφ∂µ(∂φ)

2
�φ . (V.1)

Making use of the “building blocks” [24, 25]

DΦDΦ = −4θ̄θ̄(∂A)2, D2Φ = −4θ̄θ̄�A, (V.2)

it is straightforward to write a supersymmetric extension of (V.1) given by

LSUSY
4 =

∫

d4θ
(

− 1

32
∂µ(DΦDΦ)∂µ(D̄Φ†D̄Φ†) +

1

16
∂µΦ∂µ(DΦDΦ)D̄2Φ†

)

+ h.c.(V.3)

= −∂µ(∂A)2∂µ(∂A
∗)2 + ∂µA∂µ(∂A)

2
�A∗ + ∂µA∗∂µ(∂A

∗)2�A . (V.4)

As in the previous LSUSY
3 analysis, we will add this term–now with a coefficient c4–to the

standard kinetic term LSUSY
2 =

∫

d4θΦΦ† = −∂µA∂µA
∗. Since we are primarily interested

in the issue of ghosts, we need only consider the time-dependent part of the resulting La-

grangian. This is given by

LSUSY
2+4 ≡ LSUSY

2 + c4L
SUSY
4 (V.5)

= −∂µA∂µA
∗ + c4

(

− ∂µ(∂A)2∂µ(∂A
∗)2 + ∂µA∂µ(∂A)

2
�A∗ + ∂µA∗∂µ(∂A

∗)2�A
)

=
1

2
φ̇2 +

1

2
ξ̇2 + 2c4ξ̇

2ξ̈2 + 2c4ξ̇
2φ̈2. (V.6)
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Again, the higher-derivative nature of the Lagrangian is manifest. The fourth-order equa-

tions of motion that follow from this Lagrangian are

0 = −φ̈+ 4c4
d2

dt2
(ξ̇2φ̈), (V.7)

0 = −ξ̈ + 4c4
d2

dt2
(ξ̇2ξ̈)− 4c4

d

dt
(ξ̇ξ̈2 + ξ̇φ̈2). (V.8)

It is instructive to carry out a Hamiltonian analysis of this theory following [34]. For our

canonical coordinates, we will choose φ, ξ as well as a ≡ φ̇ and b ≡ ξ̇. The corresponding

momenta are

πφ ≡ ∂L2,4

∂φ̇
− d

dt

∂L2,4

∂φ̈
= φ̇− 4c4ξ̇

2 d
3

dt3
φ− 8c4ξ̇ξ̈φ̈, (V.9)

πξ ≡ ∂L2,4

∂ξ̇
− d

dt

∂L2,4

∂ξ̈
= ξ̇ − 4c4ξ̇

2 d
3

dt3
ξ − 4c4ξ̇ξ̈

2 + 4c4ξ̇φ̈
2, (V.10)

πa ≡ ∂L2,4

∂φ̈
= 4c4ξ̇

2φ̈, (V.11)

πb ≡ ∂L2,4

∂ξ̈
= 4c4ξ̇

2ξ̈. (V.12)

The Hamiltonian is given by

H = φ̇πφ + ξ̇πξ + ȧπa + ḃπb − LSUSY
2+4 , (V.13)

which can be re-expressed in terms of the canonical coordinates and momenta as

H = aπφ + bπξ +
1

8c4
(
πa

b
)2 +

1

8c4
(
πb

b
)2 − 1

2
a2 − 1

2
b2. (V.14)

Note that this expression is regular at b = 0 since πa and πb both contain factors of b2.

To check the consistency of this analysis, one should verify that the Hamilton evolution

equations φ̇ = ∂H
∂πφ

, ξ̇ = ∂H
∂πξ

, . . . and π̇φ = −∂H
∂φ

, π̇ξ = −∂H
∂ξ
, . . . lead to sensible results. In

fact, the evolution equations for the coordinates are easily seen to be satisfied. Those for

the πφ and πξ momenta result in

π̇φ = 0, π̇ξ = 0 . (V.15)



13

These two equations are equivalent to the Euler-Lagrange equations of motion (V.7) and

(V.8). The two remaining equations are

π̇a = a− πφ, π̇b = b− πξ +
1

4c4b3
(π2

a + π2
b ), (V.16)

which are equivalent to the definitions of the momenta πφ and πξ given in (V.9) and (V.10).

Thus, we may trust our derivation of the Hamiltonian (V.14). Crucially, the Hamiltonian

depends linearly on both πφ and πξ and, therefore, can be made arbitrarily positive or

negative by choosing appropriately large aπφ, bπξ terms. Thus, the energy is unbounded

from both above and below. This is a clear indication that this theory, taken literally, does

not admit any vacuum at all and is, thus, unphysical. This explicitly demonstrates the

presence of a ghost degree of freedom (here, in fact, there are two ghosts), and leads to

conclusions similar to those of the Lagrangian analysis performed in Section IV.

A final comment: the higher-derivative terms that we have discussed all arise because of

the presence of the second real scalar field ξ. If we momentarily fix ξ̇ = b = 0, then the

Hamiltonian reduces to the simple form

Hξ̇=0 =
1

2
a2, (V.17)

which is manifestly positive. Thus, by shutting one’s eyes to the presence of the second field,

one may–mistakenly–think that these theories admit a stable vacuum. Even though this

restriction leads to fallacious conclusions when treating the above theory on a fundamental

level, it nevertheless supports the conclusion that from an effective field theory point of view

perturbations of sufficiently low energy around ξ̇ = 0 backgrounds can be admissible.

VI. DISCUSSION

The fact that N = 1 supersymmetric standard Galileons containing the product of three,

four and five chiral fields necessarily admit higher-derivative equations of motion implies that

these theories contain ghosts. This means that when supersymmetry is included, Galileons

lose their special status among higher-derivative scalar theories and should be treated in

much the same way as other higher-derivative terms. That is to say, they should be re-

garded as correction terms in a perturbative, effective field theory framework. Regarding
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supersymmetric Galileons as fundamental is untenable since their Hamiltonian is unbounded

from above and below. It follows that these theories do not admit a stable vacuum. Although

we do not have a generic proof, based on individual examples we strongly suspect that our

results carry over to the N = 1 supersymmetrization of generalizations of the Galileons,

such as the conformal and DBI Galileons. By extension, they are also likely to apply to the

non-trivial parts of Horndeski’s most general scalar-tensor theory [1]. We stress that our

results are in the context of minimal N = 1 supersymmetry. It would be interesting to carry

out a similar analysis for extended supersymmetries.

As discussed in the introduction, the brane construction of Galileon Lagrangians sug-

gested that they could arise as the sole constitutents of membrane worldvolume theories

in string theory–that is, in a well-defined ultraviolet framework. However, when explicit

calculations of higher-order corrections to brane dynamics were carried out–in the non-

supersymmetric case of AdS space [35] and in the N = 1 supersymmetric context of heterotic

M-theory [36–41]–it was found that, in addition to the Galileon terms, other higher-derivative

terms occur. These new terms are not naturally suppressed relative to the Galileons and

lead to higher-order equations of motion. This paper shows that, with hindsight, this result

is unsurprising–since in a full supersymmetric context the Galileon terms themselves already

admit higher-derivative equations.

In a fundamental framework, the presence of ghosts is catastrophic. However, in a per-

turbative framework ghosts can be avoided, provided one looks only at fluctuations below

a certain energy scale. An open question raised by the present work is then whether or not

the attractive properties of certain solutions to the Galileon theories–such as the Vainshtein

mechanism and consistent violations of the null energy condition–can be maintained in a

supersymmetric perturbative context. We leave this question for future work.
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