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Abstract: The phase space given by the cotangent bundle of a Lie group appears in the context

of several models for physical systems. A representation for the quantum system in terms of non-

commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative)

Fourier transform, different from standard harmonic analysis, has been recently developed, and

found several applications, especially in the quantum gravity literature. We show that this algebra

representation can be defined on the sole basis of a quantization map of the classical Poisson algebra,

and identify the conditions for its existence. In particular, the corresponding non-commutative

star-product carried by this representation is obtained directly from the quantization map via

deformation quantization. We then clarify under which conditions a unitary intertwiner between

such algebra representation and the usual group representation can be constructed giving rise to

the non-commutative plane waves and consequently, the non-commutative Fourier transform. The

compact groups U(1) and SU(2) are considered for different choices of quantization maps, such

as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra

representations and non-commutative plane waves.
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1 Introduction

In ordinary quantum mechanics of a point particle on flat space, we can either choose to represent

our wave functions in the position representation, that is, realizing the Hilbert space of the system

as L2 functions on the configuration space, or in the momentum representation, given again by

L2 functions on the cotangent space. These two realizations can be independently defined, once a

quantization map of the classical Poisson algebra of observables has been chosen. On an Euclidean

space the usual Fourier transform gives a map between both representations, i.e. between the two

L2 spaces, relating them self-dually. Explicitly, for ψ ∈ L2(Rd), the Fourier transform is given by

ψ̃(~p) =

∫

Rd

ddx e−i~p·~x ψ(~x) ∈ L2(Rd) , (1.1)

where e−i~p·~x are unitary irreducible representations of the group of translations in Rd, and ~x, ~p

vectors in Rd. Thus, in the flat case, points on the cotangent (momentum) space are in one-to-one

correspondence with unitary irreducible representations of the translational symmetry group of the

configuration space.
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For a generic curved manifold, a momentum representation in terms of L2 functions on its

cotangent space cannot be defined, in absence of symmetries, nor a notion of Fourier transform.

On the other hand, for symmetric spaces and, in particular, for Lie groups the notion of Fourier

transform can be generalized as an expansion in terms of unitary irreducible representations of

the same group, acting transitively on the configuration manifold. More precisely, for any locally

compact group G the Fourier transform is defined as the unitary map between L2(G) and L2(Ĝ),

where Ĝ, the Pontryagin dual of G, denotes the set of equivalence classes of unitary irreducible

representations of G. Harmonic analysis is, indeed, a very useful tool in quantum mechanics,

quantum field theory in curved spaces, and quantum gravity.

However, some of the nice features of the usual momentum representation and of the usual

Fourier transform are, inevitably, lost. When considering a physical system whose configuration

space is a general Lie group G (let us say, a particle on a sphere described by SU(2)), the momentum

space coincides with the dual of the Lie algebra g∗, which in general differs from Ĝ. For example,

for SU(2), ŜU(2) = N0/2, while su(2)∗ ≃ R3. That is, the Pontryagin dual is a very different

object from the cotangent space of a configuration space, coinciding only in very special cases, as

G = Rd above. Therefore, the dual representation obtained from harmonic analysis is not in terms

of (generalized) functions of momenta, i.e. functions on the Lie algebra. This implies that one is

bound to lose contact with the classical theory, at least at the formal level, when working with

quantum observables that are functions of the momenta. Of course, the same physical information

can be recovered in any representation of the quantum system, but one would like to maintain a

closer formal resemblance with the classical quantities, to help maintaining also a closer contact

with the underlying physics. In particular, several quantum gravity approaches, most notably loop

quantum gravity [1–3], spin foam models [4] and group field theories [5–7], work with an underlying

classical phase space based on the cotangent bundle over a Lie group (either SU(2) or the Lorentz

group SL(2,C)). While the group elements encode the degrees of freedom of the gravitational

connection, the elements of the Lie algebra are related directly to the triad field, thus to the metric

itself. A representation which makes directly use of functions of such Lie algebra elements would

then bring the geometric aspects of the theory to the forefront.

Such Lie algebra representation has been proposed in the quantum gravity context (where it

also goes under the name of flux representation) and its development and application is now a

growing area of research [8–18]. However, it has been used, up to now, as a derived product of

the usual group representation, and obtained from a non-commutative Fourier transform whose

mathematical basis has remained only partially explored, and which has still a certain flavour of

arbitrariness in its defining details (e.g. plane waves and star-product).

The goals of this article are the following. First of all, we want to show that the algebra

representation can be defined independently of the group representation, on the sole basis of the

choice of a quantization map of the classical Poisson algebra, and identify more clearly the conditions

for its existence. Second, we want to clarify under which conditions a unitary map between such an

algebra representation (assuming it exists) and the usual group representation can be constructed,

that is, characterize the non-commutative Fourier transform together with the corresponding non-

commutative plane waves. In looking to the above, we try to work with as general a Lie group

G as possible. Third, we want to consider specific and interesting choices of quantization maps

and Lie groups, and exhibit the corresponding star-products, algebra representations and non-

commutative plane waves. On the one hand, we prove with these examples the non-emptiness of

the definitions provided together with the existence of their algebra representation and of their non-

commutative Fourier transforms; on the other hand, the results of specific quantization maps can

find direct applications, as we discuss in the following, to quantum gravity models. In particular,

we identify the non-commutative plane waves and star-product for the Duflo map – a special case

of the Kontsevich star-product –, which has been suggested to be useful in several quantum gravity
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contexts [19–22].

The construction we present in this article extends earlier work on the non-commutative Fourier

transform by several authors. The concept arose originally in considerations of the phase space

structure of 3d Euclidean quantum gravity models. The earliest notion (to our knowledge) of a

non-commutative Fourier transform for the group SU(2) appeared in a paper by Schroers [23] (see

also [24] by Schroers & Majid), where the construction is based on the duality structure of the

quantum double DSU(2), which is introduced as a quantization of the classical phase space ISO(3).

Later, more explicit notions of what became to be called ‘group’ Fourier transform were introduced,

first for the group SO(3) by Freidel & Livine in [8], and later extended to SU(2) and related to the

quantum group Fourier transform by Freidel & Majid [9], Joung, Mourad & Noui [10] and Dupuis,

Girelli & Livine [18], each in their own different ways. See also [25, 26]. To a certain extent, our

construction in this paper can be considered as yet another extension of the original concept in [8]

to more general classes of non-commutative structures and Lie groups. However, it derives from

the canonical structures of the classical phase space, the cotangent bundle of G, of the quantization

map applied to it, and of the corresponding quantum observable algebra. Thus, it also provides

a better general understanding of the relation of the non-commutative Fourier transform to these

fundamental underlying structures.

For other directions to Fourier analysis on Lie groups, let us in particular point to the extensive

work on the Kirillov orbit method [27], subsequent (Fourier) analysis based on the decomposition

of Ĝ into orbits in g∗ [28], and the Helgason Fourier transform [29] for further reference.

Let us summarize our results. The starting point is the Poisson algebra associated to the

cotangent bundle of a Lie groupG, taken to be PG = (C∞(G×g∗), {·, ·}, ·) with canonical symplectic

structure {·, ·}, and pointwise multiplication ·. Canonical quantization of (a suitable subalgebra of)

PG gives an abstract operator ∗-algebra A endowed with a natural Hopf algebra structure. A

representation of A on the Hilbert space L2(G) of square-integrable functions on G (with respect

to the Haar measure dg) is straightforwardly available as any set of coordinates on G form (in an

implicit sense given below) a simultaneously diagonizable maximal abelian subalgebra of self-adjoint

operators. This provides the group representation. A definition of a dual algebra representation of

A in terms of a functional space we denote by L2
⋆(g

∗) is made possible by introducing a star-product

⋆ in the sense of deformation quantization [30], depending only on the chosen quantization map

from PG to A. In particular, the inner product in this Hilbert space is the L2 inner product with

respect to a star-product ⋆p (and the Lebesgue measure ddX on g∗), which is the deformation

quantization star-product ⋆ amended with a projection that accounts for the compact subgroups

of G; namely, 〈f, g〉 =
∫

ddX
(2π)d f ⋆p g. We show under which conditions on the star-product, such

algebra representation can be defined. The non-commutative Fourier transform is then shown to

arise as the intertwiner between these two representations. For ψ ∈ L2(G) and ψ̃ ∈ L2
⋆(g

∗), the

non-commutative Fourier transform F and its inverse F−1 are determined to be

ψ̃(X) := F(ψ)(X) =

∫

G

dg Eg(X)ψ(g) , (1.2)

ψ(g) = F−1(ψ̃)(g) =

∫

g∗

ddX

(2π)d
Eg(X) ⋆p ψ̃(X) , (1.3)

where Eg(X), the kernel of the transform, is what we call the non-commutative plane wave. The

explicit form of the non-commutative plane wave, and thus that of the transform, depends again on

the choice of a quantization map or, equivalently, a deformation quantization ⋆-product. In fact,

in terms of the canonical coordinates (of the first kind) k(g) = −i ln(g) ∈ g on G obtained through
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the logarithm map, the plane wave is shown to be given by the star-exponential

Eg(X) = e
ik(g)·X
⋆ , (1.4)

where X ∈ g∗.1 In case G has compact subgroups, the logarithm is multivalued, and we take

k(g) = −i ln(g) to be in the principal branch. The introduced amended star-product ⋆p implements

a projection onto the principal branch for the non-commutative plane waves. The set of plane waves

Eg(X) equipped with the ⋆p-product then constitutes a representation of G, since Eg(X)⋆pEh(X) =

Egh(X). Hence, a given choice of quantization map uniquely determines the star-product and thus

Eg(X), which, in turn, uniquely determines the non-commutative Fourier transform and its inverse.

This result also clarifies the relation with the so-called quantum group Fourier transform, extending

again the work of [9].

Last, we provide explicit examples of the above construction for three interesting choices of

quantization maps: the symmetric map, the Duflo map, and the so-called Freidel-Livine-Majid

map (used in the quantum gravity literature).

The outline of the paper is the following: in the next section 2 we motivate the general con-

struction by working with the simplified case of the Euclidean space, where the guiding ideas are

easy to follow and the complications coming from the general Lie group structure are out of the

way. Sections 3 and 4 constitute the bulk of the article. We start by quantizing a Poisson subalge-

bra of the algebra of smooth functions on T ∗G as an abstract operator algebra A, emphasizing its

underlying Hopf algebra structures inherited from the Lie group G and Lie algebra g∗ structures.

In Subsections 3.1 and 3.2 we define representations of A in terms of functions on the group G

and the dual algebra g∗, respectively. And finally, in Section 4 we derive the non-commutative

plane wave that gives rise to the intertwiner between the aforementioned representations – the

non-commutative Fourier transform. Explicit examples in two distinctive cases – U(1), SU(2), for

various choices of quantization maps – are worked out in the subsequent section, thus showing the

existence of the algebra representation in some interesting cases. A short conclusion on the results

obtained is given in Section 6.

2 Motivation: Harmonic analysis on Euclidean space

To motivate the route we will follow next, let us understand the procedure for the simple case of

the Euclidean space, Rd (d ∈ N), and see how the usual Fourier transform arises as an intertwiner

between the position and momentum representations.

The classical phase space is given by T ∗Rd = Rd × (LieRd)∗, where (LieRd)∗ denotes the dual

of the Lie algebra of Rd, which coincides with Rd itself, (LieRd)∗ ∼= (Rd)∗ ∼= Rd. Let ~x = (xi) and

~p = (pj) (i, j = 1, . . . , d) be canonical coordinates in some basis on Rd and (LieRd)∗, respectively,

with Poisson brackets2

{xi, xj} = 0 , {xi, pj} = δij , {pi, pj} = 0 . (2.1)

The Poisson structure is defined directly on C∞(T ∗Rd) by the canonical symplectic structure of the

phase space and, together with the ordinary pointwise multiplication · on C∞(T ∗Rd), gives rise the

the full Poisson algebra PRd = (C∞(R2d), {·, ·}, ·).3 As a physical system, we could think of PRd as

1We will use the physicists’ convention of self-adjoint Lie algebra elements throughout.
2Where appropriate, the equations should be read as holding for all values i, j, k = 1, . . . , d.
3· is symmetric and associative, and {·, ·} is antisymmetric and satisfies the Jacobi identity. Furthermore, note

that both structures are compatible in the sense that, for any f, g, h ∈ C∞(T ∗Rd), {f, g · h} = {f, g} · h+ g · {f, h},

that is, the Leibniz rule ‘intertwines’ pointwise multiplication and Poisson brackets.
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the algebra of classical observables of a point particle moving on the Euclidean space, with ~x being

the position, and ~p the respective canonical conjugate momentum.

We now seek to quantize this algebra PRd , or a subalgebra A thereof, as an abstract operator
∗-algebra H. That is, we want a map Q : A → H such that the basic Poisson brackets (2.1) are

mapped to the commutators

[X i, Xj] = 0 , [X i, Pj ] = iδij1 , [Pi, Pj ] = 0 , (2.2)

where X i = Q(xi), Pj = Q(pj) are self-adjoint elements in H. The Lie algebra generated by X i,

Pj , and 1 is the usual Heisenberg algebra.

A few remarks about the map Q are in order: (1) Q(A) = H is, at this stage, an abstract

operator ∗-algebra. We may consider a representation of H as a concrete operator algebra on a

Hilbert space H, which is what we will do in the following. However, due to (2.2) X i and Pj are

necessarily unbounded operators and, therefore, their domains of definition have to be restricted to

some dense subspaces of H such that their images under the action of the operators are contained

in H; or the treatment extended to a rigged Hilbert space [31, 32]. (2) Q is linear and satisfies

Q(1) = 1 and possibly Q(φ(f)) = φ(Q(f)) for any function φ : R → R for which Q(φ(f)), φ(Q(f))

are well defined (von Neumann rule). (3) The need of a subalgebra A ⊂ C∞(R2d) comes from

the general obstruction to quantizing consistently the full Poisson algebra PRd , cf. Groenewold-van

Hove’s theorem and generalizations thereof [33]. Even determining the maximal Lie subalgebra of

C∞(R2d) for which quantization can be carried out is an open problem, and we again refer the

reader to [33] for a detailed analysis of such subtleties. In the following, we shall be content with

assuming the existence of such A, and will require it to be big enough to contain all the relevant

functions of the subsequent analysis (in particular, exponentials). Moreover, it is also important

that A be complete in the sense that it guarantees local separation of points everywhere on the

phase space.

As remarked in (1) above, we now consider representations π of H as a concrete algebra

of (in general, unbounded) operators on some (dense subspace of a) Hilbert space H. In par-

ticular, π : H → Aut(H) is a linear ∗-homomorphism between H and the automorphisms of

H, preserving commutators: (i) π(λA + µB) = λπ(A) + µπ(B), (ii) π(AB) = π(A)π(B), (iii)

π([A,B]) = [π(A), π(B)], (iv) π(A∗) = π(A)∗, for all A,B ∈ H and λ, µ ∈ R.

The commutativity of the X i operators allows to diagonalize all of the them simultaneously.

Accordingly, we have the position representation πx of the algebra on L2(Rd, ddx) on the joint

spectrum of X i’s such that4

(πx(X
i)ψ)(~x) = xiψ(~x) . (2.3)

Furthermore, since the operators X i constitute a maximal subset of commuting self-adjoint gener-

ators of the algebra H, the description of a state ψ in L2(Rd, ddx) is complete. To complete the

description of the action of the operators, we note that by setting

(πx(Pj)ψ)(~x) = −i
∂

∂xj
ψ(~x) , (2.4)

we consistently represent the commutator [X i, Pj ] = iδij1, and thus this specification is shown to de-

termine a representation of the original abstract operator ∗-algebra H on L2(Rd, ddx). Anticipating

4As already noted, the operators Xi are unbounded, and therefore their domains must be restricted to a dense

subset D ⊂ L2(Rd,ddx). So, here, ψ ∈ D.
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our later considerations, we should note the important role the Leibniz rule of the partial derivatives

with respect to the pointwise multiplication plays in reproducing the correct commutation relations.

If one further requires irreducibility and regularity, this representation on L2(Rd, ddx) is shown to

be unique up to unitary equivalence due to the Stone-von Neumann theorem [34, 35].

The same reasoning can be applied just as well, and independently, to the Pj ’s. The diag-

onalization procedure gives another representation πp of H on L2(Rd, ddp/(2π)d), where now the

operators Pj act multiplicatively

(πp(Pj)ψ̃)(~p) = pjψ̃(~p) . (2.5)

Analogously, ψ̃(~p) are said to give a representation in terms of functions of the momenta, and πp is

thus called a momentum representation. Finally, the action of the operators X i in this basis which

correctly reproduces the commutators [X i, Pj ] = iδij1 is given by

(πp(X
i)ψ̃)(~p) = i

∂

∂pi
ψ̃(~p) . (2.6)

We will now see that the usual Fourier transform F is exactly the unique, unitary intertwiner

between these two representations, a property we may write as πp(A)◦F = F ◦πx(A) for all A ∈ H,

establishing, therefore, their equivalence.

Hence, assuming that the two previous representations of H are intertwined by an integral

transform F , that is

ψ̃(~p) ≡ F(ψ)(~p) :=

∫

Rd

ddxE(~x, ~p)ψ(~x) , ψ ∈ L2(Rd) , (2.7)

where E(~x, ~p) denotes the kernel of the transform, the intertwining property turns into properties

for E(~x, ~p). On the one hand,

(πp(Pi)F(ψ))(~p) =

∫

Rd

ddx piE(~x, ~p)ψ(~x) , (2.8)

F(πx(Pi)ψ)(~p) =

∫

Rd

ddxE(~x, ~p)

(
−i

∂

∂xi
ψ(~x)

)
=

∫

Rd

ddx

(
i
∂

∂xi
E(~x, ~p)

)
ψ(~x) , (2.9)

where we used integration by parts for the last equality.5 Therefore, for all ψ ∈ L2(Rd) we have

the differential equation

piE(~x, ~p) = i
∂

∂xi
E(~x, ~p) . (2.10)

On the other hand, from the corresponding requirement for the X i operators we get

F(πx(X
i)ψ)(~p) =

∫

Rd

ddxE(~x, ~p)xiψ(~x) , (2.11)

(πp(Xi)F(ψ))(~p) =

∫

Rd

ddx

(
i
∂

∂pi
E(~x, ~p)

)
ψ(~x) , (2.12)

which, for all ψ ∈ L2(Rd), gives

xiE(~x, ~p) = i
∂

∂pi
E(~x, ~p) . (2.13)

5And by noting that smooth compactly supported functions C∞
c are dense in L2 and, therefore, vanish at infinity.
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The unique and common solution to the two differential equations (2.10) and (2.13) is the plane

wave E(~x, ~p) = c e−i~p·~x, where c ∈ C is an arbitrary integration constant. Hence, we find

ψ̃(~p) ≡ F(ψ)(~p) = c

∫

Rd

ddx e−i~p·~x ψ(~x) . (2.14)

For the particular value of c = 1 the transform is found to be unitary, i.e. F◦F∗ = idL2(Rd) = F∗◦F

(and, in particular, invertible), the adjoint transform being given by

F−1(ψ̃)(~x) =

∫

Rd

ddp

(2π)d
E(~x, ~p) ψ̃(~p) = ψ(~x) . (2.15)

Therefore, as advertized, πx and πp are unitarily equivalent with the Fourier transform F their

intertwiner.

Let us further note an important property of the translations (T~yψ)(~x) = ψ(~x + ~y). Since

F(T~yψ)(~p) = ei~p·~yF(ψ)(~p), the translations act dually via pointwise multiplication by plane waves,

and, therefore, the plane waves ei~p·~x constitute a dual representation of the translation group. In

fact, this follows directly from the form of the representations, since by integrating the action of

partial derivatives we have ψ(~x + ~y) = e~y·∇~xψ(~x) = πx(e
i~y·~P )ψ(~x), and since F intertwines the

representations, F(πx(e
i~y·~P )ψ)(~p) = (πp(e

i~y·~P )F(ψ))(~p) = ei~y·~pψ̃(~p). Notice, in particular, the im-

portant role that the global triviality of the Euclidean space plays here in integrating the action

of the partial derivatives. Later, we will see that extra complications arise, if there are compact

subgroups to the Lie group under consideration. These need to be properly taken care of in order

for the translations to act dually by plane wave multiplication.

This derivation of the ordinary Fourier transform between the position and the momentum

representations for T ∗Rd motivates the line of thought that will be used in the next section for the

general case of the cotangent bundle of a Lie group T ∗G, and whose result, having first defined

the two corresponding representations, will finally lead to the notion of non-commutative Fourier

transform.

3 Quantum representations for general (weakly exponential) Lie groups

We now turn to the case where the configuration space is a Lie group G of the weakly exponential

type, that is, such that the image of the exponential function exp(g) is dense in G. The impor-

tance of this restriction will become clear as we move along and, in particular, in the next section,

where one wants to be able to determine plane waves of the exponential type. Note that compact

connected Lie groups are always exponential.6 A thorough summary of the status of the exponen-

tiability of a Lie group and its complexity can be found in [36, 37].

The phase space of the system is given by the cotangent bundle T ∗G ∼= G× g∗, which, for Lie

groups G, is always globally trivial, i.e. we may always find a global basis of right (left) invariant

covector fields through the pull-back of the multiplicative action of G on itself Rh : G→ G, g 7→ gh

(Lh : G → G, g 7→ hg), h ∈ G. Cotangent bundles are endowed with a canonical symplectic

structure that, together with ordinary pointwise multiplication · on C∞(T ∗G), uniquely determines

6The exp function commutes with conjugation and any compact connected Lie group is the union of the conjugates

of a maximal torus which is exponential.
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the Poisson algebra PG = (C∞(T ∗G), {·, ·}, ·), and for any functions f, g ∈ C∞(T ∗G) we obtain7

{f, g} ≡
∂f

∂Xi
Lig − Lif

∂g

∂Xi
+ c k

ij

∂f

∂Xi

∂g

∂Xj
Xk , (3.1)

where Li are Lie derivatives on G with respect to an orthonormal basis of right-invariant vector

fields, Xi are Euclidean coordinates on g∗ ≃ Rd, d := dim(G), c k
ij the structure constants of the

Lie algebra g (≃ g∗), i, j, k = 1, . . . , d, and Einstein summation convention is assumed.

We now seek to quantize this algebra, or at least a maximal subalgebra A thereof for which this

is consistent, as an abstract operator ∗-algebra A. We define a quantization map Q : A → A such

that Q(f) =: f̂ for all f ∈ AG ⊂ C∞(G), and Q(Xj) =: X̂j , satisfying

[f̂ , ĝ] = 0 , [X̂i, f̂ ] = iL̂if ∈ AG , [X̂i, X̂j ] = ic k
ij X̂k , ∀f̂ , ĝ ∈ AG , (3.2)

where we denoted AG the subalgebra of A ⊂ C∞(G × g∗) of functions constant in the second

argument, and AG := Q(AG), which is a commutative subalgebra of A. In general, we cannot

introduce differentiable coordinates ζi ∈ C∞(G) on G due to a global obstruction, in particular, if

G has compact subgroups. Accordingly, we cannot have operators in A corresponding to coordinates

on G. However, such coordinates can be approximated arbitrarily well by elements in C∞(G), and

we may define coordinate operators ζ̂i not necessarily in AG corresponding to a set of coordinates

ζi : G→ R by imposing f̂
!
= fζ(ζ̂

i), where fζ ◦ ~ζ ≡ f , for all f ∈ C∞(G).

We then have formally the commutators

[ζ̂i, ζ̂j ] = 0 , [X̂i, ζ̂
j ] = iL̂iζj , [X̂i, X̂j ] = ic k

ij X̂k . (3.3)

Further assuming that ζi(e) = 0 and Liζ
j(e) = δji , the explicit form of the operator L̂iζj may be

obtained (in a neighborhood of the identity) from the Taylor series expansion of the Lie derivatives

at the identity in terms of the coordinates

Liζ
j(g) =

∞∑

n=1

Cj
iq1···qn−1

ζq1 (g) · · · ζqn−1(g) , (3.4)

simply as

L̂iζj =

∞∑

n=1

Cj
iq1···qn−1

ζ̂q1 · · · ζ̂qn−1 , (3.5)

where Cj
iq1···qn−1

∈ R are constant coefficients specific to the chosen coordinates. Clearly, we are

always free to change coordinates as AG is commutative. The same remarks for the quantization

map Q on PRd apply ipsis verbis with Rd replaced by G.

We will call the algebra generated by f̂ ∈ AG and X̂i, already denoted by A, as the quantum

algebra for T ∗G. Note that it may differ from the Heisenberg algebra H as now the commutator

[X̂i, ζ̂
j ] does not in general equal a multiple of 1 for any choice of coordinates ζj .

The quantum algebra A has, in fact, some extra structure inherited from the Lie group and Lie

algebra structures of G and g. On the one hand, notice that the commutation relations for the X̂i

operators among themselves coincide with the Lie algebra commutation relations for g. Therefore,

7The canonical symplectic 1-form θ on T ∗G is obtained via the pull-back π∗ : T ∗G → T ∗(T ∗G) of the canonical

bundle projection π : T ∗G → G, π(α) = p ∈ G for all α ∈ T ∗
pG. The symplectic 2-form is then obtained as ω = −dθ.

To any f ∈ C∞(T ∗G) can then be associated a vector field Xf on T ∗G via the relation ω(Xf , ·) = df . The Poisson

bracket for functions f, g ∈ C∞(T ∗G) is then given canonically by {f, g} := ω(Xf ,Xg) ∈ C∞(T ∗G) [38].
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the restriction of Q onto functions Ag∗ ⊂ C∞(g∗) ⊂ C∞(G × g∗) that are constant in the first

factor maps to the completion of the universal enveloping algebra of g, Ag∗ := Q(Ag∗) ∼= U(g) ⊂ A.

U(g) is endowed with a natural Hopf algebra structure with coproduct ∆g∗ , counit ǫg∗ , and

antipode Sg∗ , which extends to a corresponding structure on Ag∗ given by

∆g∗ : Ag∗ −→ Ag∗ ⊗ Ag∗ , ∆g∗(X̂i) = X̂i ⊗ 1+ 1⊗ X̂i , (3.6)

ǫg∗ : Ag∗ −→ Ag∗ , ǫg∗(X̂i) = 0 , (3.7)

Sg∗ : Ag∗ −→ Ag∗ , Sg∗(X̂i) = −X̂i . (3.8)

On the other hand, the structure maps of G, that is, the group multiplication G×G→ G , (g, h) 7→

gh, the inclusion of the unit {e} →֒ G , e 7→ e, and the inversion map G → G , g 7→ g−1, induce,

respectively, the following algebra homomorphisms on C∞(G),

∆ : C∞(G) −→ C∞(G ×G) , ∆(f)(g, h) = f(gh) , (3.9)

ǫ : C∞(G) −→ R , ǫ(f) = f(e) , (3.10)

S : C∞(G) −→ C∞(G) , S(f)(g) = f(g−1) . (3.11)

Equipped with these structure maps, C∞(G) forms nearly a Hopf algebra.8 To obtain the cor-

responding Hopf algebra structure in AG for any exponential Lie group, consider the canonical

coordinates (of the first kind) k : G → g ∼= Rd, g 7→ −i ln(g) obtained through the logarithm

map. As these coordinates satisfy k(e) = 0 and k(g−1) = −k(g), by correspondence to the above

structure, we may set for the corresponding operators ǫG(k̂
i) = 0 and SG(k̂

i) = −k̂i.

Furthermore, we may write

ki(gh) =

∞∑

n=0

∑

k,l∈N

k+l=n

Bi
p1···pkq1···qlk

p1(g) · · · kpk(g)kq1(h) · · · kql(h) (3.12)

where Bi
p1···pkq1···ql ∈ R are constant coefficients. This is just the Baker-Campbell-Hausdorff formula

for G, denoted in the following ki(gh) ≡ B(k(g), k(h))i. At first order in |k| we have ki(gh) ≈

ki(g) + ki(h), and the higher orders encode the non-linearity of the group manifold. Notice that,

if the logarithm for G is multivalued – which is the case if G has compact subgroups – in general,

the result k(gh) does not lie in the principal branch of the logarithm even if k(g) and k(h) do. We

may then define the coproduct for the corresponding coordinate operators as

∆G(k̂
i) =

∞∑

n=0

∑

k,l∈N

k+l=n

Bi
p1···pkq1···ql

k̂p1 · · · k̂pk ⊗ k̂q1 · · · k̂ql , (3.13)

which reflects the group structure. The coproduct corresponding to that of f ∈ AG in AG can then

be formally defined as

∆G(f̂) ≡ fk(∆G(k̂
i)) (3.14)

where fk : g ∼= Rd → C is the lift of f : G → C onto the Lie algebra as fk(k) ≡ f(eik). Clearly,

by this definition of the coproduct, the possible multivaluedness of k is taken care of by the corre-

sponding periodicity in fk. The explicit meaning of this rather formal expression can be understood

locally (for analytic functions) by expanding fk as a power series in ki.

8The problem is that the target of the map ∆ is C∞(G×G) and not the algebraic tensor product C∞(G)⊗C∞(G).

We can identify C∞(G)⊗C∞(G) with a subspace of C∞(G×G), but the image of ∆ is not contained in this subspace

unless G is finite. However, each unital subalgebra a ⊆ C∞(G) which satisfies ∆(a) ⊆ a ⊗ a and S(a) ⊆ a is a Hopf

algebra with respect to the restriction of the maps ∆, ǫ and S.
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Similarly, we can consider parametrizations ζ : G → g ∼= Rd of G other than the canonical

coordinates. Given ζjk(
~k(g)), we may write accordingly

∆G(ζ̂
i) = ζik(∆G(k̂

i)) =

∞∑

n=0

∑

k,l∈N

k+l=n

Ci
p1···pkq1···ql ζ̂

p1 · · · ζ̂pk ⊗ ζ̂q1 · · · ζ̂ql , (3.15)

where the new coefficients Ci
p1···pkq1···ql

∈ R are obtained from the expression (3.12) for k-coordinates

by expanding ζi(g) in ki(g). Notice that the coefficients Ci
p1···pkq1···ql here are the same as those

appearing in (3.5) for coordinates such that ζik(~0) = 0 and ∂
∂ki ζ

j
k(
~0) = δji . This will be important

in reproducing correctly the commutators in the algebra representation defined below.

The significance of these Hopf structures cannot be underestimated, in particular, with respect

to the coproducts ∆g∗ and ∆G, and how they ensure the correct reproduction of the commutation

relations in the two representations of A we now proceed to define.

We now turn to explicit representations π of the quantum algebra A as a concrete operator

algebra on some Hilbert space H, where, as before, π : A → Aut(H) is a linear ∗-homomorphism

preserving commutators.

3.1 Group representation πG

The group representation πG on L2(G) is defined as the one diagonalizing all the operators f̂ ∈ AG:

(πG(f̂)ψ)(g) ≡ f(g)ψ(g) , (3.16)

for all f ∈ AG such that f̂ ≡ Q(f), as before. The resulting function fψ will not in general lie in

L2(G) for all ψ ∈ L2(G), but we may restrict the domain of πG(f̂) to be the subspace of AG of

smooth compactly supported functions C∞
c (G) on G – dense in L2(G) –, so that fψ ∈ C∞

c (G) for

all ψ ∈ C∞
c (G). For the Lie algebra operators X̂i we may set

(πG(X̂i)ψ)(g) ≡ iLiψ(g) , (3.17)

where Li are again the Lie derivatives with respect to an orthonormal basis of right-invariant vector

fields on G, and similar remarks as above hold about the domain of πG(X̂i). One can easily check

that the commutation relations (3.2) are correctly reproduced, so that the above actions define a

representation of A. As usual, the inner product is given for ψ, ψ′ ∈ L2(G) by

〈ψ, ψ′〉G ≡

∫

G

dg ψ(g)ψ′(g) , (3.18)

where dg is the right-invariant Haar measure on G.

To prove that (3.16), (3.17) give a representation of (3.2) we used, in fact, a fairly innocent

property of the Lie derivative: Li satisfies the usual Leibniz rule with respect to the pointwise

product of functions, that is, Li(ff
′) = (Lif)f

′ + f(Lif
′). Even though we know this to be true

by other means, this can be expressed as a compatibility condition between the coproduct ∆g∗ of

Ag∗ and the pointwise product mG : f ⊗ f ′ 7→ f · f ′ for f, f ′ ∈ C∞(G), namely,

πG(X̂i) ◦mG = mG ◦ (πG ⊗ πG (∆g∗(X̂i))) , (3.19)

where πG ⊗ πG denotes the tensor product of the representation πG. More simply, (3.19) amounts

to Li ◦mG = mG ◦∆g∗(Li), which on a tensor product f ⊗ f ′ gives

Li(f · f ′) = Li ◦mG(f ⊗ f ′) = mG ◦∆g∗(Li)(f ⊗ f ′)

= mG(Lif ⊗ f ′ + f ⊗ Lif
′)

= (Lif) · f
′ + f · (Lif

′) , (3.20)
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that is, the usual Leibniz rule for the pointwise product.9 Essentially, (3.19) can be seen as con-

sistency of the representation of the operator πG(X̂i) and the pointwise multiplication, with the

underlying Hopf algebra structure of A. Different elements in the given representation will have, in

principle, different multiplications such that the compatibility with the Hopf algebra structure (in

particular, the coproduct) of A is satisfied.10

Since it will be crucial for defining the algebra representation, let us state this requirement more

generally. Let π be representation of A on a space Fm with m : f ⊗ f ′ 7→ f ·m f ′ the corresponding

multiplication. The compatibility with the coproduct ∆ can be written in an abstract form as the

identity π(T̂ ) ◦m = m ◦ (π ⊗ π(∆(T̂ ))), for T̂ an operator in A. That is, the following diagram

Fm ⊗ Fm
m

−−−−→ Fm

π⊗π(∆(T̂ ))

y
yπ(T̂ )

Fm ⊗ Fm
m

−−−−→ Fm

(3.21)

commutes.

It is clear that the diagram does not hold for all products and coproducts. But, given a coprod-

uct, it tells which product makes it commute for the chosen operator T̂ in the given representation

and, therefore, compatible with the Hopf algebra structure in the sense of the diagram. Equiva-

lently, reverting the logic, given a product and a coproduct, (3.21) tells how a certain representation

of an operator T̂ acts on an m-product of functions, i.e. a generalized Leibniz rule for π(T̂ ).

3.2 Algebra representation πg∗

We would now like to have a representation naturally acting on functions of the classical dual space

g∗, according to the decomposition of the phase space T ∗G ∼= G × g∗. That is, functions ψ̃(X)

analogous to functions of the classical coordinates on g∗.

However, the route taken to obtain the group representation, based on simultaneous diagonal-

ization of the operators f̂ ∈ AG can no longer be used because X̂i ∈ Ag∗ are non-commuting. In

other words, since the action (πg∗(X̂i)ψ̃)(X) = Xiψ̃(X) cannot possibly make sense in general,

due to the non-zero Lie algebra structure constants c k
ij , we introduce an operation that suitably

deforms it, giving the needed freedom to satisfy the commutation relations. We will denote it by a

star-product ⋆, and define for all i = 1, . . . , d

(πg∗(X̂i)ψ̃)(X) := Xi ⋆ ψ̃(X) . (3.22)

Notice that the commutator [X̂i, X̂j] = ic k
ij X̂k turns into

(Xi ⋆ Xj −Xj ⋆ Xi) ⋆ ψ̃(X) = iǫijkXk ⋆ ψ̃(X) , (3.23)

giving a condition on the ⋆-product. In fact, we will impose the stronger condition

(πg∗(f(X̂i))ψ̃)(X) = f⋆(X) ⋆ ψ̃(X) , (3.24)

for all f⋆ ∈ Ag∗ ⊂ C∞(g∗) such that f(X̂i) = Q(f⋆) ∈ Ag∗ . This guarantees that f⋆ has the

interpretation of the function which upon quantization gives f(X̂i), and so establishes a connection

9Notice that while the Leibniz rule is a representation-dependent concept, the coproduct is representation-

independent.
10For instance, the analogous expression for ζ̂i is πG(ζ̂i) ◦m∗ = m∗ ◦ (πG ⊗ πG(∆G(ζ̂i))), which is satisfied for

m∗ the convolution product.
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between the classical phase space structure and the quantum operators. We then have

(πg∗(Q(f⋆)Q(f ′
⋆))ψ̃)(X) = (πg∗(f(X̂i))πg∗(f ′(X̂i))ψ̃)(X) = f⋆(X) ⋆ f ′

⋆(X) ⋆ ψ̃(X)

= (πg∗(Q(f⋆ ⋆ f
′
⋆))ψ̃)(X) (3.25)

for all f⋆, f
′
⋆ ∈ Ag∗ . Therefore, the ⋆-product and the quantization map Q are related by

f⋆ ⋆ f
′
⋆ = Q−1(Q(f⋆)Q(f ′

⋆)) , (3.26)

which is the idea of star-products defined in the context of deformation quantization [30].11

In other words, the choice of quantization map (more precisely, of its restriction to functions

on the (dual of the) Lie algebra) determines uniquely the ⋆-product to be used in representing the

quantum algebra in terms of functions on g∗.

Notice that in order for Ag∗ ≡ Q(Ag∗) to be closed under operator product, a ⋆-product of

functions on Ag∗ must again lie in Ag∗ . This imposes some natural continuity and convergence

requirements on the ⋆-product, which we assume to be fulfilled in the following.

Before moving on to define the algebra representation, and identifying the properties that

the ⋆-product has to satisfy for this to exist, let us give a few more details on the properties of

quantization maps, and of the resulting ⋆-products.

As remarked before, the image of the quantization map restricted to functions constant in the

first factor, that is, Ag∗ := Q(Ag∗), amounts to a completion of the universal enveloping algebra

U(g). Of course, Ag∗ ⊂ C∞(g∗) may be too big a space, and we can make do with the space of

polynomials in g∗, Pol(g∗), which is known to be (graded) isomorphic to the symmetric algebra

Sym(g) of g. The Poincaré-Birkhoff-Witt theorem then states that the latter is isomorphic to the

universal enveloping algebra U(g) (as a filtered vector space). The important point is that U(g)

can be identified with the algebra of right-invariant differential operators on G, the natural ground

for the algebra of a quantum theory (see Appendix A for more details).12 Further, the quantization

map Q, when restricted to Sym(g), provides an isomorphism and, in particular, encodes the operator

ordering ambiguity coming from the non-commutativity of the elements X̂i ∈ U(g).13

The star-product on Pol(g∗) inherits these same properties, as it is constructed from the non-

commutative product of the differential operators exactly in order to mimic their behaviour. More

generally, the star-product can be written as a formal power series with expansion parameter ~:

f⋆ ⋆ f
′
⋆ = f⋆f

′
⋆ +

∞∑

k=1

~kBk(f⋆, f
′
⋆) , (3.27)

where Bk are linear bidifferential operators of degree at most k, making quantization as a deforma-

tion of the commutative pointwise product explicit. In general, this series diverges, and convergence

has to be established for suitable subalgebras.

11Associativity, 1 ⋆ f⋆ = f⋆ = f⋆ ⋆ 1, f⋆ ⋆ f ′⋆ − f ′⋆ ⋆ f⋆ = i{f⋆, f ′⋆} are easily verified using the properties of Q.
12Notice, however, for the completion U(g) the one-to-one correspondence with right-invariant differential operators

may be lost. In particular, if exponentials eik, k ∈ g, belong to the completion, and G has compact subgroups, there

are k(e) 6= 0 in g such that ek(e)·
~L = 1. These are the branched values of the logarithm k(e) = −i ln(e), where

e ∈ G denotes the identity element. The set of elements I := {eik ∈ U(g) : k = −i ln(e)} forms a multiplicative

normal subgroup of U(g) and it is then natural to consider the elements of U(g) modulo I to restore the one-to-one

correspondence. This important point will be discussed again in the next section.
13For example, we could choose standard ordering Q(Xn

i X
m
j ) = X̂n

i X̂
m
j , or Weyl ordering Q(Xn

i X
m
j ) =

S(Xn
i X

m
j ) where S is the total symmetrization map (A.7), or ordering coming from the Duflo map D (A.8)

Q(Xn
i X

m
j ) = D(Xn

i X
m
j ), all depending on the properties we want to preserve.
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Now, let ⋆ be a deformation quantization star-product for U(g), extended to Ag∗ , and let ζ̂i be

(coordinate) operators corresponding to a specific parametrization of G, as defined in the beginning

of this section. We define the representation of the operators ζ̂i and X̂i acting on the space of

smooth compactly supported functions ψ̃ ∈ C∞
c (g∗) on g∗ to be

(πg∗(X̂i)ψ̃)(X) ≡ Xi ⋆ ψ̃(X) , (πg∗(ζ̂i)ψ̃)(X) ≡ −i∂iψ̃(X) , (3.28)

where we denote ∂i := ∂
∂Xi

, and by the second equation we explicitly mean

(πg∗(f̂)ψ̃)(X) ≡ fk(−i~∂)ψ̃(X) , (3.29)

where fk(k) := f(eik) ∈ C∞(g) for all f ∈ C∞(G). It is clear from the power series expansion

(3.27) of the ⋆-product that the result of these actions is again compactly supported, and therefore

C∞
c (g∗) is closed under these actions.

Now we proceed to identify the properties that the ⋆-product has to satisfy in order for the

above equations to define a faithful representation of the fundamental quantum algebra A.

Due to the properties of the deformation quantization ⋆-product, the first equation in (3.28)

guarantees, by construction, that the observables depending only on X̂i (up to finite order) are

represented through an algebra isomorphism. Similarly, since the partial derivative operators on g∗

are commutative, f̂ 7→ πg∗(f̂), f̂ ∈ Ag∗ , is clearly a homomorphism. Therefore, in order to show

that we have a representation of the quantum algebra, the only non-trivial part is to show that the

commutator [X̂i, ζ̂
j ] is correctly reproduced, namely, due to (3.5) we should find

(πg∗([X̂i, ζ̂
j ])ψ̃)(X) = i

∞∑

n=1

Cj
iq1···qn−1

(πg∗(ζ̂q1 ) · · ·πg∗(ζ̂qn−1)ψ̃)(X) . (3.30)

Now, the left-hand-side reads

πg∗([X̂i, ζ̂
j ])ψ̃ = [πg∗(X̂i), πg∗(ζ̂j)]ψ̃ = −iXi ⋆ (∂

jψ̃) + i∂j(Xi ⋆ ψ̃) . (3.31)

In order to compute the second term, we must know how the partial derivative acts on ⋆-products of

functions. Here, we will again impose the compatibility of the coproduct of the operator algebra and

the algebra multiplication, expressed neatly by the commutative diagram (3.21). In other words,

we require that πg∗(ζ̂i) ◦mg∗ = mg∗ ◦ (πg∗ ⊗ πg∗ (∆G(ζ̂
i))), where mg∗ : f ⊗ f 7→ f ⋆ f ′. Explicitly,

using the coproduct formula (3.15), imposing this requirement gives

(−i∂i)(f ⋆ f ′) =

∞∑

n=1

∑

k,l∈N

k+l=n

Ci
p1···pkq1···ql [(−i∂

p1) · · · (−i∂pk) f ] ⋆ [(−i∂q1) · · · (−i∂ql) f ′] , (3.32)

and thus we obtain

∂j(Xi ⋆ ψ̃) = Xi ⋆ C
j
k(∂

kψ̃) +
∞∑

n=1

Cj
iq1···qn−1

((−i∂q1) · · · (−i∂qn−1)ψ̃) . (3.33)

Assuming Cj
i ≡ ∂

∂ki ζ
j
k(0) = δji at the origin of the coordinates, we have then

−iXi ⋆ (∂
jψ̃)(X) + i∂j(Xi ⋆ ψ̃) = i

∞∑

n=1

Cj
iq1···qn−1

((−i∂q1) · · · (−i∂qn−1)ψ̃) , (3.34)

which is exactly the right-hand side of (3.30). Therefore, if the ⋆-product satisfies the property

encoded in the commutative diagram (3.21), then the commutator is correctly reproduced through

the action (3.28) of the operators, and therefore πg∗ defines a representation of A in terms of a
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specific choice of coordinates on the group used in defining A itself. In fact, the compatibility

condition can also be interpreted as a condition between the choice of quantization map, thus of

⋆-product, and the choice of coordinates on the group.

Let us recapitulate what we have shown for the algebra representation thus far. Assume that

(1) Ag∗ := Q(Ag∗) is a subalgebra of the full quantum algebra A, where Ag∗ ⊂ C∞(g∗), (2) the

coproduct ∆G is compatible with the operator product in Ag∗ in the sense of the commutative

diagram (3.21), and (3) coordinates ζ : G → g ∼= Rd on G satisfy ζik(0) = 0 and ∂
∂ki ζ

j
k(0) = δji for

all i, j = 1, . . . , d, where ζk(k) ≡ ζ(eik). Then, the action of the operators in (3.28)

(πg∗(X̂i)ψ̃)(X) ≡ Xi ⋆ ψ̃(X) , (πg∗(ζ̂i)ψ̃)(X) ≡ −i∂iψ̃(X)

defines a representation of A on C∞
c (g∗) ∋ ψ̃, which we call the algebra representation πg∗ .

We remark once more that we have not provided a constructive definition, and the existence of

the algebra representation for a given quantization map and ⋆-product is not guaranteed. We have

only identified the properties that such ⋆-product has to satisfy for its existence, to be checked for

each given choice of quantization map. It is clear that, in general, that is, for arbitrary quantization

map and ⋆-product, they will not be satisfied and no algebra representation would exist. On the

other hand, we show in the following that these properties are in fact fulfilled for various interesting

choices of quantization maps, so the construction is at the same time non-trivial and non-empty.

Finally, with the above assumption (1) implying that a ⋆-product of functions in C∞
c (g∗) for

the deformation quantization corresponding to Q is again in C∞
c (g∗), we have the sesquilinear form

for ψ̃, ψ̃′ ∈ C∞
c (g∗) given by

〈ψ̃, ψ̃′〉g∗ :=

∫

g∗

ddX

(2π)d
(ψ̃ ⋆ ψ̃′)(X) . (3.35)

This form is, in general, degenerate, i.e. the set of functions N := {ψ̃ ∈ C∞
c (g∗) : 〈ψ̃, ψ̃〉g∗ = 0}

may be non-empty. To define a proper inner product and the corresponding norm completion,

which would then be our Hilbert space, we should quotient C∞
c (g∗) by the degenerate subspace

N . Furthermore, to be consistent with the action of A, we should also show that N is invariant

under that action. The latter is the non-trivial part, and for the time being, we will simply assume

that this can be done, and denote the completion of C∞
c (g∗)/N in the norm ‖ψ̃‖ ≡

√
〈ψ̃, ψ̃〉g∗

as L2
⋆(g

∗). The existence of a non-commutative Fourier transform between the two representation

spaces L2(G) and L2
⋆(g

∗), to which we now turn, will eventually justify this assumption.

4 The non-commutative Fourier transform

Our next objective is to find the relation between the two representations πG and πg∗ of A defined

above. In correspondence with the Euclidean case presented on the Motivation section 2, we will

assume that there exists an intertwiner F : L2(G) → L2
⋆(g

∗) between the representations, which

can be expressed as an integral transform. Namely,

ψ̃(X) := F(ψ)(X) :=

∫

G

dg E(g,X)ψ(g) ∈ L2
⋆(g

∗) , (4.1)

where ψ ∈ L2(G), and we denote by E(g,X) the integral kernel of the transform. Then, the goal

is to identify the defining equations for the kernel E(g,X), using the fact that the intertwined

functional spaces define a representation of the same quantum algebra, and applying the action

of A in the different representations. If a solution exists, we would have thus shown that the
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representations are related through the corresponding integral transform. Once more, its actual

existence has to be verified once an explicit choice of quantization map and ⋆-product has been

made.

The intertwining property of F can be expressed generally as F ◦ πG(T̂ ) = πg∗(T̂ ) ◦ F , where

T̂ ∈ A. For the X̂i operators we have

F(πG(X̂i)ψ)(X) =

∫

G

dg E(g,X) (iLiψ)(g) =

∫

G

dg (−iLiE)(g,X)ψ(g) , (4.2)

where for the last equality we used integration by parts.14 On the other hand,

(πg∗(X̂i)F(ψ))(X) =

∫

G

dg (Xi ⋆ E(g,X))ψ(g) , (4.3)

and accordingly, for all ψ ∈ L2(G) we must require the kernel E(g,X) to satisfy the differential

equation

−iLiE(g,X) = Xi ⋆ E(g,X) . (4.4)

Integrating this action by right-invariant Lie derivatives, we obtain

E(hg,X) = ek(h)·
~LE(g,X) = e

ik(h)·X
⋆ ⋆ E(g,X) , (4.5)

where again k(h) = −i ln(h) ∈ g, and we introduced the ⋆-exponential notation

e
f(X)
⋆ =

∞∑

n=0

1

n!
f ⋆ · · · ⋆ f︸ ︷︷ ︸

n times

(X) . (4.6)

Of course, such an integration of a differential equation is subject to the possible non-trivial global

properties of G. First of all, the assumption that G is exponential guarantees that any group

element h can be integrated to as in (4.5). However, since E(g,X) is to be considered only under

integration, weak exponentiality of G is a sufficient condition for our purposes. On the other hand,

if G has compact subgroups, the logarithm map is multivalued, and therefore the result of the

integration is not unique. In particular, we may choose k(h) = −i ln(h) ∈ g from any branch of the

logarithm, each one supplying a solution of the differential equation (4.4).

Consider then the intertwining of the operators ζ̂i. We have

F(πG(ζ̂
i)ψ)(X) =

∫

G

dg E(g,X) ζi(g)ψ(g) , (4.7)

and, on the other hand,

(πg∗(ζ̂i)F(ψ))(X) =

∫

G

dg (−i∂iE)(g,X)ψ(g) . (4.8)

For all ψ ∈ L2(G), we must therefore require

(−i∂iE)(g,X) = ζi(g)E(g,X) , (4.9)

which through integration yields

E(g,X + Y ) = eY ·~∂E(g,X) = eiζ(g)·Y E(g,X) . (4.10)

14And the denseness of C∞
c (G) in L2(G), to guarantee that ψ → 0 as g → ∂G.
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Since g ∼= Rd, there are no global issues with this integration. Here the multivaluedness comes in

through the possible multivaluedness of the coordinates ζ : G→ g.

From (4.10) we have, in particular, that E(e,X) = E(e, 0) =: c is constant in the principal

branch, since ζk(0) = 0. We will set c ≡ 1. Combining this with (4.5), we find

E(g,X) = e
ik(g)·X
⋆ , (4.11)

where again k(g) = −i ln(g) may a priori be taken from any branch of the logarithm. Thus, given

a suitable deformation quantization ⋆-product, this formula gives the general expression for the

integral kernel E(g,X).

However, we also find from (4.10) another form

E(g,X) = η(g)eiζ(g)·X (4.12)

for the kernel. The prefactor η(g) := E(g, 0) may be non-trivial depending on the ⋆-product or,

equivalently, the quantization map Q chosen, as we will see in Section 5.

Expressions (4.11) and (4.12) are, in fact, solutions to two distinct differential equations, namely,

(4.4) and (4.9), respectively, and, of course, for consistency, we must require them to define the

same function. Of course, for a given ⋆-product, determining coordinates for which this is satisfied

might be a difficult task to do and, in general, there is no guarantee that such coordinates exist. It

is a consistency requirement for the non-commutative Fourier transform to arise as an intertwiner

between the group representation and the algebra representation. In fact, as we will see in 4.2, the

algebra representation is only guaranteed to exist under the conditions that such coordinates can

be found, tying together the existence of the non-commutative Fourier transform as an intertwiner

with that of the algebra representation, and vice-versa.

Therefore, for given ⋆-product, the last two equations give the explicit form of the plane waves.

They signify two important things. First, the non-commutative plane waves take generically the

form of ⋆-exponentials (with respect to the ⋆-product following from the quantization map Q) in

terms of the k(g) coordinates on the group. That is, they are obtained by the inverse quantization

map Q−1 applied to eik(g)·X̂ ∈ U(g). Second, under the above consistency requirement, that is,

(4.12) defines the same solution as (4.11), there exists a choice of coordinates, ζi(g), in which the

same ⋆-exponentials take the form of classical exponentials times a multiplicative factor η(g). Also,

the preferred coordinates on the group and the measure factor that appear in this last expression,

thus, follow uniquely from the choice of quantization map, alongside the ⋆-product.

Let us now note a very important point. From (4.11) we have that Q(E(g,X)) = eik(g)·X̂ ∈

Ag∗ ∼= U(g), where k(g) = −i ln(g) ∈ g, and the quantization is applied only to the coordinates

Xi on g∗. Elements of this form in Ag∗ constitute a group, since X̂i obey the Lie algebra com-

mutation relations, and so we have eik·X̂eik
′·X̂ = eiB(k,k′)·X̂ , where B(k, k′)) is obtained through

Baker-Campbell-Hausdorff formula, and k, k′ ∈ g. Denote them by E := {eik·X̂ : k ∈ g} ⊂ Ag∗ .

However, because of the possible multivaluedness of the logarithm, there is in general no one-to-one

relation between the elements of E and the group G. The Lie algebra element k(g) may lie in any

branch of the multivalued logarithm, and the Baker-Campbell-Hausdorff formula applied to Lie

algebra elements in one branch need not lie in the same branch. As already noted before, there is,

in particular, a set of elements I := {eik·X̂ ∈ Ag∗ : ek·
~L = 1} ⊂ E , which correspond to translations

around compact subgroups of G in the group representation. In fact, I is a normal subgroup of

E , so we may consider the quotient group E/I, which is then isomorphic to G itself (assuming

again that G is exponential), because the different branches of the logarithm are thus identified.

Therefore, it would be natural to define the non-commutative plane wave as the equivalence class
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of elements Eg(X) := {eik·X⋆ ∈ C∞(g× g∗) : k = −i ln(g)}, which is the straightforward translation

of the above quotient group to ⋆-exponentials. Eg(X) then constitute a representation of G under

⋆-multiplication. However, for practical purposes, it is more convenient and transparent simply to

introduce a new product ‘⋆p’ for non-commutative plane waves, which is the deformation quanti-

zation ⋆-product amended by a projection onto the principal branch of the logarithm. In a sense,

this new product sees the global structure of G, whereas the deformation quantization ⋆-product

is a purely local construct arising from the Lie algebra alone. (For the action of the generators

of A in the different representations above we considered only infinitesimal translations, which are

unaffected by global properties of G.) Then,

Eg(X) := e
ik(g)·X
⋆ , (4.13)

where k(g) = −i ln(g) is taken in the principal branch, constitute a representation of G with respect

to this ⋆p-product.
15

With the remarks from above on the coordinates ζi(g), let us then list some important properties

of the non-commutative plane wave Eg(X), as they follow from our construction, and that we will

use in the following:

Eg(X) = e
ik(g)·X
⋆ = η(g)eiζ(g)·X , (4.14)

Ee(X) = 1 , (4.15)

Q(Eg(X)) = eik(g)·X̂ ∈ Ag∗ , (4.16)

Eg−1(X) = Eg(X) = Eg(−X) , (4.17)

Egh(X) = Eg(X) ⋆p Eh(X) , (4.18)

Eg(X + Y ) = Eg(X)Eg(Y ) . (4.19)

In addition, using Eg(X) ≡ η(g)eiζ(g)·X , η(e) = Ee(0) ≡ 1, and the properties of the ζ-coordinates,

namely, ζ(e) = 0 and Liζ
j(e) = δji , we have

∫

g∗

ddX

(2π)d
Eg(X) = δd(ζ(g)) = δ(g) , (4.20)

where the right-hand side is the Dirac delta distribution with respect to the right-invariant Haar

measure on G.

We have therefore found an integral transform F intertwining the representations πG and πg∗ :

ψ̃(X) := F(ψ)(X) =

∫

G

dg Eg(X)ψ(g) =

∫

G

dg e
ik(g)·X
⋆ ψ(g) , (4.21)

where k(g) = −i ln(g) is taken in the principal branch. The ⋆p-product of non-commutative plane

waves is extended by linearity to the image of F .

4.1 Properties of the non-commutative Fourier transform

Let us now consider some properties of the transform F and the non-commutative function space

L2
⋆(g

∗):

15For weakly exponential Lie groups a representation is obtained in a weak sense.
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• Group multiplication from the right is dually represented on F(ψ)(X) by ⋆p-multiplication

by Eg−1 (X), i.e.

F(Rgψ)(X) =

∫

G

dhEh(X)ψ(gh) =

∫

G

dhEg−1h(X)ψ(h) = Eg−1 (X) ⋆p

∫

G

dhEh(X)ψ(h)

= Eg−1 (X) ⋆p F(ψ)(X) (4.22)

using the right-invariance of the Haar measure.

• Consider the L2
⋆(g

∗) inner product of two functions obtained through the transform

〈ψ̃, ψ̃′〉g∗ :=

∫

g∗

ddX

(2π)d
ψ̃(X) ⋆p ψ̃

′(X)

=

∫

g∗

ddX

(2π)d

[∫

G

dg Eg−1 (X)ψ(g)

]
⋆p

[∫

G

dhEh(X)ψ′(h)

]

=

∫

G

dg

∫

G

dhψ(g)ψ′(h)

[∫

g∗

ddX

(2π)d
Eg−1h(X)

]
. (4.23)

Using (4.20), we find

〈ψ̃, ψ̃′〉g∗ ≡

∫

g∗

ddX

(2π)d
ψ̃(X) ⋆p ψ̃

′(X) =

∫

G

dg ψ(g)ψ′(g) ≡ 〈ψ, ψ′〉G , (4.24)

so F is, in fact, an isometry from L2(G) to L2
⋆(g

∗). Therefore, we may identify L2
⋆(g

∗) =

F(L2(G)).

• Consider the transformation F∗ : L2
⋆(g

∗) → L2(G) given by

F∗(ψ̃)(g) =

∫

g∗

ddX

(2π)d
Eg(X) ⋆p ψ̃(X) . (4.25)

We have

(F∗ ◦ F)(ψ)(g) =

∫

g∗

ddX

(2π)d
Eg(X) ⋆p

∫

G

dhEh(X)ψ(h) =

∫

G

dh

[∫

g∗

ddX

(2π)d
Eg−1h(X)

]
ψ(h)

=

∫

G

dh δ(g−1h)ψ(h) = ψ(g) . (4.26)

That is, F∗ ◦ F = idL2(G).

• For F ◦ F∗ we find

(F ◦ F∗)(ψ̃)(X) =

∫

G

dg Eg(X)

∫

g∗

ddY

(2π)d
Eg(Y ) ⋆p ψ̃(Y )

=

∫

g∗

ddY

(2π)d

[∫

G

dg Eg(X − Y )

]
⋆p ψ̃(Y ) , (4.27)

which shows that the (generalized) function

δ⋆(X − Y ) :=

∫

G

dg Eg(X − Y ) ∈ (L2
⋆(g

∗))∗ (4.28)

acts as the integration kernel of the projection operator F ◦ F∗ onto L2
⋆(g

∗) (with respect to

the ⋆p-product), and accordingly corresponds to the Dirac delta in L2
⋆(g

∗).
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• It is easy to check that the kernel of F ◦ F∗, ker(F ◦ F∗) = {ψ̃ ∈ L2
⋆(g

∗) : (F ◦ F∗)(ψ̃) = 0},

contains all functions of the form (eik(e)·X−eik
′(e)·X) ⋆ ψ̃(X), ψ̃ ∈ L2

⋆(g
∗), where k(e), k′(e) ∈ g

are any two values of −i ln(e), and therefore F ◦ F∗ implements the aforementioned E/I-

equivalence classes in L2
⋆(g

∗).

• We have an expression (or two) for the ⋆p-product under integration in terms of a pseudo-

differential operator σ, namely,

∫

g∗

ddX ψ̃(X) ⋆p ψ̃′(X) =

∫

g∗

ddX
(
σ(i~∂) ψ̃(X)

)
ψ̃′(X)

=

∫

g∗

ddX ψ̃(X)
(
σ(−i~∂) ψ̃′(X)

)
∀ ψ̃, ψ̃′ ∈ L2

⋆(g
∗) , (4.29)

where σ(ζ) :=
(
ω(ζ)|η(ζ)|2

)−1
for ζ ∈ g, dg ≡ ω(ζ(g)) dζ(g) for the right-invariant Haar

measure, and η(ζ(g)) ≡ E(g, 0). For the proof of this identity refer to the Appendix B.

• Due to (4.29), we may write the inverse transform F−1 = F∗ : L2
⋆(g

∗) → L2(G) from (4.25)

explicitly without a star-product as

F−1(ψ̃)(g) = σ(g)

∫

g∗

ddX

(2π)d
Eg(X) ψ̃(X) , (4.30)

where σ(g) :=
(
ω(ζ(g))|η(g)|2

)−1
.

• Finally, due to Eg ⋆p Eh = Egh the ⋆p-product is dual to the convolution product under the

non-commutative Fourier transform, that is,

ψ̃ ⋆p ψ̃
′ = ψ̃ ∗ ψ′ , (4.31)

where the convolution product is defined on the group as usual

ψ ∗ ψ′(g) =

∫

G

dhψ(gh−1)ψ′(h) . (4.32)

Let us emphasize again the difference to standard harmonic analysis on locally compact groups,

where the Peter-Weyl theorem would take us through the expansion of functions on G in terms of

unitary irreducible representations, and the Fourier transform would give us a unitary map from

square-integrable functions L2(G) on the group G to square-integrable functions L2(Ĝ) on the

Pontryagin dual Ĝ:

ψ̂λ :=

∫

G

dg ψ(g) ρλ(g
−1) , (4.33)

ψ(g) :=
∑

λ∈Ĝ

dλTr[ψ̂λ ρλ(g)] , (4.34)

where ρλ(g) is a unitary irreducible representation of G on a vector space of dimension dλ. Note that

in the special case of the Euclidean space, the Pontryagin dual Ĝ happens to coincide with the mo-

mentum space g∗ and, therefore, the non-commutative Fourier transform and the Fourier transform

coming from the Peter-Weyl theorem coincide, as discussed in section 2. Nevertheless, let us also

note, that in the context of locally compact Lie groups we will have both transforms at our disposal.

– 19 –



4.2 Compatible coordinates and existence of algebra representation

As an aftermath of the derived form and properties of the non-commutative plane wave and the

corresponding interwiner of the representations πG and πg∗ – the non-commutative Fourier trans-

form F –, let us inquire a bit further on the existence of the algebra representation πg∗ for a specific

choice of coordinates on the group G.

Recall the property encoding the compatibility between ⋆-product (quantization map) and

choice of coordinates on the group, following from the coproduct structure of the quantum algebra

of observables to be represented, and needed for the existence of an algebra representation of the

same. This was given in the commutative diagram (3.21).

Given the coordinates ζ : G → g ∼= Rd on G arising from the star-exponential of the non-

commutative plane wave as Eg(X) = e
ik(g)·X
⋆ = η(g)eiζ(g)·X , determined by a suitable ⋆-product

leading to such a form, they compose as

ζi(gh) =

∞∑

n=0

∑

k,l∈N

k+l=n

Ci
p1···pkq1···ql

ζp1(g) · · · ζpk(g)ζq1 (h) · · · ζql(h) =: C(ζ(g), ζ(h))i , (4.35)

where Ci
p1···pkq1···ql ∈ R are constant coefficients. This gives rise to the following coproduct, as in

(3.15),

∆G(ζ̂
i) = C(ζ̂(1), ζ̂(2))

i ≡
∞∑

n=0

∑

k,l∈N

k+l=n

Ci
p1···pkq1···ql ζ̂

p1 · · · ζ̂pk ⊗ ζ̂q1 · · · ζ̂ql , (4.36)

where the lower indices (1), (2) refer to the first and the second factor on the tensor product, on

which the coproduct operates. In the algebra representation this yields

πg∗ ⊗ πg∗(∆G(ζ̂
i)) = C(−i~∂(1),−i~∂(2))

i . (4.37)

Now, for a given ⋆-product, we want to check the commutativity of the diagram (3.21), i.e. that

mg∗ ◦ (πg∗ ⊗ πg∗(∆G(ζ̂
i))) = πg∗(ζ̂i) ◦mg∗ (4.38)

is satisfied, where mg∗ : f ⊗ f 7→ f ⋆ f ′. It will be enough to do the calculation at the level of

the exponentials, once a Fourier transform is established, since any function can then be written in

terms of them. This can be done by explicit calculation for exponentials. We want to show that

mg∗ ◦ (πg∗ ⊗ πg∗(∆G(ζ̂
i)))(Eg1 (X)⊗ Eg2(X)) = πg∗(ζ̂i) ◦mg∗(Eg1 (X)⊗ Eg2(X)) (4.39)

The left-hand side of (4.39) reads explicitly

mg∗ ◦ (πg∗ ⊗ πg∗(∆G(ζ̂
i)))(Eg1 (X)⊗ Eg2(X)) = mg∗(C(−i~∂(1),−i~∂(2))

iEg1 (X)⊗ Eg2(X))

= mg∗(C(ζ(g1), ζ(g2))
i Eg1 (X)⊗ Eg2(X))

= ζi(g1g2)Eg1g2(X) , (4.40)

where we used −i∂iEg(X) = ζi(g)Eg(X). Similarly, the right-hand side of (4.39) reads:

πg∗(ζ̂i) ◦mg∗(Eg1 (X)⊗ Eg2(X)) = −i∂iEg1g2(X)

= ζi(g1g2)Eg1g2(X) , (4.41)

thus proving the equality.
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Accordingly, we see that when the ⋆-product is verified to lead to a non-commutative plane wave

of the form Eg(X) = η(g)eiζ(g)·X , as it happens in all the examples we will consider below, then it

is guaranteed that the ζ-coordinates in the exponential, along with their coproduct, are compatible

with the ⋆-product in the sense of the commutative diagram (3.21).16

5 Explicit examples

We have seen that the ⋆-product used in defining the algebra representation follows from the choice

of quantization map, by the formula (3.26). Further, the key ingredient needed for the definition of

the non-commutative Fourier transform is the non-commutative plane wave. This can be computed

explicitly as soon as a quantization map (ordering prescription) for the Lie algebra coordinates

(equivalently, a ⋆-product) is chosen, such that it allows for a compatible set of coordinates as

encoded in the diagram (3.21).

We will now provide a few explicit examples of our construction. We start from the rather

trivial, but still interesting, abelian U(1) case (see [39]), and then move on to the non-abelian, but

still compact, SU(2) case. In the latter we consider three quantization maps: the symmetric map

(corresponding to the Weyl ordering), the Duflo map, and the so-called Freidel-Livine-Majid map.

The corresponding ⋆-products and non-commutative plane waves are computed and shown to be of

the form required for the existence of the algebra representation, in particular, Eg(X) = η(g)eiζ(g)·X

as proved above 4.2. Finally, the non-commutative Fourier transforms along with their inverses are

presented.

Before considering each of the following examples let us show how, in practice, one determines

the non-commutative plane wave. Recall that the plane wave is given by

Eg(X) = e
ik(g)·X
⋆ =

∞∑

n=0

in

n!
k(g)i1 · · · k(g)inXi1 ⋆ · · · ⋆ Xin

=
∞∑

n=0

in

n!
k(g)i1 · · · k(g)inQ−1(X̂i1 · · · X̂in)

= Q−1(eik(g)·X̂) . (5.1)

Therefore, in order to obtain the explicit form of the plane waves one can either compute the inverse

quantization map for all the monomials,17 or one can guess which function upon quantization gives

eik(g)·X̂ , that is, the function f(X) such that Q(f(X)) = eik(g)·X̂ . As we will see, for the examples

we will present, this latter route turns out to be the most straightforward. Besides, once Eg(X)

is known, by using the property (4.18), Eg1 ⋆p Eg2 = Eg1g2 , one can determine the ⋆-product on

monomials as

Xi1 ⋆ · · · ⋆ Xin = (−i)n
∂n

∂k(g1)i1 · · · ∂k(gn)in

∣∣∣∣
g1,...,gn=e

Q−1(eik(g1···gn)·X̂)

≡ (−i)nLi1 · · · LinEg(X)|g=e , (5.2)

thus reverting, in some sense, the natural logic of the construction. (Notice that the projection in

⋆p is of no consequence in this formula, since the derivatives are taken in the neighborhood of the

identity.)

16It is an interesting question, which we will not address here, whether the non-commutative plane wave must be

of the above form in order for a compatible coordinate system to exist, and furthermore, how to characterize the

class of star-products, for which such coordinates can be found.
17And notice that Q−1(X̂i1 · · · X̂in ) 6= Q−1( ̂Xi1 · · ·Xin ) = Xi1 · · ·Xin .
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5.1 Commutative: U(1)

U(1) is given by the set of complex numbers z ∈ C with modulus one |z| = 1. Accordingly, we can

set z = eiθ. The canonical coordinates k(g) = −i ln(g) ≡ θ are restricted to the principal branch of

the logarithm as θ ∈]− π, π]. The dual of the Lie algebra u(1)∗ is simply given by the real numbers

X ∈ R.

In this abelian case, and in particular for u(1), which has just one generator, no ordering

ambiguity arises, so that there is no difference between quantization maps in this respect. Therefore,

the star-product always coincides with the pointwise product. However, first of all the group is

compact, and this topological feature already makes things a little more interesting. Second, we

have seen how the quantization map also affects the choice of coordinates appearing in the plane

waves. It is then worth it to consider this simple case in some detail.

For the symmetrization map S (A.7) (and also for the Duflo map D which we will consider

below, as they coincide for abelian groups) we indeed have S(Xn) = X̂n and, therefore,

S(eiθX) = eiθX̂ , (5.3)

that is, as expected, the plane waves are given by eiθX , for θ ∈]−π, π], X ∈ R, and the corresponding

⋆-product on monomials is simply the pointwise product

X ⋆ · · · ⋆ X︸ ︷︷ ︸
n times

= Xn . (5.4)

Nevertheless, the product eiθX ·p eiθ
′X = ei(θ+θ′(mod 2π))X of plane waves is still non-trivial due

to the compactness of the group, which has to be taken into account by explicit projection, as we

explained above in the general case.

Furthermore, from (4.29) we have that

∫
dX f(X) ·p f

′(X) =

∫
dX f(X)f ′(X) , (5.5)

since in this case dg = dθ ⇒ ω(θ) = 1 and Eg(X) = eiθX ⇒ η(θ) = 1, so σ = 1.

The non-commutative Fourier transform is thus given by

ψ̃(X) =

∫ π

−π

dθ

2π
eiθX ψ(eiθ) , (5.6)

while its inverse is

ψ(eiθ) =

∫

R

dX e−iθX ψ̃(X) . (5.7)

Let us now point out one consequence of the existence of normal subgroups corresponding

to the identity element in this simple case. The periodicity of the group is taken care of by the

projection in the product ·p, which translates it into the equivalence class of functions on the Lie

algebra ψ̃(X) = ei2πnX ·p ψ̃(X), n ∈ Z. This is the counterpart, in our setting, of the usual Fourier

transform on the circle, where the restriction X ∈ Z is imposed, and the inverse transform is given

by a sum over the integers.18

18In fact, it was proved in [39] that this U(1) non-commutative Fourier transform defined for the full R can, in

fact, be determined by its values on the integers; thus, even though the U(1) non-commutative Fourier transform is

defined distinctively from the usual Fourier transform on the circle, they were shown to coincide due to this form of

sampling.
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We have thus seen that the symmetric (and Duflo) map leads to plane waves equivalent to the

usual ones. Still, we have also seen within the general formalism that the choice of quantization

maps affects non-trivially also the coordinates appearing in the plane waves. Vice versa, by choosing

non-linear coordinates on the group, one can end up with non-trivial star-products, despite the

abelianess of the group. Let us say we have Q such that

Q−1(eiθX̂) = e2i sin
θ
2
X . (5.8)

ζ(θ) = 2 sin θ
2 can be seen as new coordinates on the group valid for θ ∈]−π, π]. According to (5.2),

we get for the ⋆-product on monomials already a diverting result at third order

X ⋆X = X2 , (5.9)

X ⋆X ⋆ X = X3 +
1

4
X , (5.10)

...

and, therefore, as remarked before, we see that quantization map, choice of coordinates, and star-

product are related in a highly non-trivial way.

We may give an expression for the corresponding ⋆p-product under integral, from (4.29), as a

(non-trivial) pseudo-diffential operator

∫
dX f(X) ⋆p f

′(X) =

∫
dX f(X)

√
1 + 1

4

(
d
dX

)2
f ′(X) , (5.11)

(where d
dX may act either left or right) as we now have, in contrast to the previous parametrization,

a non-trivial relation between the Haar measure dθ and the Lebesgue measure dζ, namely, dθ =

(
√

1− ζ2/4)−1dζ, so σ(ζ) =
√
1− ζ2/4.

The non-commutative Fourier transform is thus given by

ψ̃(X) =

∫ π

−π

dθ e2i sin
θ
2
X ψ(eiθ) , (5.12)

while its inverse is, from (4.30),

ψ(eiθ) = cos( θ2 )

∫

R

dX

2π
e−2i sin θ

2
X ψ̃(X) . (5.13)

5.2 Non-commutative compact: SU(2)

We now consider a simple but very important non-abelian example, SU(2), which is particularly

relevant also for quantum gravity applications.

The Lie algebra su(2) has a basis given (in the defining representation) by a set of two-by-two

traceless hermitian matrices {σj}j=1,2,3, which read

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
, (5.14)

and satisfy σiσj = δij + iǫijkσk, or rather, the relations [σi, σj ] = 2iǫijkσk. Thus, a generic element

k ∈ su(2) can be written as k = kjσj , k
j ∈ R, while for any group element g ∈ SU(2) we may write

g = eik
jσj – SU(2) is an exponential Lie group. Another convenient parametrization of SU(2) can

be written as

g = p01+ ipiσi , (p0)2 + pipi = 1 , pi ∈ R . (5.15)
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Here, the pi’s are constrained by the R3 vector norm |~p|2 ≤ 1. Thus, this last parametrization

naturally identifies SU(2) with the 3-sphere S3. p0 ≥ 0 and p0 ≤ 0 correspond to the upper and

lower hemispheres of S3, respectively, in turn corresponding to two copies of SO(3). Parametrization

of the group elements in terms of ~p ∈ R3 is one-to-one only on either of the two hemispheres, whereas

the canonical coordinates ~k parametrize the whole group except for −1 ∈ SU(2).

The relation between these two parametrizations is mediated by the following change of coor-

dinates

~p =
sin |~k|

|~k|
~k , p0 = cos |~k| , ki ∈ R , (5.16)

where |~k| ∈ [0, π2 [, or |
~k| ∈ [π2 , π[ according to p0 ≥ 0, p0 ≤ 0 respectively, and g ∈ SU(2) assumes

the form

g = cos |~k|1+ i
sin |~k|

|~k|
~k · ~σ = ei

~k·~σ . (5.17)

We call the coordinates introduced the ~k-parametrization and the ~p-parametrization, respec-

tively. The Haar measure on the group takes then the form

dg = d3~k

(
sin |~k|

|~k|

)2

, ~k ∈ R3 , |~k| ∈ [0, π[ , (5.18)

dg =
d3~p√
1− |~p|2

, ~p ∈ R3 , |~p|2 < 1 , (5.19)

where the latter is again applicable only for one of the two hemispheres.

We now consider three choices of quantization maps, and derive the corresponding ⋆-product,

algebra representation and non-commutative plane waves.

5.2.1 Symmetrization map

Given a set of su(2) coordinates Xi1 , . . . , Xin , the symmetrization map S takes the symmetric

ordering of the corresponding coordinate operators X̂i1 , . . . , X̂in ,

S(Xi1 · · ·Xin) =
1

n!

∑

σ∈Sn

X̂iσ1
· · · X̂iσn

, (5.20)

where Sn is the symmetric group of order n.

Thus, for instance, for an exponential of the form ei
~k·X , we have

S(ei
~k·X) = 1+ ikiS(Xi) +

i2kikj

2!
S(XiXj) +

i3kikjkk

3!
S(XiXjXk) + . . .

= 1+ ikiX̂i +
i2kikj

2!

1

2!
(X̂iX̂j + X̂jX̂i) + . . .

= 1+ ikiX̂i +
i2kikj

2!
X̂iX̂j + . . .

≡ ei
~k·X̂ , (5.21)

which tells that the function ei
~k·X gives exactly the ⋆-exponential (plane wave) for symmetric

quantization with the ~k-parametrization.

The composition of coordinates can be inferred from

ei
~k1·X ⋆S e

i~k2·X = S−1(S(ei
~k1·X) · S(ei

~k2·X)) = eiB(~k1,~k2)·X , (5.22)
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where B(~k1, ~k2) is the Baker-Campbell-Hausdorff formula (cf. Appendix C for closed formula for

SU(2)), and therefore, the ⋆S-product on ⋆-monomials can be computed according to (5.2):

Xi ⋆S Xj = XiXj + iǫ k
ij Xk , (5.23)

Xi ⋆S Xj ⋆S Xk = XiXjXk + i(ǫijmXk + ǫikmXj + ǫjkmXi)Xm +
2

3
δjkXi −

1

3
δikXj +

2

3
δijXk ,

(5.24)

...

This star-product is referred to as the Gutt (or ‘standard’) ⋆-product [40]. As explained above, for

plane waves we amend this product by a projection, which explicitly gives

ei
~k1·X ⋆Sp e

i~k2·X = eiBp(~k1,~k2)·X , (5.25)

where Bp(~k1, ~k2) is the value of the Baker-Campbell-Hausdoff formula projected onto the principal

branch of the logarithm map.

Under integration, using (4.29) and (5.18), the ⋆Sp-product acquires the form

∫

g∗

d3X f(X) ⋆Sp f
′(X) =

∫

g∗

d3X f(X)

(
|~∂|

sin |~∂|

)2

f ′(X) . (5.26)

Given the plane waves just computed, we may then write the explicit form for the non-

commutative Fourier transform as

ψ̃(X) =

∫

R3,|~k|∈[0,π[

d3k

(
sin |~k|

|~k|

)2

ei
~k·X ψ(~k) , (5.27)

with the inverse, from (4.30), being

ψ(~k) =

(
|~k|

sin |~k|

)2 ∫

R3

d3X

(2π)3
e−i~k·X ψ̃(X) . (5.28)

5.2.2 Duflo map

The Duflo map, as defined in more detail in the Appendix A is given by

D = S ◦ j
1
2 (∂) , (5.29)

where j is the following function on g

j(X) = det

(
sinh 1

2adX
1
2adX

)
. (5.30)

For X ∈ su(2), j computes to

j(X) =

(
sinh |X |

|X |

)2

. (5.31)

The application of the Duflo quantization map to exponentials ei
~k·X gives

D(ei
~k·X) =

sin |~k|

|~k|
ei

~k·X̂ , (5.32)
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which can be inverted to

D−1(ei
~k·X̂) =

|~k|

sin |~k|
ei

~k·X ≡ ei
~k·X
⋆ , (5.33)

that is, we have found the plane wave Eg(X) under D with the ~k-parametrization19.

Once again, we may now use (5.2) to compute the ⋆D-product on monomials:

Xi ⋆D Xj = XiXj + iǫ k
ij Xk −

1

3
δij , (5.34)

Xi ⋆D Xj ⋆D Xk = XiXjXk + i(ǫijmXk + ǫikmXj + ǫjkmXi)Xm +
1

3
δjkXi −

2

3
δikXj +

1

3
δijXk ,

(5.35)

...

This star-product coincides with the star-product introduced by Kontsevich in [41]. For the non-

commutative plane wave we again have the corresponding projected star-product ⋆Dp, which satisfies

|~k1|

sin |~k1|
ei

~k1·X ⋆Dp
|~k2|

sin |~k2|
ei

~k2·X =
|Bp(~k1, ~k2)|

sin |Bp(~k1, ~k2)|
eiBp(~k1,~k2)·X . (5.36)

Again, an expression for the ⋆Dp-product under integration can be obtained from (4.29). How-

ever, for the Duflo map the factors ω and η2 cancel out exactly, and we have σ(ζ)−1 ≡ ω(ζ)|η(ζ)|2 =

1. Accordingly,
∫

g∗

d3X f(X) ⋆Dp f
′(X) =

∫

g∗

d3X f(X)f ′(X) , (5.37)

i.e. the Duflo star-product coincides with the pointwise product (only) under integration. In

particular, this implies that the Duflo L2
⋆ inner product coincides with the usual L2 inner product,

and therefore L2
⋆(g

∗) ⊆ L2(g∗) (as an L2 norm-complete vector space) for the Duflo map.

The explicit form of the non-commutative Fourier transform is thus

ψ̃(X) =

∫

R3,|~k|∈[0,π[

d3k

(
sin |~k|

|~k|

)
ei

~k·X ψ(~k) , (5.38)

while the inverse is

ψ(~k) =

∫

R3

d3X

(2π)3

(
|~k|

sin |~k|

)
e−i~k·X ψ̃(X) . (5.39)

5.2.3 Freidel-Livine-Majid map

The Freidel-Livine-Majid ordering map QFLM [9], which has found several applications in the quan-

tum gravity literature (cited in the introduction), can be essentially seen as symmetrization map

in conjunction with a change of parametrization for SU(2). In particular, for exponentials of the

form ei~p·
~X it is defined as

QFLM(ei~p·X) := ei
sin−1 |~p|

|~p|
~p·X̂ , (5.40)

which implies

QFLM(e
i
sin |~k|

|~k|
~k·X

) = ei
~k·X̂ , (5.41)

19This result, as other aspects of our construction, extends and confirms from a different perspective, the derivation

in [9].
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that is, with the ~k-parametrization, the plane wave is given by ei
~k·X
⋆ = e

i sin |~k|

|~k|
~k·X

. Accordingly, we

have

Q−1
FLM(ei

~k·X̂) = e
i sin |~k|

|~k|
~k·X

. (5.42)

Of course, the transformation sin |~k|

|~k|
~k defines the ~p-parametrization as of (5.16), and therefore we

may simply write ei
~k·X
⋆ = ei~p(

~k)·X . However, the coordinates ~p only cover the upper (or lower)

hemisphere SU(2)/Z2
∼= SO(3), and the resulting group Fourier transform is applicable only for

functions on SO(3).

Using the expression (C.7) for the Baker-Campbell-Hausdorff formula for su(2) we have

ei~p1·X ⋆FLM ei~p2·X = Q−1
FLM(QFLM(ei~p1·X) · QFLM(ei~p2·X)) = Q−1

FLM

(
e
i
sin−1 |~p1|

|~p1|
~p1·X̂ · ei

sin−1 |~p2|

|~p2|
~p2·X̂

)

= Q−1
FLM

(
e
iB

(
sin−1 |~p1|

|~p1|
~p1,

sin−1 |~p2|

|~p2|
~p2

)
·X̂

)
= Q−1

FLM

(
e
i
sin−1 |~p1⊕~p2|

|~p1⊕~p2|
~p1⊕~p2·X̂

)

= ei(~p1⊕~p2)·X , (5.43)

where

~p1 ⊕ ~p2 =
√
1− |~p2|2 ~p1 +

√
1− |~p1|2 ~p2 − ~p1 × ~p2 . (5.44)

Now, since the ~p-parametrization is applicable only for the upper hemisphere of SU(2), that is SO(3),

instead of restricting the parametrization of the non-commutative plane waves to the principal

branch of the logarithm, we restrict to the upper hemisphere, and introduce the corresponding

projection into the star-product of non-commutative plane waves as

ei~p1·X ⋆FLMp e
i~p2·X = ei(~p1⊕p~p2)·X , (5.45)

where

~p1 ⊕p ~p2 = ǫ(~p1, ~p2)
(√

1− |~p2|2 ~p1 +
√
1− |~p1|2 ~p2 − ~p1 × ~p2

)
. (5.46)

The factor ǫ(~k1, ~k2) = ±1, introduced by the projection, is the sign of
√
1− |~p1|2

√
1− |~p2|2−~p1 ·~p2,

which is 1 if both ~p1, ~p2 are close to zero or one of them is infinitesimal, and −1 when the addition

of two upper hemisphere vectors ends up in the lower hemisphere (thus projecting the result to its

antipode on the upper hemisphere).

The ⋆FLM-monomials thus read

Xi ⋆FLM Xj = XiXj + iǫ k
ij Xk , (5.47)

Xi ⋆FLM Xj ⋆FLM Xk = XiXjXk + i(ǫijmXk + ǫikmXj + ǫjkmXi)Xm + δjkXi − δikXj + δijXk ,

(5.48)

...

which coincide with ⋆S to second order, but no further.

As was already shown in [42, 43], but rederivable from the general expression (4.29) and (5.19),

for the Freidel-Livine-Majid star-product we have under integration

∫

g∗

d3X f(X) ⋆FLMp f
′(X) =

∫

g∗

d3X f(X)
√
1 +∇2 f ′(X) . (5.49)
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Now, given the plane waves just computed, we may write the explicit form of the non-commutative

Fourier transform as

ψ̃(X) =

∫

R3,|~p|2<1

d3p√
1− |~p|2

ei~p·X ψ(~p) , (5.50)

as well as the inverse

ψ(~p) =
√
1− |~p|2

∫

R3

d3X

(2π)3
e−i~p·X ψ̃(X) . (5.51)

6 Conclusion

We have studied the representations of the quantum algebra A obtained by canonically quantizing

the Poisson algebra associated to the cotangent bundle of a Lie group G (with Lie algebra g). In

addition to the usual representation of A on the Hilbert space of square-integrable functions L2(G)

on G (with respect to the Haar measure dg), we have shown that a dual algebra representation of

A in terms of a functional space we denote as L2
⋆(g

∗) can be defined (and identified the conditions

for its existence) by introducing a suitable ⋆-product, in the sense of deformation quantization [30],

depending only on the chosen quantization map between PG and A. This shows that the possibility

of such representation does not require the existence of the group representation, but only a choice

of quantization map. The algebra representation for the quantum system, in other words, can stand

on its own feet. Of course, which representation is more convenient to use depends on the specific

question being tackled, as different representations have different advantages. The non-commutative

Fourier transform is then defined as the intertwining map between these two representations. We

have seen that the explicit form of the non-commutative plane wave, and thus that of the transform,

depends again only on the choice of a quantization map or, equivalently, a deformation quantization

⋆-product. In fact, in terms of the canonical coordinates (of the first kind) k(g) = −i ln(g) ∈ g on G

obtained through the logarithm map, the plane wave is shown to be given by the star-exponential

Eg(X) = e
ik(g)·X
⋆ ,

where X ∈ g∗, which can then be equivalently written as standard exponentials for some (a priori

different) choice of coordinates on the group, also following from the choice of quantization map.

This result offers a new perspective on the non-commutative Fourier transform and some more

insights into the various elements entering in its definition (e.g. the choice of coordinates). Fur-

thermore, it leads to a prescription for how to define plane waves for generic quantization maps.

This result also clarifies the relation with the so-called quantum group Fourier transform of Majid,

extending the work of [9].

In general, that is, for an arbitrary quantization map and corresponding ⋆-product, the nec-

essary conditions for the existence of the algebra representation would not be satisfied. However,

we have provided some explicit and non-trivial examples of the above construction, satisfying the

necessary conditions, in the case G = SU(2), corresponding to three choices of quantization maps:

the symmetric map, the Duflo map, and the so-called Freidel-Livine-Majid map (used in the quan-

tum gravity literature). For these examples, we have provided the corresponding ⋆-product, algebra

representation and non-commutative plane waves explicitly.

Besides clarifying some aspects (and the underlying logic) of the construction of the algebra

representation and of the non-commutative Fourier transform, we expect our results to have also

interesting applications in the study of specific quantum systems arising from the quantization of the

phase space we started from. In particular, we hope to have provided new tools to the development
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of quantum gravity models in the context of loop quantum gravity and group field theory. For

example, a first application of our construction would be to study the flux representation of loop

quantum gravity and the corresponding coherent states for the Duflo map, extending the work of

[15, 39]. In the same direction, the construction of a new 4d gravity model along the same lines as

[13] can now be performed for the algebra representation corresponding, again, to the Duflo map,

and it would be very interesting to identify clearly the consequences for the resulting model of the

nice mathematical properties of such quantization map.
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A Universal enveloping algebras

Let V be an n-dimensional vector space over K (R or C) with basis {ei}i=1,...,n, and define the

tensor algebra over V as

T •(V ) :=
∞⊕

k=0

V ⊗k = K⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · · , (A.1)

where multiplication is simply defined by concatenation. A generic element v ∈ T •(V ) can be

written as

v = v0 + viei + vijei ⊗ ej + vijkei ⊗ ej ⊗ ek + · · · , (A.2)

where v0, vi, vij , vijk , . . . ∈ K, i, j, k, . . . = 1, . . . , n, with no conditions on the coefficients.

The symmetric algebra of V , Sym(V ), is then defined as the quotient of the tensor algebra

T •(V ) by the two-sided ideal generated by the set

I = {v ⊗ w − w ⊗ v : v, w ∈ V } . (A.3)

In particular, notice that Sym(V ) is a commutative algebra, and it is actually isomorphic to the

polynomial algebra K[e1, . . . , en]. A generic element v ∈ Sym(V ) can be written the same way

as in (A.2) but this time the coefficients are completely symmetric, vij = v(ij), vijk = v(ijk),

. . . , identifying Sym(V ) with the algebra of symmetric tensors on V . As a polynomial we would

have p(x1, . . . , xn) = v0 + vixi + vijxixj + vijkxixjxk + · · · , with indeterminates x1, . . . , xn ∈ K,

i, j, k, . . . = 1, . . . , n.

In case V = g, the Lie algebra of the Lie group G with Lie bracket [·, ·], we can define the

universal enveloping algebra of V , U(g), as the quotient of the tensor algebra T •(g) by the two-

sided ideal generated by the set

I′ = {v ⊗ w − w ⊗ v − [v, w] : v, w ∈ g} , (A.4)

that is, U(g) = T •(g)/I′. Naturally, U(g) is a non-commutative algebra, and can be identified with

the polynomial algebra K[x1, . . . , xn] with indeterminates x1, . . . , xn satisfying the commutation

relations [xi, xj ] = f k
ij xk inherited from the Lie algebra structure [ei, ej ] = f k

ij ek. Note that for

the case of an abelian Lie algebra g, for which the Lie bracket is identically zero, the universal

enveloping algebra U(g) coincides with the symmetric algebra Sym(g). A generic element v ∈ U(g)

can still be written as (A.2), however implementing the ideal I′ would involve the structure constants

at length. Luckily, the following theorem gives a natural basis for U(g).
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Theorem A.1 (Poincaré-Birkhoff-Witt). Let {ei}i=1,...,n be an ordered basis for the Lie algebra g,

the monomials

em1

1 · · · emn
n , (A.5)

with m1, . . . ,mn positive integers, form a basis for the universal enveloping algebra U(g).

Thus

v =
∑

m1,...,mn≥0

vm1···mnem1

1 · · · emn
n , vm1···mn ∈ K . (A.6)

The crucial point about U(g) is that this algebra can be naturally identified with the algebra

of right-invariant differential operators (of all orders) on G, making it a natural ground for the

algebra of the quantum theory. The left action of G on itself gives a natural action on functions

(g · f)(h) = f(gh), g, h ∈ G. In turn, for each X ∈ g we have its action on functions as differential

operators (X · f)(g) = d
dt

∣∣
t=0

f(etXg), thus identifying g with the right-invariant vector fields on

G, or rather the right-invariant differential operators of order one. Extending this inclusion to the

full U(g) gives the desired mapping. Furthermore, the center of U(g), Z(g), consists of the left- and

right- invariant differential operators, of which the Casimir operators are a prime example.

A.1 The Duflo map

We may now define the symmetrization map (or symmetric quantization):

S : Sym(g) −→ U(g)

X1 · · ·Xk 7−→
1

k!

∑

σ∈Sk

Xσ1
· · ·Xσk

, (A.7)

where Sk is the symmetric group of order k. On the other hand, the symmetrization map may be

completely characterized by being the identity on g, linear, and satisfying the property S(Xn) =

S(X)n for all X ∈ g, and n ≥ 0. The idea of S is to map as surjectively as possible a commutative

algebra to a non-commutative algebra, and it is obviously not an algebra isomorphism unless g is

abelian (though it can be proved to be a linear isomorphism). More generally, the image of S lies

in the center of U(g).

Invariant polynomials, i.e elements of Sym(g) invariant under the (adjoint) action of G, denoted

Sym(g)g, are particularly important since they map to Casimirs under any quantization scheme.

In fact, we have an algebra isomorphism between the subalgebras Sym(g)g and U(g)g, the latter

corresponding to the G-invariant differential operators on U(g) (which is an alternative definition

for the center of U(g), that is U(g)g = Z(U(g))). The map giving such isomorphism is called the

Duflo map (or Duflo quantization) and is given explicitly by

D = S ◦ j
1
2 (∂) , (A.8)

where j is the following function on g20

j(X) = det

(
sinh 1

2adX
1
2adX

)
. (A.10)

20It is curious to note that the function j appears also in other contexts. (1) Changing measure from the Lie group

G to the Lie algebra g: dg = j(X)dX, where g = expX. (2) Kirillov’s character formula:

Tr πλ(expX) =
1

j1/2(X)

∫

Oλ+ρ

dµOλ+ρ
(ξ) ei〈ξ,X〉 , (A.9)

where πλ is the unirrep for λ ∈ Ĝ, ρ is the half sum of the positive roots, Oλ+ρ the orbit passing through the point

ξ = i−1(λ+ ρ) ∈ g∗, and dµOλ+ρ
(ξ) is a G-invariant measure on Oλ+ρ.
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Physically, the Duflo map tells that the centers of the “classical” and “quantum” level are the same.

For semisimple Lie algebras g the Duflo map coincides with the Harish-Chandra isomorphism.

Finally, we notice that the modified Duflo factor j̃(X) = det
(

1−e−adX

adX

)
also gives the same

algebra isomorphism. The one parameter group of automorphisms of Sym(g) associated with the

series

X 7−→ exp(const · Tr(adX)) (A.11)

preserves the structure of the Poisson algebra on g∗, and indeed j̃(X) = det
(
e−adX/2

)
j(X) =

e−Tr(adX)/2j(X) = j(X). It would, thus, be interesting to investigate further the unicity of the

Duflo map, at least, in the restricted case of semisimple Lie algebras.

B On a property of the ⋆p-product under integration

In this appendix we prove the identity (4.29) stated without proof in the main text.

Let us first note that

δ(g−1h) = ω(ζ(h))−1δd(ζ(g)− ζ(h)) , (B.1)

where the first delta function is the one with respect to the Haar measure on the Lie group G, and

the second one is the delta function with respect to the Lebesgue measure on the Euclidean space

g ∼= Rd of the coordinates ζ. The proportionality is given by the inverse of the measure factor ω(ζ),

which gives the Haar measure in terms of the Lebesgue measure as dg = ω(ζ(g))dζ(g), since we

have

f(g) =

∫

G

dh f(h) δ(g−1h)

=

∫

G

ω(ζ(h))dζ(h) f̂(ζ(h))ω(ζ(h))−1 δd(ζ(g)− ζ(h))
(
= f̂(ζ(g))

)
, (B.2)

where f =: f̂ ◦ ζ.

Accordingly, we have
∫

g∗

ddX Eg(X) ⋆p Eh(X) = (2π)dδ(g−1h)

= ω(ζ(h))−1 (2π)dδd(ζ(g)− ζ(h))

= ω(ζ(h))−1

∫

g∗

ddX e−iζ(g)·Xeiζ(h)·X

= ω(ζ(h))−1|η(ζ(h))|−2

∫

g∗

ddX η(−ζ(g))e−iζ(g)·Xη(ζ(h))eiζ(h)·X ,

(B.3)

where η(ζ(g)) := E(g, 0), and in the last equality we used η(−ζ) = η(ζ) and the fact that the

expression is non-zero only for ζ(g) = ζ(h). But here the integrand is exactly a product of two

non-commutative plane waves, and the prefactor we may write as a differential operator acting on

one of the plane waves as

ω(ζ(h))−1|η(ζ(h))|−2Eh(X) = ω(−i~∂)−1|η(−i~∂)|−2Eh(X) , (B.4)

or

ω(ζ(g))−1|η(ζ(g))|−2Eg(X) = ω(i~∂)−1|η(i~∂)|−2Eg(X) . (B.5)

– 31 –



We, therefore, have
∫

g∗

ddX Eg(X) ⋆p Eh(X) =

∫

g∗

ddX
((

(ω|η|2)(i~∂)
)−1

Eg(X)
)
Eh(X)

=

∫

g∗

ddX Eg(X)
((

(ω|η|2)(−i~∂)
)−1

Eh(X)
)
. (B.6)

Linearity, gives the sought for property (4.29).

C Closed Baker-Campbell-Hausdorff formula for SU(2)

Using the properties of the Pauli matrices σi (i = 1, 2, 3) we have the following expansion

gj = ei
~kj ·~σ = cos |~kj |12 + i

sin |~kj |

|~kj |
~kj · ~σ , (j = 1, 2) (C.1)

which on multiplying two elements explicitly gives

g1g2 =

(
cos |~k1| cos |~k2| −

sin |~k1| sin |~k2|

|~k1||~k2|
~k1 · ~k2

)12

+ i

(
cos |~k2| sin |~k1|

|~k1|
~k1 +

cos |~k1| sin |~k2|

|~k2|
~k2 −

sin |~k1| sin |~k2|

|~k1||~k2|
~k1 × ~k2

)
· ~σ . (C.2)

The Baker-Campbell-Hausdorff formula is defined by the product of two exponentials

g1g2 = ei
~k1·~σei

~k2·~σ = eiB(~k1,~k2)·~σ (C.3)

with a series expansion given by

B(~k1, ~k2) = ~k1 + ~k2 − ~k1 × ~k2 +
1

3
~k1 × (~k1 × ~k2) + · · · . (C.4)

Again by the properties of the Pauli matrices we have an analogous formula

g1g2 = cos |B( ~k1, ~k2)|12 + i
sin |B( ~k1, ~k2)|

|B( ~k1, ~k2)|
B( ~k1, ~k2) · ~σ (C.5)

Identifying the appropriate terms in (C.2) and (C.5) we obtain the desired expression

B( ~k1, ~k2) =
cos−1

(
cos |~k1| cos |~k2| −

sin |~k1| sin |~k2|

|~k1||~k2|
~k1 · ~k2

)

sin cos−1
(
cos |~k1| cos |~k2| −

sin |~k1| sin |~k2|

|~k1||~k2|
~k1 · ~k2

)

×

(
cos |~k2| sin |~k1|

|~k1|
~k1 +

cos |~k1| sin |~k2|

|~k2|
~k2 −

sin |~k1| sin |~k2|

|~k1||~k2|
~k1 × ~k2

)
. (C.6)

Writing ~kj as
sin−1 |~pj |

|~pj |
~pj the formula can be expressed as a deformed addition of ~pj’s

B

(
sin−1 |~p1|

|~p1|
~p1,

sin−1 |~p2|

|~p2|
~k2

)
=

cos−1
√
1− |~p1 ⊕ ~p2|2

sin cos−1
√
1− |~p1 ⊕ ~p2|2

~p1 ⊕ ~p2

=
sin−1 |~p1 ⊕ ~p2|

|~p1 ⊕ ~p2|
~p1 ⊕ ~p2 , (C.7)

where ~p1 ⊕ ~p2 is given by

~p1 ⊕ ~p2 =
√
1− |~p2|2 ~p1 +

√
1− |~p1|2 ~p2 − ~p1 × ~p2 , (C.8)

and we have used

sin cos−1 x =
√
1− x2 = cos sin−1 x . (C.9)
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