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Abstract

We treat the problem of N interacting, axisymmetric black holes
and obtain two relations among physical parameters of the system in-
cluding the force between the black holes. The first relation involves
the total mass, the angular momenta, the distances and the forces be-
tween the black holes. The second one relates the angular momentum
and area of each black hole with the forces acting on it.

1 Introduction

The problem of interacting black holes dates back to the beginnings of Gen-
eral Relativity. Although a solution representing multiple black holes in
equilibrium is known to exist [3] (the Majumdar-Papapetrou solution, which
consists of N extreme Reissner-Nordstrom black holes, i.e. each black hole
has electric charge equal to its mass parameter, ¢; = m;), it is in general ex-
pected that there should be a force between different components of the hori-
zon in order to prevent the spacetime from collapsing. Nevertheless, based
on Newtonian ideas, a main concern was the following: Given two black
holes, could the spin-spin repulsion compensate for the gravitational attrac-
tion and keep the system in equilibrium? Many attempts have since then
been made in order to answer this question (see [2], [28], [18] [24], [9], [21]).
In particular, Li and Tian [I8] and Neugebauer and Hennig [22], [16] [23]
proved that an axially symmetric, stationary, vacuum solution of Einstein
equation with disconnected horizon (and only two connected components)
can not exist in equilibrium. Weinstein [28], [26], [27], using harmonic maps,
showed that asymptotically flat, vacuum, axially symmetric multi black hole
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solutions exist, although possibly with a conical singularity in the bounded
component of the symmetry axis.

The appearence of this conical singularity on the axis was clearly seen
in the superposition of two Schwarzschild black holes in the early work of
Bach [2] and was later discussed by Einstein and Rosen in [II]. Although
the existence of a singularity may seem discouraging, the solution so built
has a well defined action and the corresponding thermodynamical potential
describes a system of black holes at fixed temperature and at a fixed distance
[15], [6]. The long range interactions in the multiple black hole solutions are
unable to provide equilibrium between the various black holes and the conical
singularity is interpreted as a boundary condition that keep the holes at fixed
separation preventing the collapse of the system.

The non-existence proof of Neugebauer and Hennig [22] for two rotating
black holes in vacuum strongly uses the relation A > 8x|J| between the area
and the angular momentum of each black hole which is known to hold in the
axisymmetric, regular case (see [I]). This type of geometrical inequalities
relating physical parameters of black holes have been extensively studied in
the last few years as an attempt to explore the allowed values of angular
momentum, mass and size a black hole can have, and turned out to be
relevant in different contexts as well (see [7] for an excellent recent review on
geometrical inequalities). As interesting outcomes of these researches, two
main relations have been found.

The first one of such relations in the context of multiple black holes con-
figurations was proved by Chrusciel et al [5] (see also [10] for the inequality
in the case of N = 1), and gives a lower bound to the ADM mass in the
axisymmetric, vacuum case in the form

0> f(J1,.., In) —m (1)

where m is the total (ADM) mass, J; are the Komar angular momenta of the
individual constituents and f is a function of the J; (and possibly depending
on other parameters as well), not known explicitely, which reduces in the
case of a single black hole to /] J].
The second inequality we are interested in, and the one used in [22] is the
relation -y
T
120 &)
between the angular momentum J and the area A of an axisymmetric black
hole which has recently been proven. In [1], [12] and [8] maximal vacuum
initial data (possibly with a positive cosmological constant) containing a min-
imal stable surface are considered. Also, in [17] the inequality is proven for




spacetimes having outermost stably marginally trapped surfaces, not neces-
sarily in vacuum. As we will discuss later, (2]) has been extended to incorpo-
rate electric and magnetic charges. Inequality (2) holds for each black hole in
a regular initial data and, loosely speaking, states that a hole can not rotate
too fast.

An important ingredient in the above results, relations (Il) and (2), is the
assumed regularity at the symmetry axis. As we mentioned, this is related
to the notion of equilibrium. We will incorporate the interaction between the
black holes into the problem is by means of relaxing the regularity condition
at the axis and therefore allowing a conical singularity between the holes.
The value of the deficiency angle will be related to the gravitational force
[28]. The purpose of this work is to investigate how inequalities (1) and (2))
are modified when one takes into account explicitely the interaction between
the black holes, that is, when one includes non-equilibrium configurations.
In this way we will obtain bounds on the forces between the black holes (i.e.
on the deficit angles) set by the physical quantities A, m, and J.

The article is organized as follows. In section 2] we briefly introduce the
basic features of multiple black hole solutions to Einstein constraint equations
and the explicit relation between force and deficit angle. Then, in section
2.1] we present the more especific hypothesis needed in order to obtain a
relation between mass, angular momentum and force, similar in espirit to
(@), theorem 2.1 and finally, in section we find a new inequality relating
area, angular momentum and force, theorem 2.2 analogous to (2I).

2 Main result

We begin this section with a brief description of multiple black hole solutions
of Einstein equations in the form of maximal axisymmetric initial data.

Consider a maximal, simply connected initial data set (M, g Kq), in-
variant under a U(1) action. It is known [4] that there exists a global coor-
dinate system (p, z, ¢) such that the metric takes the form

g = 60+2q(dp2 + d22) + p260(d¢ + ,OApdp + Azdz)27 (3)

where the functions are taken to be ¢p—independent.

We assume vacuum for simplicity, although matter satisfying some posi-
tive energy condition would be also allowed. The constraint equations in the
maximal case, ¢?K,, = 0, are

SR =K, K™, VeKq = 0. (4)



Due to these constraints, there exists a twist potential w related to the second
fundamental form by the expression (see [10])

eachi?ncnedx“ = dw (5)

where n* is a 2r—periodic Killing vector field and €4, is the Levi Civita
tensor. Moreover, we have the useful bound [10]

KapK® > e 072 —. (6)

The quantities that we are interested in in this work are the total mass
of the initial data, and the area and angular momentum of each black hole.
As is well known, the mass is a global quantity, given by a boundary integral
at spatial infinity

1
m = — lim (ObGab — Ougep)ndS (7)

167 r—oo 9B,

where r = /p? + 22 is the Euclidean distance, 0 denotes partial derivatives,
B, is the Euclidean ball r = const, 0B, is its border, n® is its exterior unit
normal and dS is the unit surface element with respect to the Euclidean
metric, dS = sin 0dfd¢.

Now, consider an arbitrary 2-surface ¥ in M with induced metric 7.,
then the area of X is given by the expression

A(x) = / a5, (8)

with dS, the surface element with respect to 7yg.

Finally, for axially symmetric and maximal data one can define the angu-
lar momentum J associated with ¥ (the Komar integral of the Killing vector)
as

J(%) = / Kan™nbdS,, (9)
P

where n* is the unit normal vector to Y.

For concreteness, in what follows, we consider N > 1 black holes located
at the symmetry axis, which will be represented by punctures in section 2.1]
and by minimal stable surfaces in section The axis p = 0 is denoted by
I'. It contains N — 1 bounded components denoted by I';, ¢ = 1,.., N — 1,
and two unbounded components, I'y and I'y.



As we mentioned in the introduction, the interaction between the black
holes can be realised through the non regular character of the solution at I'.
The regularity condition at I' can be stated as

lim VI (10)

po—0+ [ e/ +adp

where 1 = n%n,, and is translated into the requirement that the metric func-
tion ¢ (see the expression (3)) vanishes at the axis: ¢|r = 0.

In general this condition will not be satisfied and the metric will not
define a regular solution of Einstein equations. If (I0) does not hold, then
the singularity at the axis is called a conical singularity. The deficit angle at
the axis is given by e~% where ¢; is the constant value of the function ¢ at the
t—th connected component of the axis. These singularities are interpreted as
forces needed to balance the gravitational attraction and keep the bodies in
equilibrium and can be expressed in terms of ¢; as (see [27] for more details)

Fi = l(e_q" —1). (11)
4

One would expect this force to be positive, reflecting the fact that a positive
force is needed in order to prevent the black holes from falling on each other.
A positive force has been found in a few situations, like in the zero [2] and
small angular momentum case [19], the case when the problem admits an
involutive symmetry [I8|, when there are two equal, counter-rotating Kerr
black holes [25] and in the limit when one of the black holes becomes ex-
treme and the distance to one of the adjacent black holes tends to zero [27].
Nevertheless, so far there is no general proof stating that the force is always
positive.

One can prescribe the value of the function ¢ on one of the component
of the axis [27], the other values will be determined by the solution of the
constraints, and are not known in general. In this article, we give two results,
which are the extensions of inequalities ([Il) and (2)) to include the non zero
values of ¢ at the axis and are presented in the following sections.

2.1 Bound in terms of mass and angular momentum

In order to extend Chrusciel et al result [5], inequality (), to the non-regular
case, we state here their main assumptions. We will retain basically all of
them, and only relax the regularity of the function ¢ at the axis.

As we mentioned before, for the mass-angular momentum inequality we
represent the black holes as IV punctures on the axis, separated by distances



L;, each puncture being an asymptotically flat end in the sense that for & > 6,
ab — 6 = 0x(17/?), (12)
Ogus € LA(M) (13)

where f = o0,(r*) means that f satisfies
Oy O, f = o(r*™™), 0<n<k. (14)

The main result of this section gives a relation among the total mass of the
initial data, the individual angular momenta of the each asymptotic region
and the forces between them.

Theorem 2.1. Consider a maximal, asymptotically flat, axisymmetric initial
data (M, gaw, Kap) as described above, with N extra asymptotically flat ends
represented by punctures on the azis I', with angular momenta J;, i = 1,.., N.
Then, there is a lower bound to the ADM mass m given by

=

-1
L
1

)

where L; is the Newtonian length of T';, F; is the force between adjacent
punctures and f is a function of the J;’s,.

Before entering into the proof, we want to make a few remarks about
the result. It is clearly seen from inequality (3] that it does not imply, in
general, the result 0 > f —m. That is only the case when the forces are non
positive. But if the forces are positive, which is the expected situation, in
principle, the total mass m could take values lower than f, as opposed to the
regular case [5].

As the data are asymptotically flat, we must have ¢y = gn = 0, and (I3)
reduces to Chrusciel et al result, m > f, for ¢; = 0 and also to Dain’s result,
m > +/|J], for N =1 [10].

Note that there is no rigidity statement in this theorem. This is due in
part, to the lack of a known minimizer for a mass functional appearing in
the proof of Chrusciel et al result in the case N > 2. But also, because
in inequality (I3]) there appear two quantities that depend on the given pa-
rameters of the data. Both, the mass and the force are to be computed
after solving the constraints and can not be prescribed a priori. Therefore,
for given values of angular momenta J; and separation distances L;, there
might exist different solutions saturating the inequality with different values
of F; and mass. In this respect, it is worth mentioning, that there exists an



explicit solution describing two equal, counter-rotating extreme Kerr black
holes given by Manko et al [21] which could saturate (IT). We will meet this
solution again in the following section.

Proof. Since the proof is an adaptation of Chrusciel et al argument, [5], we
only sketch the main steps and highlight the point where the non zero force
is incorporated. We refer the reader to [5] and its references for more details.
Begin with the expression for the curvature scalar R of the metric g,
given by
1

1
_ §R60+2q _ AO’ + (ao‘) + qu + 1—6p e~ q(pA%Z — Az’p)Q’ (16)

where A is the Laplacian in R? and A, is the 2-dimensional Laplacian

AQQ = qppt G2z (17)

Integrate (I6) over R® and use the asymptotic flatness condition and the
definition of the mass m (see [10]):

/ Acd®z = lim O,or?dS = —8mm, (18)
R3

r—00 OB,

to obtain

1 1 (I B
2mm = /R3 [E<a‘7)2 + ZAzq + gRe +20 1—6/)26 2(pA,. — Az,p)2:| .
(19)

Use inequality (@) to bound the Ricci scalar in the above integral and disre-
gard the last, non negative term to obtain the following lower bound for the

mass 1 |8 ‘2 1
W
> 0 — L dx Aoqd’z. 20
m—327r/Ra< Rl +87T/]R3 A (20)

Note that the first integral is exactly the functional M used by Dain [10] and
Chrusciel et al [5] in the proof of the mass-angular momentum inequalities,

(8&]) dr 3 (21)

L 2
M o 327T Rs(aa) +

The second integral in the right hand side of (20) is zero for regular solu-
tions (i.e, when ¢ = 0 at the axis). But when the solution contains conical
singularities it gives instead

N-1

Noqd’z = 21 q: L; 22
| > (22
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where L; is the Newtonian length of I'; and ¢; is the constant value of ¢ on
it. With this result, we arrive at the inequality

N-1

1
> — L. 23
m_M+4;q (23)

In [5] (see proposition 2.1) the authors prove that for any set of aligned
punctures and of axis values w; := w|r,, there exists a solution (&,@) of the
variational equations associated with the functional M, with finite values of
M and appropriate asymptotic behavior near each puncture. So, denote by
f(J1,..Jn) the numerical value of M of the harmonic map, (¢,o) from R3\ T’
to the two dimensional hyperbolic space. Then we obtain

N-—1
1

Finally expressing the constants ¢; in (24]) in terms of the forces (see equation
(I10)), the statement of the theorem is proven. O

2.2 Bound in terms of area and angular momentum

In this section we obtain a bound on the forces acting on a black hole in
terms of its area and angular momentum. This will generalize inequality (2))
to the non-equilibrium case.

For that purpose, we will follow Dain and Reiris’s argument [§], using
minimal stable surfaces. It is remarkable that since this result is quasi-local,
there is no asymptotically flatness requirement concerning the initial data.
We only need the existence of stable minimal surfaces located at the axis,
with aligned angular momenta (in order to maintain axial symmetry). It is
clear that in order for these surfaces to have a non vanishing Komar angular
momentum a non trivial topology is needed. One way to think about this is
imagining that each surface encloses a puncture.

A surface ¥ is called minimal if its mean curvature x vanishes, and it
is called stable if it is a local minimum of the area functional (8). This
can be precisely stated in the following form. Consider a flux of surfaces
F; : R x S? — X parametrized by ¢ € R such that F|,—o(S5?) = 2 and
F *l,—o = an® where dot denotes derivative with respect to ¢, n® is the unit
normal to ¥ and « is in principle an arbitrary function on 3. Then the
stability condition can be writen as

Alpeg = / axds.,, (25)
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where
Xx=-Aa—(R—-—R,+ Xabx“b)oz, (26)

Xab 18 the second fundamental form of 3, R is the Ricci scalar associated to
the 3-metric g4 (see equation ([3))) and A, and R, are the Laplace operator
and the Ricci scalar associated with the 2-metric 7.

As in the previous section, we allow the function ¢ in the 3-metric to
have non zero values at the bounded components I';. This leads us to the
following result, which is an extension of theorem 1 in [§].

Theorem 2.2. Consider an axisymmetric, vacuum and mazimal initial data,
with a non negative cosmological constant and N > 1 orientable closed stable
minimal axially symmetric surfaces ;. Then

A

VI+4AF V1 +4F > i=1,.N (27)

where J; and A; are the angular momentum and area of X; respectively.

Before giving the proof of theorem 2.2] we want to remark that the equal-
ity in (27) is achieved by a solution describing two counter-rotating identical
extreme Kerr black holes separated by a massless strut given by Manko et
al, [21]. The explicit values for the separation distance, ratio A/87J and the
force in the extreme case as
a* + m? A 2|J| (a* — m?)?

- = = 28
a? —m?’ 8r|J|  a?+ m?’ d 16.J2 (28)

L=2m

where J = am and J is the angular momentum of each black hole, and m its
mass parameter (also, 2m is the total ADM mass). We note that a* > m?
holds for the extreme counter-rotating constituents, unlike in the case of a
single Kerr black hole, for which a®> = m?2. It is also clear from the above
expressions that as m — a~, then the separation distance becomes arbitrarily
large, and the mutual force becomes arbitrarily small.

In case that the force is positive, which is the expected outcome, the
quantity A/8w|J| can be less than unity, a situation that can not happen
for regular black holes. Nevertheless, a type of variational characterization
of extreme Kerr throat is still valid in the presence of a conical singularity.
This is due to the fact that in the variational principle used to derive the
above inequality (see [1]), the function ¢ plays no rol, the relevant functions
are the conformal factor e” and the twist potential w.

The inequality (2)) has been recently extended in [13], [14] to include elec-
tric and magnetic charges and to apply also to stable marginally outermost



trapped surfaces satisfying the dominant energy condition.To be more pre-
cise, consider a surface > embedded in a spacetime, with null normal vectors
¢* and k® such that %k, = —1 and ¢° is outward pointing. Let ) be the
expansion associated with the null normal ¢*. Then, ¥ is a stable marginally
outermost trapped surface if ) = 0 and if there exists an outgoing vector
X = ~y0* — 1)k with v > 0 and ¢ > 0 such that 6x6® > 0. Here 0y denotes
the deformation operator on ¥ that controls the infinitesimal variations of
geometric objects defined on Y under an infiniteimal deformation of the sur-
face along the vector X®. By following the same lines as in theorem (2.2))
based on the proof of [13], [14] one obtains the following corollary

Corollary 2.3. Consider an axisymmetric, stable marginally outermost trapped
surface ¥;, with a non negative cosmological constant, satisfying the domi-
nant energy condition. Then

V(BT )? + (47Q%)% + (47 Q75)?
A

VI+4F /1 +4F >

i=1,.N.

(29)
where J;, Qig, Q;p and A; are the angular momentum, electric charge, mag-
netic charge and area of ¥; respectively. F; and F;_1 are the forces acting on
> along the axis componentes I'; and T';_4.

In the case of zero angular momenta, the inequality is saturated for the
Majumdar-Papapetrou solution with J; = Q;p = 0, A; = 47Q?%; and van-
ishing forces. The same thing does not seem plausible for Kerr black holes,
since numerical results [9] suggest that a configuration with two Kerr black
holes having a = m leads to a positive force.

Proof of theorem[2Z2 We follow the lines of [§] and refer the reader to this ar-
ticle for more details. Choose a coordinate system such that the determinant
of the induced metric v,, on ¥; is

det(y) = e“sind (30)
where ¢; is a constant. Then, the metric can be written as
Yab = €7 (€% (dp® + d2*) + p” sin® Bd¢”) (31)
with o; + ¢; = ¢; and
(0i + @i)lo=0 = (0i + i) |o=r = ci (32)

Now multiply x, given by (28) by «, use the constraint to express the
Ricci scalar R in terms of K, integrate over ¥; and use condition xy = 0,

10



the stability condition (25]) and the bound (6). Then we find, disregarding
the non negative terms

/(|D04\2 + 1R o?)efdS > /lw—?e‘”%ia%cidé’ (33)
2° 7 — /) 4n? ’
where a prime denotes derivative with respect to . Now, using that
o;—2¢;
R, = — 7 (2q. cos 0 + sinfo'q; + 2sin 6 — (sin b)) (34)
sin
and choosing
o = efi0i/? (35)
we obtain
1 2 1wa2
which can be written as
(e +1) = 2m(gi(m) + 4:(0)) = SM, (37)
where M, is the functional introduced by [1] and used also by [8] and [17],
1 ) W
Mi= /4@ ol s (38)

Note that in going from (B3)) to (B0]) is where we have used the non regularity
of the metric at the axis. Now, in [I] it has been proven that for each M,,
the following bonds holds

M; > 8(In(2]J;]) + 1), (39)

where J; is the angular momentum of ¥;. Using the fact that A; = 4me® we

find 4;(0)+g; ()
A >8x|Jile 2 (40)
Finally, using the expression for F; in terms of ¢; we complete the proof of
the theorem.

O
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