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We remark the importance of adding suitable pre-geometric content to tensor

models, obtaining what has recently been called tensorial group field theories,

to have a formalism that could describe the structure and dynamics of quantum

spacetime. We also review briefly some recent results concerning the definition

of such pre-geometric content, and of models incorporating it.

The last few years have witnessed a revival of tensor models,2 as a way to

generalize to higher dimensions the successes of matrix models1 in describ-

ing 2d quantum gravity as a theory of random surfaces. Historically, this

revival started10 in the area of spin foam models,4 a covariant version of the

dynamics of loop quantum gravity (LQG).3 A complete definition of such

dynamics was indeed proposed in the form of group field theories (GFTs),7

combinatorially non-local field theories on group manifolds whose Feynman

diagrams are given by d-dimensional simplicial complexes, and whose Feyn-

man amplitudes are given by the same spin foam amplitudes encoding the

quantum dynamics of spin networks states in LQG. This formulation also

suggested14 a change of perspective on the same dynamics. The spin foam

approach has developed to a great extent, with the construction of new mod-

els and an increased understanding of their quantum geometric aspects.4,12

To go beyond the truncation of degrees of freedom represented by any single

simplicial complex, towards an approximately continuum physics, remains

however a pressing issue. This is basically a problem in renormalization and

of extracting effective dynamics from the fundamental one. One strategy is

suggested by a lattice gauge theory perspective on spin foam amplitudes

and involves background independent coarse graining.18 The other strategy

uses the GFT implementation of the spin foam dynamics and standard QFT

renormalization11 and mean field theory16 tools. This second strategy rests

on the new developments of tensor models,5,6 in particular the discovery of

http://arxiv.org/abs/1211.5714v1
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a large-N expansion,17 which have led to improved analytic control. This

also opens the possibility of a better analytic control over GFTs, and thus

the full dynamics of spin foam models and LQG, thanks to these tensorial

tools. In order to stress this possibility we refer to them in the following as

Tensorial Group field Theories. Rather than calling for a wider application

of TGFTs in spin foam and LQG research, the main point we want to make

in this paper is that, if the goal is to solve the problem of Quantum Gravity,

we need to study interesting tensorial group field theories with their richer

quantum geometric structure rather than the simpler tensor models, for

which most of the analytic results have been obtained up to now.

1. Basics of tensorial field theories

The type of models that have been studied up to now fall into two categories.

The first is tensor models, an uncolored simplicial d = 3 example being:

S(T ) =
1

2

∑

i,j,k

TijkTkji − λ

4!
√
N3

∑

ijklmn

TijkTklmTmjnTnli (1)

where the complex tensor over (ZN )3 can be graphically associated to a

triangle with edges labelled by i = 1, .., N , and the interaction has the

combinatorics of the gluing of four triangles along edges to form a tetrahe-

dron. The coloring of the same model with additional labels on the tensors

could be used to define interactions with a U(N)d invariance, corresponding

to more general polytopes.6 The second is Tensorial Group Field theories,

an uncolored, simplicial 3d examplea being the Boulatov model:

S3d[ϕ, ϕ̄] =
1

2

∫
[dg]3ϕ̄(g1, g2, g3)ϕ(g3, g2, g1) −

− λ

4!

∫
[dg]6ϕ(g1, g2, g3)ϕ(g3, g4, g5)ϕ(g5, g2, g6)ϕ(g6, g4, g1) + c.c.

where the basic variables is a (complex) field over G3, with G a Lie group

(SU(2) for the 3d quantum gravity model), assumed to possess the invari-

ance: ϕ(gi) = ϕ(hgi), and the same combinatorics as the simple tensor

model above. The invariance property is a simple example of additional

feature imposed on a tensorial field, motivated, as the choice G = SU(2),

by quantum geometric considerations.7

All the above models are then defined, at the quantum level, by the

perturbative expansion of the partition function in Feynman diagrams Γ,

aClearly, if neither coloring nor tensor invariances are used, what we have is really just

an ordinary GFT, which we however treat as a special case of TGFTs.
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which correspond to arbitrary gluings of d-simplices (or other polytopes)

along their (d-1)-faces. What physics one seeks to encode in the formalism

depends on the exact choices of action (interaction kernel and propagator)

and data associated to the basic tensorial field (domain space). This area

of research has witnessed an impressive growth in recent years, with results

on many aspects of the formalism: the construction of models for quan-

tum gravity as well as statistical systems, studies on classical and quantum

symmetries of the same models, analyses on the topology of the cellular

complexes generated in perturbative expansion, the large-N limit, studies

on perturbative TGFT renormalization, works on summability and critical

behaviour, and the extraction of effective physics. For all this, we refer to

the literature. Now, we focus on the definition of quantum gravity models.

2. Pre-geometric data: phase space, quantization maps, flux

representation

The phase space underlying quantum gravity TGFT models is the cotan-

gent bundle over a Lie group: T ∗G ≃ G×g, with, in particular, G = SU(2).

This is the building block of the phase space of both simplicial gravity and

LQG.3,4,7 The group elements are interpreted as parallel transports of an

SU(2) connection along elementary links of a graph or of a (dual of a) sim-

plicial complex, and the conjugate Lie algebra elements as fluxes of a dual

(densitized) co-triad across (d-2)-faces dual to the same links. We refer to

the literature for more details on the quantization. Here we report on some

recent work13 on a new representation for the quantum theory.19

The fundamental poisson brackets are

{ζi(g), ζj(g)} = 0 , {Xi, ζ
j(g)} = L̃iζ

j(g) , {Xi, Xj} = κǫ
k

ij Xk (2)

where ζ are coordinates on the group manifold and L is a Lie derivative.

Any choice of quantization map Q : C∞(T ∗SU(2)) → A will give the

corresponding algebra of operators acting on some Hilbert space H. Given

the commutativity of functions on the group, a standard basis is given

by group-labelled states, which provide a realization of the Hilbert space as

L2(G). One can also look for a dual realization in terms of non-commutative

functions of Lie algebra elements X ∈ su(2) ≃ R
3, endowed with a ⋆-

product following uniquely from the quantization map:

f ⋆ h ≡ Q−1(Q(f)Q(h)) . (3)

This allows to define the (flux) representation

ζ̂iψ̃(X) = −i~ ∂

∂Xi

ψ̃(X) , X̂iψ̃(X) = ψ̃(X) ⋆ Xi . (4)
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The coefficients of the change of basis from group-labelled states to Lie

algebra-labelled states are non-commutative plane waves:

Eg(X) := e
i

~κ
kg ·X

⋆ = µ(g)e
i
~
ζ(g)·X (5)

kg are the coordinates obtained by inverse exponential map, and the ⋆-

exponential is defined by the series expansion in ⋆-monomials of Lie alge-

bra elements. The plane waves are thus generically ⋆-exponentials for the

⋆-product defined from the quantization map, and can be written as stan-

dard exponentials for some choice of coordinates on the group which also fol-

lows uniquely from the quantization map. They satisfy: (Eg1 ⋆ Eg2) (X) =

Eg1g2(X). Using them, one can then define a unitary intertwining map be-

tween group and Lie algebra representations: a non-commutative Fourier

transform. The flux representations and non-commutative Fourier trans-

forms that follow from various quantization maps have been studied in .13

The one based on the plane waves Eg(x) = eiζg ·x, with ζig = sin θni, with

g = cos θI + i sin θn · σ in the fundamental representation (σi are the Pauli

matrices), has already found several applications in quantum gravity.8,19

3. A TGFT model for 4d quantum gravity

We now give an example of a TGFT model for 4d gravity.9 We aim at a

description of quantum spacetime as the result of the interaction of fun-

damental building blocks represented by quantum tetrahedra, the quanta

of our TGFT field, and at encoding appropriately their quantum geom-

etry. A geometric tetrahedron in R
4 can be described by four bivectors

Bi ∈ ∧2
R

4 ≃ so(4) ≃ su(2) ⊕ su(2), associated to its four triangles, and a

vector k ∈ S3, interpreted as its (unit) normal, satisfying:

NI (∗BIJ
i ) = 0 (simplicity)

∑

i

BIJ
i = 0 (closure) (6)

So the classical phase space for a tetrahedron, before the imposition of

constraints, is [T ∗SO(4)]
4 ≃ [T ∗SU(2)× T ∗SU(2)]

4
. In selfdual and anti-

selfdual components, the first condition becomes Bi
+ + kBi

−
k−1 = 0, where

k̄ := (k̄−, k̄+) ∈ SO(4) maps the vector N I = (1, 0, 0, 0) to kI , then k =

k̄+k̄
−1
−

∈ SU(2). One can also change variables to B̄ =B + 1
γ
∗B so that

βB̄i
+ + kB̄i

−
k−1 = 0 with β = γ−1

γ+1 . We define a TGFT field representing a

quantum tetrahedron ϕk(g1, · · · g4) ↔ ϕk(x1, · · ·x4), with gi ∈ SO(4) and

xi ∈ so(4) (representing triangle bivectors). On this, we impose:

(C ⊲ ϕ)k =

∫
dhEh · · ·Eh ⋆ ϕh−1⊲k . (7)
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Upon integration over k, this gives the closure condition (this is a gener-

alization of the invariance of the Boulatov TGFT field). Then, we impose

the simplicity condition using the function:

S
β
k (x) := δ

−kx−k−1(βx+) =

∫

SU(2)

du eitr[k
−1ukx−]eiβtr[ux

+] (8)

where δ−a(b) :=δ(a+ b) is the su(2) non-commutative delta function, as:

(Sβ ⊲ ϕ)k(x1, · · · , x4) =
4∏

j=1

S
β
k (xj) ⋆ ϕk(x1, . . . x4) . (9)

Defining Ψ̂k := S ⊲ C ⊲ ϕk = C ⊲ S ⊲ ϕk, the action for the TGFT model

imposing all the geometric conditions is

S=
1

2

∫
[d6xi]

4 dk ϕk1234 ⋆ ϕk1234 +
λ

5!

∫
[d6xi][dka] Ψ̂1234ka

⋆ Ψ̂4567kb
⋆ Ψ̂7389kc

⋆ Ψ̂962 10kd
⋆ Ψ̂10 851ke

where the star product pairs repeated indices.

The Feynman amplitudes of this TGFT take the form of a non-

commutative simplicial path integral for the Holst-Plebanski action (with

Immirzi parameter γ), and a quantum measure including geometric con-

straints on both bivectors and discrete connection. The expansion of the

same amplitudes in group representations gives a spin foam model, encoding

these constraints as conditions on the embedding of SU(2) representations

into SO(4) representations. See also19 for more quantum gravity applica-

tions of the non-commutative flux representation.

4. Why adding pre-geometric information

Let us now summarize some motivations for enriching tensor models with

pre-geometric data to give TGFTs. The first reason is exemplified by the

TGFT presented above: due to the additional data, the Feynman ampli-

tudes of TGFTs can be given by simplicial gravity path integrals and,

dually, by spin foam models. Thus, TGFTs are a 2nd quantized formula-

tion of the spin network dynamics of LQG and connect directly with other

quantum gravity approaches. From them, they can import techniques and

physical insights, which in turn can guide both TGFT model building and

the analysis of the resulting models. Compared to tensor models, TGFTs

can be endowed with new symmetries, e.g. the analogue of 3d simplicial dif-

feomorphisms,15 possibly leading to different critical behaviour and phase

structure. A true renormalization flow for TGFTs can be defined and the

issue of renormalizability addressed.11 Last, the additional pre-geometric
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information is an important guide for ‘reading out’possible geometric and

physical meaning from the TGFT field and action and states, using the

insights coming from LQG, spin foam models and simplicial gravity. The

possibility of such physically motivated guesses and approximations will be

crucial in the analysis of any TGFT model for gravity, and in any attempt

to relate it to effective continuum physics (e.g. via mean field methods16).
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