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Abstract

We study production of sterile neutrinos in the atmosphere and their detection at
Super–Kamiokande. A sterile neutrino in the mass range 1MeV . MN . 105MeV
is produced by muon or pion decay, and decays to an electron-positron pair and
an active neutrino. Such a decay of the sterile neutrino leaves two electron-like
Cherenkov rings in the detector. We estimate the sterile neutrino flux from the
well-established active neutrino fluxes and study the number of the decay events
in the detector. The upper bounds for the active–sterile mixings are obtained by
comparing the 2e-like events from the sterile neutrino decays and the observed
data by Super-Kamiokande. The upper bound for the muon type mixing Θµ is
found to be |Θµ|2 . 5 × 10−5 for 20MeV . MN . 80MeV, which is significantly
loosened compared to the previous estimation. We demonstrate that the opening
angle and the total energy of the rings may serve as diagnostic tools to discover the
sterile neutrinos in further data accumulation and future upgraded facilities. The
directional asymmetry of the events is a sensitive measure of the diminishment of
the sterile neutrino flux due to the decays on the way to the detector.

http://arxiv.org/abs/1202.0725v2


1 Introduction

The existence of nonzero neutrino masses has been confirmed in the last few decades

and stimulated the activities aiming for the theory beyond the Standard Model. Among

various possible ways to introduce the neutrino masses into the model, adding gauge

singlet fermions (right-handed neutrinos) is one of the most economical and attractive

methods. In particular, the seesaw mechanism [1] naturally accounts for the observation

that the neutrino masses are very small compared to the other fermions. Moreover, it also

gives a natural prescription for the baryon asymmetry of the universe by the leptogenesis

scenario [2].

Besides the usual higher mass scales of the right-handed neutrinos around the grand

unification scale, the lower mass ranges are also interesting and rich in phenomenology.

For example, a keV sterile neutrino is a viable dark matter candidate [3, 4] and accounts for

the pulsar velocities [5] due to feebleness of its interactions. Two quasi-degenerate sterile

neutrinos in the mass range O(10−1) − O(10)GeV provide viable baryogenesis scenario

alternative to the leptogenesis [6, 7, 8]. Remarkably, these excellent features originate in

a single framework so called νMSM [4, 7], which is an extension of the Standard Model

with three generations of the right-handed neutrinos. Due to lower threshold energies of

the production, such “light” sterile neutrinos are more likely to be tested in existing and

forthcoming experiments than the usual right-handed neutrinos with super heavy masses

(for example, see Ref. [9] and references therein). Mass range by mass range, the sterile

neutrinos may provide unique signals in various circumstances. It is thus interesting to

study how to produce and detect the sterile neutrinos.

In this paper, we focus on the sterile neutrinos with the mass range 1MeV . MN .

105MeV and study their production in the atmosphere. The previous neutrino exper-

iments, including peak searches in the meson decays [10, 11, 12, 13, 14] and the decay

search with accelerators [15, 16], have placed certain bounds on the active–sterile mixing

matrix in this mass range. The atmospheric sterile neutrino provides an independent and

complemental test to these experiments with artificial neutrino sources. In particular, the

peak searches of the pion and kaon decays put no stringent bound on the muon type mix-

ing angle around MN = 40MeV. This spot will be effectively probed by the atmospheric

sterile neutrino since the sterile neutrinos in this mass range can be copiously produced

by the muon decays similar to the atmospheric active neutrinos.

The production of sterile neutrinos in the atmosphere and their detection at Super-
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Kamiokande (SK) has been discussed in Ref. [17]. In this work, we extend and improve

their work in both sterile neutrino production and its detection. In the flux estimation, we

carefully consider the production of the sterile neutrino not only by the µ± decay, but also

by the π± decay. The sterile neutrino flux does not receive the π± contributions for MN &

35MeV when the mixing with electron is sufficiently small (as we will show later, this is

indeed the case by considering the bounds on the mixings from direct search experiments),

being different from the νµ and ν̄µ fluxes. We also take into account the energy distribution

of the daughter (the sterile neutrino) in the parent (mainly muon) decay and the phase

space suppression due to the sterile neutrino mass. With the sterile neutrino mass around

the neighborhood of the muon mass threshold, the flux gets suppressed and the mixing

bounds are significantly loosened compared to Ref. [17]. Furthermore, we study the

kinematics of the detection process N → e−e+ν in detail, which include the distributions

of the opening angle and the visible energy of the emitted e− and e+. We estimate the

upper bounds on the mixing angles by using 1489 days SK data [18]. In this estimation, we

shall apply the cut to the events by requiring the visible energy being larger than 30MeV

in accordance with the SK data. This treatment also changes the previous results.

This paper is organized as follows. In Section 2, we calculate the sterile neutrino fluxes

produced in the atmosphere. In Section 3, the sterile neutrino decay N → e−e+ν and its

event rate at SK are studied. Section 4 is devoted to conclusions.

2 Fluxes of the sterile neutrinos

We consider a gauge-singlet fermion N with the mass range 1MeV . MN . 105MeV

which mixes with the left-handed neutrino να (α = e, µ, τ) as

να = Uαi νi +ΘαN, (1)

where Uαi is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, νi (i = 1, 2, 3) are

the mass eigenstates of the active neutrinos. The parameter Θα is the mixing between

active and sterile neutrinos, which rules the interaction strength of N . The extension to

the multi-generation case is trivially done by replacing ΘαN with
∑

I ΘαINI . Throughout

this work, we focus on the case where the sterile neutrino N is mainly mixed with νµ for

the shake of simplicity. That is, we assume |Θµ| ≫ |Θe|, |Θτ |, unless otherwise stated.

Indeed, the electron type mixing Θe is much more severely constrained than the other

two parameters. The peak search with π± → e±N mode suggests |Θe|2 . 10−8− 10−7 for
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40MeV . MN . 140MeV, while the decay search with accelerators indicate the upper

bound for |Θµ|2 varies from 10−4 to 10−6 in the mass rage 10MeV . MN . 100MeV [17].

In the case of Θµ dominance, the main decay mode of N is N → 3ν and the subdominant

mode is N → e−e+νµ conducted by the neutral currents. The decay width of each process

is given by

Γ(N → 3ν) =
G2

FM
5
N |Θµ|2

192π3
, (2)

Γ(N → e−e+ν) = Γ(N → 3ν)

(

1

4
− sin2 θW + 2 sin4 θW

)

. (3)

In this paper, we focus on the case where the neutrinos are the Majorana particles.

Then the lifetime of the sterile neutrino is given by τ ≃ 1/2Γ(N → 3ν) = 1.1 ×
10−6 1

|Θµ|2

(

100MeV
MN

)5

(s) and the corresponding decay length is≃ 0.33 1
|Θµ|2

(

100MeV
MN

)6

(km)

for EN = 100MeV sterile neutrinos. For |Θµ|2 = 10−4 and MN = 100MeV for example,

the decay length is about half of the earth radius R⊕ ≈ 6, 400 km. The branching ratio

of the detectable mode is ≃ 1/4− sin2 θW + 2 sin4 θW = 0.13.

The sterile neutrinos are produced from charged pions and muons in the same manner

as the active neutrinos. The main production processes are

π± → µ± N,

µ± → e±νe(ν̄e)N.

The former channel is open only for MN < mπ± −mµ ≈ 35MeV. The kaon contribution

is negligible in the energy range of present concern. In the muon neutrino production

for example, K± contribution becomes significant only in the high-energy regime Eν &

100GeV [19].

In fact, the vital part of the sterile neutrino flux is low-gamma regime γ . 10 for

an evaluation of the detectability of the atmospheric sterile neutrinos∗. Namely, we are

interested in the sterile neutrino spectrum at most up to 1GeV for the mass range of

1MeV . MN . 105MeV. As we will discuss in Section 3 in detail, the sterile neutrinos

are detected by the decay N → e−e+ν which leaves 2e-like rings in the detector. If the

gamma factor of the sterile neutrino is too large, the two fuzzy rings will overlap each other

and the separation of the rings becomes difficult. Indeed, it turns out that 50% (80%) of

the whole events will be observed with the opening angle less then 20◦ for γ = 6 (10).

∗Here and henceforth, we use the symbol γ to denote the gamma factor of the sterile neutrino unless
otherwise mentioned.
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It is in general a complicated task to calculate the flux for such low-energy regime since

it is affected by solar activity and the geomagnetic field. In this work, we do not compute

the flux from the primary cosmic ray spectrum directly, but we try to reconstruct a

reasonable parent’s (muons and pions) spectrum from the well-established active neutrino

fluxes available in literature [20, 21] and then evaluate the sterile neutrino flux from the

reconstructed parent fluxes.

The procedure goes as follows. We start from the νe and ν̄e fluxes at SK site [20] to

estimate the muon fluxes. The evolution of the neutrino flux φν̄e(Eν , t) is described by [19]

dφν̄e(Eν , t)

dt
=

∫ ∞

Eν

dE
φµ−(E, t)

λ(E, t)

1

Γ

dΓ

dEν

(E,Eν), (4)

where t is the slant depth, φµ−(E, t) is the muon flux, Eν (E) is the neutrino (parent µ−)

energy, λ = ρ(t)
√

(E/mµ)2 − 1/Γ is the muon decay length multiplied by the density of

the atmosphere ρ(t), Γ is the decay width for µ− → e−ν̄eνµ in the laboratory frame. By

integrating (4) with respect to t, one finds

φν̄e(Eν , tf ) =

∫ ∞

Eν

dE Φµ−(E)
1

Γ

dΓ

dEν

(E,Eν), Φµ−(E) ≡
∫ tf

0

dt
φµ−(E, t)

λ(E, t)
, (5)

where tf is the depth corresponding to the sea level. The sterile neutrino flux φN(EN , t)

obeys the similar equation to the active neutrinos if the sterile neutrino decay in the

atmosphere is negligible. In fact, the decay length for N → 3ν is much larger than

the altitude of the mesosphere edge ≈ 100 km for most of the parameter space. Only

exception is the regime |Θµ|2 & 6.6× 10−3
(

100MeV
MN

)6
(

EN

100MeV

)

where N → 3ν is so rapid

that some of the sterile neutrinos do not reach the detector. This means for example, the

following estimation of the sterile neutrino spectrum is not reliable and may get additional

suppression for EN . 100MeV in the parameter regime |Θµ|2 & 6.6 × 10−3
(

100MeV
MN

)6

.

Putting aside this strong interacting regime, we have

φN(EN , tf) =

∫ ∞

EN

dE

(
∫ tf

0

dt
φµ−(E, t)

λ′(E, t)

)

1

Γ′

dΓ′

dEN

(E,EN), (6)

where λ′ and Γ′ are the decay length and width for the mode µ− → e−ν̄eN . By using

λ′ = (Γ/Γ′)λ, one finds

φN(EN , tf ) =
Γ′

Γ

∫ ∞

EN

dE Φµ−(E)
1

Γ′

dΓ′

dEN

(E,EN), (7)

Γ′

Γ
= |Θµ|2

(

1− 8r2 + 8r6 − r8 − 24r4 ln(r)
)

, r =
MN

mµ

. (8)
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Here the integrated muon flux Φµ−(E) is obtained by fitting the left-hand side of (5)

with an assumption of power-low behavior of Φµ−(E). The same exercise is applied for

νe-µ
+-N chain and then the flux for the Majorana N is obtained as the sum of these

two contributions. Details for the energy distributions in muon decay are presented in

Appendix A.1.

In the mass regime MN < mπ± −mµ, pions also contribute to the sterile neutrino flux.

Roughly speaking, π± contribution is the same as the muon contribution, so that the flux

of the sterile neutrino in MN < mπ± − mµ regime is twice as large as the higher mass

regime up to the threshold effect. The π± contribution is estimated in the same way as

the muon. For the π± case, however, we need νµ, ν̄µ fluxes of π± origin to reconstruct the

integrated π± fluxes from the muon neutrino input. We assess the νµ, ν̄µ of π± origin by

subtracting the νµ, ν̄µ of µ± origin from the full νµ, ν̄µ data in Ref. [20], where νµ, ν̄µ of

µ± origin is calculated from the integrated muon fluxes Φµ±(E) reconstructed via Eq. (5).

Finally, the sterile neutrino flux of π± origin is calculated by

φN(EN , tf) =
Γ′
π

Γπ

∫ ∞

EN

dE Φπ±(E)
1

Γ′
π

dΓ′
π

dEN

(E,EN), (9)

where Γπ and Γ′
π are the decay width for π± → µ±νµ(ν̄µ) and π± → µ±N , respectively.

Here the branching ratio is given by

Γ′
π

Γπ

= |Θµ|2
√

1− 2(r2N + r2µ) + (r2N − r2µ)
2
r2N + r2µ − (r2N − r2µ)

2

r2µ(1− r2µ)
2

,

rN =
MN

mπ±

, rµ =
mµ

mπ±

. (10)

Fig. 1 shows the sterile neutrino fluxes for several examples of MN . The six types of the

lines are for MN = 3, 10, 30, 40, 60, 80MeV, respectively (from the left). It is seen that

a naive estimation φN = |Θµ|2φνµ+ν̄µ made in Ref. [17] is good for the energies above the

mass threshold with MN < 30MeV, but it breaks down significantly for MN & 30MeV

in such a way that the calculated fluxes are suppressed as MN increases. This rapid fall

off with respect to MN is due to the phase space suppression of the muon decay (See

Eq. (8)). On the other hand, the phase space suppression of π± decay is significant only

at the vicinity of the threshold mπ± −mµ. As MN increases, the flux thus suddenly drops

by factor of two at the threshold ≈ 35MeV above which the π± contribution vanishes.

The sterile neutrino fluxes presented here are averaged over the zenith angle and given at

the middle level of solar activity following the input neutrino fluxes in Ref. [20].

The uncertainty of the reconstructed parent fluxes Φµ± and Φπ± is small for high-

energy regime, but it becomes larger as the energy is lowered so that the resultant sterile
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Figure 1: Fluxes of the sterile neutrinos. The six curves are for MN =
3, 10, 30, 40, 60, 80MeV with the mixing |Θµ|2 = 10−2. The triangles and squares show
the active neutrino fluxes from Ref. [20]. The black circles show |Θµ|2φνµ+ν̄µ.

neutrino fluxes carry certain ambiguity around EN ≃ MN . This is because high-energy

part of the active neutrino flux is well fitted by a single-power low, while low-energy

part are complex and many choices are available as fitting function. In this analysis, we

have used the fitting function ΦHΦL/(ΦH + ΦL), where ΦH and ΦL are the high and

low-energy part of the fitting function. For ΦH , we have taken ΦH = aHγ
bH with some

constants aH , bH and the gamma factor γ of the parent particle of interest. For ΦL, we

have examined two options ΦL = aLβ
bL or ΦL = aLγ

bL , where β is the beta factor of

the parent particle. While with the former ΦL the flux rises from the mass threshold

and continuously shifts to constant behavior and is finally reduced to ΦH , the latter ΦL

has discontinuity at the mass threshold and the peak is slightly shifted to lower energies

compared with the former one. It turns out that two different fitting bring at most 10%

difference in the total number of events. We would like to emphasize that the salient

feature of the phase space suppression (8) is however independent from the fitting scheme

and the conclusions derived from this effect are valid in what follows. The fluxes shown
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in Fig. 1 are calculated with the option ΦL = aLβ
bL and these fluxes are used in the

following analyses.

3 Decay of the sterile neutrinos and the event rates

The sterile neutrinos N are produced in the atmosphere and reach the SK site to leave

2e-like events via N → e−e+ν and N → e+e−ν̄. Suppose that the fiducial volume of SK

is represented by a sphere of radius r. The event rate is then given by

Rate =

∫ ∞

MN

dEN

∫

r2dΩ φN

∫ l+2r

l

dl′
1

λd

e
− l′

Λd

∫

dX
1

ΓN

dΓN

dX
(EN , X), (11)

where ΓN and λd are the decay width and length for the signal decay of N , X is an

observable of interest, e.g., the invariant mass of the momentums of e− and e+, and

l is the flight distance of the sterile neutrinos. The total decay length Λd is given by

Λd = λdλ
′
d/(λd + λ′

d) where λ′
d is the decay length for N → 3ν. Since r is much smaller

than the earth radius R⊕, the flight distance l is well approximated by

l =

{

0 for 0 ≤ θ ≤ π
2
,

−2R⊕ cos θ for π
2
< θ ≤ π,

(12)

in terms of the zenith angle θ. The total events are given by the integration over the solid

angle
∫

dΩ =
∫ 1

−1
dcos θ

∫ 2π

0
dφ. By integrating over all possible final states of e−e+ν and

taking Λd ≫ 2r, Eq. (11) becomes

Rate = 3Vfid

∫ ∞

MN

dEN

1

λd

φN

[

Λd

2R⊕

(

1− e
−

2R⊕
Λd

)

+ 1

]

, (13)

where Vfid is the fiducial volume of the SK tank 22.5 kton which corresponds to 2.25 ×
104m3. Here the first (second) term in the square brackets is the contribution from the

up (down)-going events. For Λd ≫ 2R⊕, one finds

Rate = 6Vfid

∫ ∞

MN

dEN

1

λd

φN , (14)

which is independent from the total decay width and depends only on the partial decay

width ΓN responsible for the detection channel. The events take place isotropically due to

the condition Λd ≫ 2R⊕ with which the flight distance l becomes irrelevant to the event

number. While if Λd < 2R⊕ so that the sterile neutrinos partially vanish on the way to the

detector, downward-going events dominate over upward-going event. The measurements
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Figure 2: Left panel: Number of events (N → e−e+ν) at SK per year. The red solid (blue
dotted) lines shows the case when |Θµ|2 = 10−2(10−4). The thick and thin lines are with
and without the effect of N decay from atmosphere to detector. Right panel: Up-down
asymmetry in number of events. Here we take MN = 60 MeV.

of the direction of the total momentum of e− and e+ may thus clarify the indication of

N → 3ν decay taking place on the way to the detector.

The left panel of Fig. 2 shows the total number of events per year as a function of

the sterile neutrino mass MN . The red solid (blue dotted) lines shows the case when

|Θµ|2 = 10−2(10−4). It is seen that the event number is proportional to |Θµ|4. The thick

and thin lines are with and without the effect of N decay from atmosphere to the detector.

The thick lines are suppressed compared to the thin lines by the amount that the up-going

events are reduced by the decay effect. The decay effect is negligible for |Θµ|2 = 10−4

while it makes certain difference for |Θµ|2 = 10−2. The right panel shows the ratio of the

up-going events to the down-going events. As we will see later, the asymmetry is unlikely

to be observed for |Θµ|2 . 3× 10−5 and MN = 60MeV where the number of events does

not exceed the 2e-like ring data of SK.

If Θτ is switched on, however, it hastens both decay N → 3ν and N → e−e+ν while

the production processes are kept unchanged. With Θτ being finite, the decay width of

each mode is obtained by replacing |Θµ|2 with |Θµ|2 + |Θτ |2 in (2) and (3). By virtue

of Θe = 0, the above two decay modes are induced only by the neutral current so that

the effect of Θτ 6= 0 simply appears as such a simple replacement. On the other hand,

the production processes of N are not affected by Θτ since the decays of π± and µ± are
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induced by the charged current and cannot involve a tauon. Under the assumption that

Θe = 0, the production processes thus involve only Θµ. In the flux equation (6), the decay

term of N would not be negligible if |Θτ | is large. This effect however gives negligible

contribution to the ratio of upward to downward-going events since the thickness of the

atmosphere is small compared to the earth’s diameter.

An interesting possibility in view of the up-down asymmetry is therefore |Θτ | ≫ |Θµ|
with which the flux is feeble while the decay probability is high. In such case the event

rate is proportional to |Θµ|2||Θτ |2 instead of |Θµ|4, where |Θµ|2 comes from the production

and |Θτ |2 is from the detection. Let us set |Θµ|2||Θτ |2 ∼ 10−9 to obtain O(10) events

per year. Then, for instance, |Θτ |2 ∼ 10−2 and |Θµ|2 ∼ 10−7 lead to a clear asymmetry

Nup/Ndown ∼ 0.1. (Notice that the right panel of Fig. 2 can be read as a plot for |Θτ | in
the case where |Θτ | ≫ |Θµ|.) If the asymmetry is observed, it may indicate a hierarchical

structure of |Θτ | ≫ |Θµ|.
The master formula for the event rate (11) involves the product of the production and

the detection probabilities. That is, the product of the squared modulus of the production

and the detection amplitudes. This means that (11) is valid in the case where the coher-

ence between the propagating neutrino states is lost. Since we have the sterile neutrino

and the active neutrinos in the theory, one may wonder if the oscillation between the ac-

tive and sterile states occurs. However, the coherence between the active and sterile states

is explicitly violated at the detection point; the sterile neutrino decays while the active

neutrinos do not. Furthermore, even if the coherence were not violated by the detection,

such an oscillation would be so rapid that the effect is averaged out, which also insures

the validity of using (11). In fact, with MN = 10MeV and a typical energy of 100MeV

for example, the oscillation length Locs would be Locs ≃
(

E
100MeV

)

(

100MeV2

∆m2

)

10−12 m. In

the present setup, it is quite difficult to observe oscillatory behavior between the active

and the sterile neutrinos.

3.1 Invariant mass and bounds for the mixing

The sterile neutrino decay N → e−e+ν in the SK detector produces two fuzzy Cherenkov

rings. A possible background for this signal is π0 → 2γ, where π0 are mainly created via

the neutral current interactions of the atmospheric active neutrinos. The gamma rays

in the final state develop into electromagnetic showers and create two fuzzy rings which

cannot be distinguished from the e± signals.

The above two process, however, leave different signatures in the Lorentz invariant
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Figure 3: Invariant mass distribution of the electron pairs from the sterile neutrino decay
N → e−e+ν. The solid (red), dashed (green), and short-dashed (blue) lines are for
MN = 80, 60, 40MeV with the mixing |Θµ|2 = 10−4. The points with error bars are the
data of fully-contained 2e-like rings from Ref. [18].

mass (squared) of the 2e-like rings. For the sterile neutrino event N → e−e+ν, it is given

by M2
ee = (p1 + p2)

2, where p1(p2) are the four-momenta of e−(e+). In the rest frame of

the sterile neutrino, it reads

M2
ee ≃ M2

N − 2MNEν , (15)

where Eν is the invisible energy carried away by the active neutrino. Since the neutrino

carries about 1/3 of the parent energy on average, M2
ee from the sterile neutrino events

follows 〈M2
ee〉 ≃ M2

N/3, while the invariant mass squared of the two photons by π0 decay

sharply peaks at m2
π0 . By measuring the invariant mass distribution, we may obtain

information on the sterile neutrino mass.

It is more practical to work with Mee than M2
ee. The Mee distribution is given by (See

Appendix A.3 for details)

1

ΓN

dΓN

dMee

=
4

MN

yee(1− y2ee)
2(1 + 2y2ee), (16)

where yee = Mee/MN . The distribution (16) has the maximum at yee ∼ 0.5, and the

averaged invariant mass is given by 〈Mee〉 =
∫MN

0
dMee

Mee

ΓN

dΓN

dMee
= 0.508MN . Note that the
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Figure 4: Visible energy distributions for MN = 20MeV (left) and MN = 60MeV (right).
Here we take |Θµ|2 = 10−4.

distribution function (16) also holds in the laboratory frame due to the Lorentz invariance

of M2
ee. We calculate the event rate for each invariant mass by using (16) in (11).

Fig. 3 shows the number of events in each invariant mass bin. The solid (red), dashed

(green), and short-dashed (blue) lines are for MN = 80, 60, 40MeV with the mixing

|Θµ|2 = 10−4. The points with error bars are the 1489 days data of fully-contained 2e-like

rings from Ref. [18]. Following (16), the events are distributed to the range 0 < Mee < MN

and frequently seen at ≃ 0.5MN . From MN = 40MeV to MN = 60MeV, the hight of

the peak grows although the possible range of Mee, to which the events are distributed,

is broadened. This is because the total number of event increases from MN = 40MeV

to MN = 60MeV (see Fig. 2). On the other hand, the hight of the peak rapidly falls off

from MN = 60MeV to MN = 80MeV since not only the range of Mee is broadened but

also the total number of event decreases.

A naive upper bound for Θµ would be determined by comparing the hight of each bin

with the corresponding background for fixed values of MN . However, it should be noticed

that the SK data shown in Fig. 3 is for visible energy greater than 30MeV, where the

visible energy means the total energy of the two rings (hereafter we denote it by Eee).

Hence we must cut the events whose Eee is less than 30MeV to make such a comparison.

In addition, In addition, the opening angle between two momenta of e− and e+ must be

sufficiently large in order for the event to be identified as multi-ring events. Thus one must
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Figure 5: Opening angle θee distributions for MN = 20MeV (left) and MN = 60MeV
(right). Here we take |Θµ|2 = 10−4.

study how Eee and the angle cut reduce the number of events for a reasonable estimation

of the allowed parameter range.

Roughly speaking, the two cut define an effective range of the sterile neutrino energy

EN for a given value of MN . In particular, the visible-energy cut defines a lower limits

of EN . In the three-body decay N → e−e+ν, the electron and positron carry on average

about 1/3 of the parent energy each, so that the events with EN & 45MeV more or

less pass the cut. Accordingly, the number of event receives significant reduction for

MN . 45MeV while it does not for MN & 45MeV. Fig. 4 shows two examples of Eee

distributions. It is seen that about 60% of the whole event is dropped for MN = 20MeV

but the cut is insignificant for MN = 60MeV.

On the other hand, the angle cut does not dramatically change the number of events.

In Fig. 5, we show the opening-angle distributions for MN = 20MeV and MN = 60MeV,

assuming angle resolution of 10◦. It is clear that the angle cut does not have as much

impact as the visible energy cut for both cases if the two rings with θee & 10◦, or more

conservatively, θee & 20◦, can be separately identified at SK. We found that efficiencies

of the angle cut are 0.65 for MN = 10MeV, 0.8 for MN = 20MeV and 0.85 for MN =

30 − 100MeV with θee > 20◦. The sterile neutrinos with smaller mass receives more

reduction than larger mass since light sterile neutrinos are more energetic. It is seen in

Fig. 1 that sterile neutrinos are mostly populated in γ ∼ 4 − 5 for MN = 20MeV while

γ ∼ 1− 2 for MN = 60MeV.
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Figure 6: Correlation between Eee and θee for MN = 20MeV (left) and MN = 60MeV
(right). The colors in each bin shows log10(number of events). |Θµ|2 = 10−4 is taken.

We present correlations between Eee and θee in Fig. 6 for completeness. For a lighter

mass MN = 20MeV, most sterile neutrinos are energetic γ ∼ 4 − 5 and the events are

concentrated on lower-left region. For the heavier mass MN = 60MeV, the peak is shifted

toward larger θee region since there are many sterile neutrinos with γ ∼ 1, and θee tends

to be close to ∼ 120◦ expected from the decay at rest. We would like to emphasize that

these plots may be useful to separate the signal from the background if the tendency of

the background is different from the signal.

Having details for the visible energy and the opening angle distribution, let us come

back to the invariant mass and estimate the upper bound of the mixing element Θµ. Fig. 7

shows the invariant mass distributions of events with a kinematical cut. As is already

mentioned, lighter-mass case receives more significant reduction by the cuts. We would

like to stress that, while the visible energy cut Eee ≥ 30MeV is indeed applied to the SK

data, the angle cut is not the actual one which is applied to the data. In fact, the multi-

ring identification process performed in the SK analysis [25] is much more complicated

than the selection of opening angles and such a thorough analysis is beyond the scope

of this paper. Since we do not know the minimal opening angle appropriate for the SK

detector and could not find suitable references for this value, here and henceforth we

assume it to be 20◦ just for example. We estimate the upper bound for Θµ by searching

for the maximal value of Θµ with which none of the signal events of each bin exceeds the

central value of the data [18] (shown by dots with error bars in the figures) for each fixed

13



Figure 7: Invariant mass distributions of envents at SK for MN = 20 MeV (left) and
MN = 60 MeV (right). The light gray region with red dotted line is without cuts, while
the dark gray region with red solid line is with θee ≥ 20◦ and Eee ≥ 30 MeV.

value of MN .

Fig. 8 shows the upper bound in comparison with the previous result in Ref. [17]. The

bound is changed in three ways. First of all, in the large-mass region MN & 50MeV,

the bound is significantly relaxed due to the phase space suppression of the muon decay

which has not been taken into account in the previous analysis. Second, in the small-

mass region MN . 50MeV, the event cuts (mainly the visible energy cut Eee > 30MeV)

reduce the number of events so that the bound is pushed up from the curve without the

cuts. Finally, careful handling of the π± and µ± contributions for the sterile neutrino

production makes a small dip at MN = mπ± −mµ since the number of events are reduced

for MN > mπ± −mµ according to the absence of the π± contributions.

The light-element abundances predicted by the Big Bang Nucleosynthesis (BBN) is

kept unspoiled if the lifetime of N is short enough such that the sterile neutrinos are

cleared away before the onset of the BBN. According to Ref. [22], the successful BBN

requires

|Θα|2 > 568.4

(

MN

MeV

)−3.549

− 5.17× 10−6, (α = µ, τ), (17)

for 10MeV < MN < 140MeV. Here this limit is valid for the Dirac type sterile neutrino

which mixes with only one active flavor. For the Majorana case, this limit becomes two

times weaker since the total decay width of the Majorana particle involves an extra factor

14



Figure 8: Upper bounds on the mixing element |Θµ|2. The red solid and blue dashed
lines are bounds with and without cuts θee ≥ 20◦ and Eee ≥ 30 MeV, respectively. The
black dotted line shows the bound in Ref. [17].

of two. Most of the allowed region in Fig. 8 is in fact under tension with the limit (17).

However, this tension is relaxed if Θτ is turned on. Namely, the lifetime is shortened by

increasing |Θτ |. The point is that the production of the sterile neutrino in the atmosphere

is not affected by |Θτ |. Hence, by taking |Θτ | ≫ |Θµ|, one can set a short lifetime enough

to avoid the BBN limit while keeping the atmospheric sterile neutrinos consistent with the

SK data. Notice that Fig. 8 can be read as a plot for |Θµ||Θτ | if |Θτ | ≫ |Θµ|. Interestingly,
the directional asymmetry (see Fig. 2 and related discussion) is likely to be observed in

such a circumstance.

If the visible energy cut EN > 30MeV is switched off, the sterile neutrino events in

the first three bins increase as shown in Fig. 7, while the background and its Mote Carlo

simulation might change differently depending on the source of the background. Such an

analysis is important especially for light sterile neutrinos with MN < 30MeV but beyond

the scope of this paper.
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Figure 9: Upper bounds on the mixing element |Θµ|2 (the red solid curve) in comparison
with vrious experiments. The dotted (purple) curve is from the peak search in pion
decay [11] (labeled by π+ → µ+N), the dot-dashed (light-blue) line is from the peak
search in pion decay [12], the dashed curve (blue) is from the accelerator decay search by
PS191 [16] (labeled by N → e+e−ν), and the dot-dot-dashed (orange) curve is from the
peak search in kaon decay [14] (labeled by K+ → µ+N).

4 Conclusions

We have studied the production and the detection of the atmospheric sterile neutrinos.

With the mass range 1MeV . MN . 105MeV, the sterile neutrinos are produced by

muon or pion decays. The main decay mode of the sterile neutrino N is N → 3ν (88%)

and the subdominant mode is N → e−e+ν (12%). Interestingly, the detection via the

subdominant channel is feasible at Super-Kamiokande. To estimate the amount of the

sterile neutrino flux φN , we have reconstructed the parent muon and pion integrated

fluxes from the well-established active neutrino fluxes φν by making a power-low ansatz

for the shape of the spectrum. We have calculated the sterile neutrino flux from the

reconstructed parent fluxes and the energy distributions of each decay mode. The phase

space suppression of the muon decay µ± → e±νe(ν̄e)N is so effective that the estimated
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sterile neutrino flux is much less than the naive expectation of φN = |Θµ|2φν+ν̄µ for

MN & 40MeV.

For the detection, we have calculated the number of the decay event N → e−e+ν

at SK. The upper bound for the muon-type mixing Θµ is estimated by comparing the

invariant mass distribution of the e± pair and the observational data of the 2e-like rings.

To estimate the bound, the visible energy cut EN > 30MeV is taken into account in

accordance with the SK data. Moreover, we have studied the opening angle of the e±

momenta and clarify the impact of the minimal opening angle under which the two fuzzy

rings cannot be identified separately. The upper bound for higher mass regime MN &

50MeV is significantly relaxed compared to the previous estimation due to the phase

space suppression of the muon decay. In addtion, the inclusion of the kinematical cuts

also relaxes the bound for lower mass regime and changes the shape of the bound entirely.

Fig. 9 shows the upper bound in comparison with the other experiments (see for

example, Ref. [23, 24]). In the mass window of 34MeV < MN . 64MeV, the atmospheric

bound is stronger than the peak search in the meson decays. However, the bound from

the accelerator decay search† is stronger than the atmospheric bound by a factor of two

at MN = 34MeV and by a factor of 10 at MN = 64MeV. We nevertheless believe that

the search for the atmospheric sterile neutrino is an issue of great interest. One reason

is that not a few progresses in particle physics have been made in cooperation between

artifical and natural source experiments. Since PS191 is the sole experiment which set

the bound stronger than the atmospheric one in the window 34MeV < MN . 64MeV,

the atmospheric sterile neutrino can play a role of a unique follow-up experiment with a

natural source.

Moreover, many points are to be ameliorated for better sensitivities of the atmospheric

sterile neutrino. It is obvious that our naive scheme to estimate the upper bound does not

reflect the accumulation of statistics and more advanced analysis should be performued

for precise argument. The 2e-like ring data for SKI, SKII and SKIII [25] can be combined

to squeeze the room remained for the sterile neutrino. Furthermore, the analysis of the

2e-like events can be customized aiming for the sterile neutrino detection. For instance,

one can switch off the visible energy cut of 30MeV and track the direction of the sum of

the two ring’s momenta, the opening angle between two rings and the visible energy. This

may dramatically change the sensitivity if the background behaves differently from the

† We have included the neutral current contribution to N → e−e+ν to apply the bound from Ref. [16].
See Ref. [17, 24].
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signal in the up/down-going ratio, openging angle distribution, visible energy distribution

and so on. As for the detection facility, Hyper-Kamiokande has been proposed with the

fiducial volume 25 time larger than SK [26], and hence the number of events increases by

the same amount, which improve the bound, roughly speaking, by a factor of five. If the

new customized analysis upgrades the sensitivity for |Θµ|2 by a factor of two for instance,

Hyper-Kamiokande will improve the bound by one order of magnitude and will reach the

present accelerator bound. With the refinement of the analysis and the upgrade of the

facility, there will be a good chance to discover the atmospheric sterile neutrino.
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A Details for the decay processes

For the sake of completeness, we present here necessary formulas for the decay processes to

produce the results in Section 2 and 3. In this Appendix, we flexibly use the symbol γ and

x to denote the gamma factor of the parent particles and (twice of) the daughter energy

in unit of the parent mass. The electron mass is neglected in the following formulas.

A.1 µ− → e−ν̄eN

This decay process is conducted by the charged-current. In the laboratory frame, the

decay width Γ′ is

Γ′ =
G2

Fm
5
µ|Θµ|2

192π3
I0

(

1

γ

)

, (18)

where

I0 =
[

1− 8r2 + 8r6 − r8 − 24r4 ln(r)
]

, r =
MN

mµ

, γ =
Eµ

mµ

. (19)
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Here Eµ is the muon energy in the laboratory frame. The energy distribution of the sterile

neutrino N is given by (with x = 2EN/mµ)

1

Γ′

dΓ′

dx
= g(γ, x) =















glow(γ, x) (1 < γ < γcr, x− < x < xc)
ghigh(γ, x) (1 < γ < γcr, xc < x < x+)
ghigh(γ, x) (γcr < γ, x− < x < x+)
0 (all others)

, (20)

where

x− = 2 r , xc = γ(1 + r2)− γβ(1− r2) , x+ = γ(1 + r2) + γβ(1− r2) ,

γcr =
1 + r2

2 r
. (21)

The functions glow and ghigh are given by

glow(γ, x) =
2
√
x2 − 4r2

3I0

[

(2− 8γ2)x2 + 9(1 + r2)γx+ 4r2(2γ2 − 5)
]

,

ghigh(γ, x) =
1

6I0
√

γ2 − 1

[

(1 + r2)(5 + (36γ2 − 50)r2 + 5r4) + 24r2γ
(

3− 2γ2
)

x

−9
(

2γ2 − 1
)

(1 + r2)x2 + 4γ
(

4γ2 − 3
)

x3
]

+
1

2
glow(γ, x). (22)

A.2 π+ → µ+N

The decay width in the laboratory frame is

Γ′
π =

G2
Ff

2
πm

3
π± |Vud|2|Θµ|2
8π

βf

[

r2N + r2µ − (r2N − r2µ)
2
]

(

1

γ

)

, (23)

where

βf =
√

1− 2(r2N + r2µ) + (r2N − r2µ)
2, rN =

MN

mπ±

, rµ =
mµ

mπ±

, γ =
Eπ

mπ±

. (24)

The energy distribution of the sterile neutrino is given by (with x = 2EN/mπ±)

1

Γ′
π

dΓ′
π

dx
=

{

1
2βf

1√
γ2−1

(1 < γ, x− < x < x+)

0 (all others)
, (25)

where

x± = (1 + r2N − r2µ)γ ± βf

√

γ2 − 1. (26)
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A.3 N → e−e+να (α = µ, τ)

This process is conducted by the neutral current if Θe contribution is negligible. In this

case, the decay width in the laboratory frame is given by

ΓN =
G2

F |Θα|2M5
N

192π3

(

1

4
− sin2 θW + 2 sin4 θW

)(

1

γ

)

. (27)

In terms of the invariant mass M2
ee, the visible energy Eee and the opening angle of e±

momenta θee, the differential decay width is written as

1

ΓN

∫

dΓN =

∫ 1

0

dzee

∫ x+
v

x−
v

dxv

∫ 1− 8zee

x2v

−1

dcos θee J(zee, xv, cos θee)K(γ, zee, xv, cos θee), (28)

where

zee =
M2

ee

M2
N

, xv =
2Eee

MN

, γ =
EN

MN

, x±
v = γ(1 + zee)±

√

γ2 − 1(1− zee), (29)

and

J(zee, xv, cos θee) =
4zee

√

x2
v − 4zee

√

x2
v(1− cos θee)4 − 8zee(1− cos θee)3

, (30)

K(γ, zee, xv, cos θee) =
3zee

√

γ2 − 1(1− cos θee)(x2
v − 4zee)2

[

f0 + f1 cos θee

]

. (31)

Here f0 and f1 are

f0 = 4zee
(

3 + 2(10γ2 − 1)zee − z2ee
)

− 40γzee(1 + zee)xv

+4zee
(

(3− 2γ2) + 2zee
)

x2
v + 4γ(1 + zee)x

3
v − (1 + zee)x

4
v, (32)

f1 = 4zee
(

−1 + 2(2γ2 − 1)zee + 3z2ee
)

− 8γzee(1 + zee)xv

+4
(

1 + (2γ2 + 1)zee − z2ee
)

x2
v − 4γ(1 + zee)x

3
v + (1 + zee)x

4
v. (33)

By integrating over cos θee, one finds for instance

1

ΓN

dΓN

dzeedxv

=
1

√

γ2 − 1
(1− zee)(1 + 2zee) (1 < γ, 0 < zee < 1, x−

v < xv < x+
v ),

1

ΓN

dΓ

dzee
= 2(1− zee)

2(1 + 2zee) (0 < zee < 1). (34)

It is now straightforward to obtain (16) from (34). The analytical expressions for θee

distribution are rather lengthy and we do not present them here.
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