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We study observables on group elements in the Ponzano-Regge model. We
show that these observables have a natural interpretation in terms of Feyn-
man diagrams on a sphere and contrast them to the well studied observables
on the spin labels. We elucidate this interpretation by showing how they
arise from the no-gravity limit of the Turaev-Viro model and Chern-Simons
theory.

1 Introduction

The Ponzano-Regge model [PR68] is a model for 3-dimensional quantum gravity without
matter. The partition function is formulated as a state sum model, with a sum over
labellings of a triangulated 3-manifold, and is independent of the triangulation chosen.
An important generalisation of this idea occurred when Witten proposed to construct

3-dimensional quantum gravity as a Chern-Simons type functional integral [Wit88]. He
developed both a version with a cosmological constant, and a version without [Wit89b].
The model with a positive cosmological constant and Euclidean signature gives the

same partition function as the state sum model constructed by Turaev and Viro [TV92,
Rob95].
This suggests that the Chern-Simons model without a cosmological constant should

be the Ponzano-Regge model. Aspects of this have been confirmed [BNG09]; the Chern-
Simons model giving a formula in terms of Ray-Singer torsion whereas the Ponzano-
Regge formula gives a formula in terms of the equivalent Reidemeister torsion. The
model is a quantisation of the first-order form of 3-dimensional gravity, with action
∫

tr(e ∧ F (ω)), where e is an su(2)-valued 1-form and F is the curvature of the su(2)
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connection ω. The functional integration is not subject to the condition that det(e)
be positive, and thus e behaves as a Lagrange multiplier. The functional integral thus
reduces to an integration over the moduli space of flat su(2) connections.
Observables in these theories have been studied extensively. For the Turaev-Viro

model a full account was given in [BGIM07], for the Ponzano-Regge model in [Bar03,
FL04, Bar05, FL06, Bar06]. These ‘edge observables’ were always constructed by cou-
pling spin labels on the edges in these state sum model. In this paper we consider
instead observables of the SU(2) connection in the model. This leads to a different set
of observables with a different physical interpretation, which is explained here. To ex-
plore the interpretation fully, the new observables are considered as the G → 0 limit of
observables for the Turaev-Viro model. This discussion is a development of the discus-
sion in [FL06]; we supply the observables which generate the Feynman diagram measure
factors discussed there. The new observables are contrasted with the standard edge
observables. The difference is that they are evaluations of spin networks for SO(4) and
DSU(2) respectively, quantum groups that are semi-dual in the sense of Majid-Schroers
[MS09].

2 Group variables in the Ponzano-Regge model

The Ponzano-Regge model [PR68, BNG09] on a triangulated 3-manifold M can be
expressed with spin variables le ∈ {0, 1

2
, 1, . . .} on each edge e as

Z(M) =
∑

le

∏

interior edges

(−1)2le(2le + 1)
∏

tetrahedra

{

l1 l2 l3
l4 l5 l6

}

, (1)

the tetrahedral weight being the 6j–symbol for the six spins l1 . . . l6 on its edges. An
alternative formula is obtained by writing the product of 6j–symbols as an integral over
variables gf ∈ SU(2) for each dual edge f , using the holonomy he around each edge of
the triangulation

Z(M) =
∑

l

∏

dual edges

∫

dgf
∏

edges

(2le + 1)Trle(he). (2)

Summing out the spin variables leads to a formulation entirely in terms of the group
variables

Z(M) =
∏

dual edges

∫

dgf
∏

edges

δ(he). (3)

The delta functions on SU(2) (with support at the identity) force the g variables to
describe flat connections on M .
These expressions (1),(2) and (3) all require regularizing; then they are equal for

oriented compact manifolds in the circumstances when there are well-defined. They
correspond to Lagrangian quantum gravity in the metric formulation, first-order for-
mulation, and in a connection representation respectively. One needs to regularise (3),
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for example by systematically removing excess delta functions from the formula. For
example in [FL04], the product over edges is restricted to a subset of edges excluding a
maximal tree. For a full discussion of the divergences of this formula and their regulari-
sation we point the reader to [BNG09] and [BS10a, BS10b, BS11]. Such a regularisation
will be assumed in the following.
Observables are usually inserted into the state sum model by including a function

of the spin labels j in the formula for the partition function Z [BNG09, FL06, FL04].
These observables are called the ‘edge observables’ in the following discussion, and are
described more precisely in section 3.2.
In this paper, the alternative possibility of using functions of the group variables is

considered. This makes sense with either (2) or (3). As the observables don’t depend
on the spin labels one may as well sum these out. The formula with observables is thus

Z(M,F ) =
∏

dual edges

∫

dgf F (g1, g2, . . .)
∏

edges

δ(he). (4)

The observable is specified by the function F of the variables g1, g2, . . . on the dual edges.

2.1 Character observables on S3

The main features of the model with these observables are apparent in the special case
whereM = S3 and F is a product of character functions χj on SU(2) for some irreducible
representation j

F = χj1(g1)χj2(g2)χj3(g3) . . .

The partition function is then a function of the spin labels j1, j2, . . . on some subset of
the dual edges. These dual edges form a graph Γ in S3, and it is assumed that the edges
of the graph are numbered with integers starting from 1. The graph together with the
spin labels for its edges is denoted Γ(j1, j2, . . .).
The main mathematical result of this paper is the following identity.

Z(S3, F ) = (−1)
∑

2je 〈Γ(j1, j2, . . .)〉 (5)

where 〈Γ(j1, j2, . . .)〉 is the relativistic spin network evaluation of the labelled graph
Γ(j1, j2, . . .) as defined in [Bar98].
The proof of the formula follows from the fact that any flat connection on S3 is pure

gauge. Pick an arbitrary dual vertex v0 of the triangulation as the origin. For each dual
vertex v define a new variable uv ∈ SU(2) to be the product of group elements along
some path that connects the dual vertex to the origin. This is well-defined since any
two paths are homotopic via dual faces, and the delta function for a dual face ensures
that going along different paths around the dual face gives the same group element.
The original group element on a dual edge e with source and target vertex s(e), t(e)

is recovered as
ge = ut(e)u

−1
s(e).
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Figure 1: Graph Γ with expanded vertices.

Using a maximal tree of dual edges, it is clear that the uv can take any values in SU(2),
except that uv0 = 1, the identity element.
The integration measure after regularisation is

∏

dual edges

dgf
∏

edges

δ(he) =
∏

dual vertices

duv δ(uv0).

Thus we have replaced the integration over flat connections with integration over the
local gauge group.
Dropping redundant delta functions, the overall partition function with the observ-

ables can now be written as

Z(S3, F ) =
∏

dual vertices of Γ

∫

duk δ(uv0)
∏

dual edges of Γ

χjkl(uku
−1
l ) (6)

Up to the minus signs, this is just the definition of relativistic spin network evaluation
given in [Bar98]. This completes the proof of (5).
These observables can also be expressed as a modified state sum model. To see

this, note that when integrating out the group elements on dual edges implementing the
analogue of turning expression (2) into (1), we no longer have three characters at the end
of each dual edge which contract to form 6js, but instead, we get 4-valent intertwiners
with one edge joined up.

∑

a4

∫

dgDl1
a1,b1

Dl2
a2,b2

Dl3
a3,b3

Dj
a4,a4

=
∑

k,a4

ιka1,a2,a3,a4ι
k
b1,b2,b3,a4

(−1)2k(2k + 1) (7)

where k labels some basis of four-valent intertwiners. The state sum thus does not
disconnect into a set of tetrahedral spin networks but into a set of tetrahedra joined
by intertwiner labels and lines at the vertices. The result is that part of the state sum
model becomes a spin network with the same topology as the graph Γ in the observable,
but with tetrahedral spin networks for vertices, see Figure 1.
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2.2 General observables on S3

Above we assumed that we were dealing with observables that are conjugation invariant
and that thus can be expanded in characters. If we chose F gi(g1, g2, . . .) to be gauge
invariant at the vertices of the graph it can be expanded instead into spin networks.
Expressing the group observables at the edges through group elements at the vertices
again we see immediately that the observable simply is the evaluation at the identity:

Z(S3, F gi) = F gi(1, 1, . . .)Z(S3) (8)

A general function can only be decomposed into matrix elements of representations.
The matrix elements as observables on the group elements constitute a generalization of
relativistic spin networks. The observable is in general a linear combination of observ-
ables of the form

∏

dual vertices

∫

duk

∏

dual edges

Djkl
aklblk

(uku
−1
l ),

with coefficients Oaklblk
kl for each edge kl. Here we think of the index akl as living at the

vertex k, facing the edge kl. The (almost) general observable on the group variables for
fixed spins can then be written in terms of these as

Z(S3, F ) =
∏

dual vertices i

∫

dui

∏

dual edges (kl)

Djkl
aklblk

(uku
−1
l )Okl

aklblk

=
∏

dual vertices i

∫

dui

∏

dual edges (kl)

Djkl
aklckl

(uk)ǫckldlkD
jkl
elkdlk

(ul)ǫblkelkO
kl
aklblk

,(9)

where ǫ is the bilinear inner product on the jkl representation.
We can now do the integration at each vertex and obtain the usual projectors expressed

as product of 3j symbols. Now note that from this formula it is easy to see the the
relativistic spin network evaluation 〈·〉 is up to signs equal to the square of the ordinary
spin network {·} for three-valent graphs. Setting Oaklblk

kl = δaklblk and integrating out
the vertex variables uk locally by replacing them with three-valent intertwiners gives
exactly two sets of three-valent intertwiners contracted according to the combinatorics
of Γ. Now restoring the O(kl), we obtain one normal spin network valuation {·}, and one
network evaluation with operators O(kl) used to contract intertwiners,

Z(S3,Γ(j1, j2, . . . , O)) = {Γ(j1, j2, . . .)} {Γ(j1, j2, . . . , O)} , (10)

see Figure 2.2. These observables are therefore straightforward generalisations of rela-
tivistic spin networks.

2.3 Generalising S3

Although initially formulated for a 3-manifold, the partition function (4) can be gener-
alised by replacing the dual cell complex by an arbitrary cell complex K. An example

5



O O

O O

O O

Figure 2: Relativistic spin networks with operators O along the edges.

would be the dual cell complex of a 4-manifold, giving the Ooguri model [Oog92]. The
generalisation of (4) is

Z(M,F ) =
∏

edges of K

∫

dgf F (g1, g2, . . .)
∏

2-cells of K

δ(he). (11)

The partition function is well-defined when a condition on the twisted cohomology is
satisfied, as in [BNG09]. Cells of dimension higher than 2 play no role in the formula;
however the partition function for a complex L containing higher-dimensional cells can
be formulated by collapsing L to a 2-skeleton K, and the regularisation of the Ponzano-
Regge model can in fact be understood in this way. Thus formula (11) can be regarded
as a generalisation of the definition of the relativistic spin network evaluation to an
arbitrary manifold. The corresponding formula for Uqsl(2) is studied in [BGIM07]
We have not studied the effect of arbitrary topology on the observables in a systematic

way, but limit the discussion to a couple of examples. First, note that if the observable
does not go around a non-contractible loop in K nothing in the analysis changes and
the observable is the product of the S3 observable with the graph Γ and the evaluation
of the partition function for K with no observable. To see this, simply run the change
of integration argument above within this contractible region. Now the integration over
vertices that touch the graph factorizes from the rest of the partition function. By
introducing spurious integrations we can run the change of basis argument backwards
while keeping the integrations touching the observable separate. This gives the product
of the partition function and the integral on the right hand side of (6).
For the trivial case of a loop with one vertex and one 1-cell bounding a two-dimensional

disk, the character observable (4) is
∫

dg δ(g)χj(g) = 2j + 1.

If K = S1, given by a loop with one vertex and one 1-cell with no disk filling it in,
then the partition function with the character observable is

∫

dg χj(g) = δj0. (12)
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In essence, there is no propagation around the non-contractible loop.
For RP 2, represented by a generator g and a relation g2 = 1, the corresponding

partition function is
∫

dg δ(g2)χj(g) =
1

8
(χj(1) + χj(−1)) (13)

=

{

1
4
(2j + 1) 2j even

0 2j odd
(14)

These results will be interpreted in the next section.

3 Particles

3.1 Particle on a Sphere

The remaining task is to describe the physics of the new observables.
The first observation is that the new observables have the character of momentum

observables. For example, if the graph Γ has a 2-valent vertex, then the labels on either
side are forced to be equal (else the partition function is zero). This is the conservation
of momentum. For vertices of valence greater than 2, the restrictions on the values of
the labels adjacent to a vertex are those compatible with the conservation of momentum
where the labels are treated as the length of a momentum vector. Thus the labels
can be considered as the absolute values of momenta, interpreted as (virtual) masses of
particles.
One can see the interpretation of the partition function with the new observables

directly from (6). The u variables can be considered as points on S3. Thus one has the
measure of a Feynman diagram amplitude. The character function on the group SU(2)
is the eigenfunction of the Laplacian on the homogeneous S3 and thus the Feynman
propagator (with a fixed virtual mass for the particle [Bar06]).
This interpretation extends to the observables on manifolds other than S3. For ex-

ample for the case of S1 considered above in (12) interpreting χj(g) = χj(gtg
−1
s ) as a

propagator we have the interpretation that the observable is given by the amplitude of
propagation of a particle on the sphere from gs to the location gt. The original observ-
able is then recovered as the average amplitude of propagation over the whole of the
space-time S3, which vanishes except for j = 0.

3.2 Edge observables

A different set of observables was constructed in [FL06, BNG09]. These are the ‘edge
observables’. This is defined by a graph Γ consisting of edges of a triangulation, labelled
by an angle 0 ≤ θe ≤ 2π associated to to each edge e. The amplitudes of these observables
are then defined by inserting a factor

Kθ(l) =
sin

(

θ
2
(2l + 1)

)

(2l + 1) sin θ
2

7



for each edge in the graph. This means the observable is

F (l1, l2, . . .) = Kθ1(l1)Kθ2(l2) . . .

and the Ponzano-Regge state sum (1) with the edge observables is

Z(F ) =
∑

le

∏

interior edges

(−1)2le(2le + 1)
∏

tetrahedra

{

l1 l2 l3
l4 l5 l6

}

F (l1, l2, . . .). (15)

These observables are also momentum observables, conservation of momentum being
respected at each vertex of the graph Γ. This is similar to the conservation of momentum
for the new group observables, the principle difference being that in this case momentum
space is curved. The partition function is zero unless there is, at each vertex, a spherical
polygon with side lengths the angles θe/2 incident at the vertex. For a 2-valent vertex,
the angles are required to be equal, expressing momentum conservation as before.

3.3 Limits of the Turaev-Viro model

The presence of two different momentum observables in the theory is at first puzzling.
We will now elucidate their origin and differences by exhibiting both sets of observables as
limits, as least heuristically, of the same observables for the Turaev-Viro model, in which
the cosmological constant Λ and the gravitation constant G appear in complementary
roles. Our thesis is that the edge observables are obtained from a Λ → 0 limit, and
the new observables from a G → 0 limit of the Turaev-Viro model. Thus the edge
observables pertain to quantum gravity without a cosmological constant whereas the
new observables, at least locally, to quantum field theory on a three-sphere.

3.3.1 The limits

The Turaev-Viro model is defined by a formula analogous to (1), with the 6j–symbol
and dimensions being replaced by their quantum deformations, which depend on an
integer parameter r, also written as the deformation parameter q = eiπ/r. The quantum
deformation of the dimension factor (−1)2l(2l + 1) is

dimq l = (−1)2l
sin π

r
(2l + 1)

sin π
r

.

The partition function is

ZTV = N−v

(r−2)/2
∑

le=0

∏

interior edges

dimq le
∏

tetrahedra

{

l1 l2 l3
l4 l5 l6

}

q

. (16)

The main new features are the normalisation factor N−v, with v the number of vertices,
and the dependence on the integer r, both explicitly in the limit of the sums, and via the
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deformation parameter q = eiπ/r. The model is finite and well-defined for any compact
manifold, and is independent of the choice of triangulation.
Observables for the model are defined by multiplying the summand of the partition

function by a function F (l1, l2, . . .) of some of the ls in the partition function[Bar03].
The l variables on which F depends are those lying on some subgraph Γ of the edges of
some triangulation.
The relevant observables for this paper are the ‘momentum space’ observables, where

the function introduced is the product of a Fourier kernel

Kj(l) = (−1)2j
sin π

r
(2j + 1)(2l + 1)

sin π
r
(2l + 1)

for each edge, so
F = Kj1(l1)Kj2(l2) . . .

As announced in [Bar03], and proved in [BGIM07], the partition function for S3 with
these observables is equal to a constant times the q version of the Relativistic Spin
Network invariant [Bar98, CY97, Yok96] of the graph Γ with its edges labelled with
j1, j2, . . .

ZTV (S
3,Γ) = ZTV (S

3) < Γ(j1, j2, ...) >q . (17)

Heuristically the Turaev-Viro model, which is a quantisation of 3-dimensional GR with
cosmological constant, can be seen to reduce to the Ponzano-Regge state sum when one
takes the limit r → ∞. However this limiting process is subtle and there are two different
ways in which one can take a limit of the Turaev-Viro momentum space observables.

(i)
r → ∞, ji constant

(ii)

r → ∞,
2ji + 1

r
→ θi

2π
, a constant

Limit (i) is the limit which gives the observables in this paper, as is clear from the limit

< Γ(j1, j2, ...) >q→< Γ(j1, j2, ...) >,

which is obvious from the defining spin network formulae.
The second limit, (ii), is somewhat harder to treat rigorously. It is calculated explicitly

for Γ a trefoil knot in [Bar05] and aspects are generalised to any knot in [BNG09, Dub04]
It seems a reasonable conjecture that when all the θe are sufficiently small, then a limit of
the Turaev-Viro partition function with the Fourier kernel observables gives the Ponzano-
Regge partition function with the edge observables. This is consistent with the fact that
in this limit, and with l fixed,

Kj(l)

dimq l
→ Kθ(l).

9



3.4 Physical parameters in the limits

3.4.1 The minimum mass

To understand the physics of these limits we will introduce the dimensionful parameters
into the theory. In the Turaev-Viro partition function without observables there is just
one parameter, r. On the other hand quantum gravitational physics would seem to
require three parameters, the gravitation constant G, Planck’s constant ~ and the cos-
mological constant Λ. The constant r can be written in terms of these three parameters
but then it would seem that two of the parameters are redundant.
The resolution of this paradox is that the two additional parameters play a role when

observables are introduced. In fact in three dimensions 1/G is a unit of mass and both
~G and 1/

√
Λ are units of length. Therefore one can multiply the purely numerical

measures of mass or length in Turaev-Viro observables by one of these units to get
‘physical’ masses or lengths. The reason this is worthwhile is that in considering the
scaling behaviour, it is more useful to consider the physical masses (for example) to be
fixed and scale G, than it is to consider G fixed and scale the numerical masses. This
means that the physical mass converges to a definite value in a scaling limit (rather
than, say, 0 or ∞).
In this paper, scales of lengths are not considered. Since the role of ~ is to relate the

scale of masses with the scale of lengths, its scaling is irrelevant. It can be assumed to
be a constant throughout. The two units of interest are therefore the two mass scales
1/G and ~

√
Λ.

In the Turaev-Viro model, the numerical values of the masses for the momentum
observables range from the minimum j + 1/2 = 1/2 to maximum j + 1/2 = (r −
1)/2, the ratio between them being r, to leading order. The physical models for these
masses[Bar03] are the zonal spherical functions on S3, which for a sphere of radius 1/

√
Λ

have masses m = ~
√
Λ(2j + 1), using as definition for mass m the eigenvalue equation

∇2φ =

(

−m2

~2
+ const.

)

φ.

Thus the numerical masses are multiplied by the physical unit 2~
√
Λ. This unit is

considered to be of cosmological origin, since the minimum mass corresponds to a particle
with wavelength the circumference of S3.

3.4.2 The maximum mass

The model of a particle wavefunction on a classical geometry given in the previous
section does not account for the maximum mass ~

√
Λ(r− 1) in the Turaev-Viro model.

A completely different argument based on general relativity can be used to identify this
maximum mass in terms of G.
The Einstein equation in three dimensions is written as

Gµν − Λgµν = 8πGTµν ,

10



the convention being that the constant 8πG is the same as in four dimensions.
The model for a particle is a conical defect in a spherical geometry. From the Einstein

equation, the defect angle is given by 8πGm [DJtH84]. Since the defect angle is less
than 2π, the maximum mass is therefore just below 1/4G. Hence

1

4G
= ~

√
Λ r

This can be rearranged to give

r =
1

4
√
ΛG~

. (18)

Now it is possible to rewrite the limits using the physical constants. The physical
mass on the i-th edge is defined as

mi = (2ji + 1)~
√
Λ = θi/8πG,

and according to the above argument, θi is the defect angle of the corresponding geom-
etry.
The two limits are

(i) mi, ji, Λ constant, G → 0, θi → 0.

(ii) mi, θi, G constant, Λ → 0, ji → ∞.

3.5 The Functional Integral

A more precise relation with the physical constants can be determined using the func-
tional integral picture. The Turaev-Viro model can be written as a functional integral
with action given by the difference of two Chern-Simons actions for SU(2) connections
A+

a and A−
a [Wit88],

S =
k

4π

∫

CS(A+
a )− CS(A−

a ),

where a is an su(2) Lie-Algebra index, that is [A±

a , A
±

b ] = ǫabcA
c±, and

CS(A) =

∫

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)

Introducing the physical scales of a gravitation constant G, Planck constant ~ and
cosmological constant Λ by

k =
1

4
√
ΛG~

and changing variables to the usual fields of first order gravity,

ωa =
1

2
(A+

a + A−

a )

ea =
1

2
√
Λ
(A+

a − A−

a )

11



gives the familiar form

S =
1

4πG~

∫

ea∧dωa+ ǫabcea∧ωb∧ωc+
Λ

3
ǫabcea∧eb∧ec =

±1

16πG~

∫

(R−2Λ)dV (19)

Of course at this stage, two of the three scales are redundant, since the partition
function without observables contains only one parameter, r. But the momentum ob-
servables considered here introduce a second parameter and the length observables (if
we included them) would introduce a third parameter.
An observable for the Chern-Simons functional integral framework is given by a gen-

eralised Wilson loop that is supported on a graph. It is specified by a representation of
the gauge group for each edge of the graph an an intertwining operator for each vertex.
According to Witten [Wit89a], the expectation value of this observable, in the case of
S3, is the corresponding quantum group evaluation for this data labelling a plane pro-
jection of the graph, using also the R-matrix for the quantum group at crossings. This
evaluation is called a spin network evaluation for the quantum group.
The quantum group relativistic spin network evaluation < Γ(j1, j2, ...) >q, which ap-

pears in (17), is an example of a spin network evaluation [Yet98]. The quantum group is
Uqsl2×Uqsl2 (with one factor using q−1 in place of q), and the representations are (j, j).
The Wilson loop observable W (j1, j2, . . .) for the functional integral that generates this
expectation value is therefore the function of the connection given by representing each
edge as the parallel transport operator for SU(2) × SU(2) in the representation (j, j),
and each vertex by the canonical intertwining operator for the SU(2) relativistic spin
networks.
The functional integral with the observable is

Z(W ) =

∫

[de][dω]eiSW (j1, j2, . . .).

The G → 0 limit is explained in a conceptual way using this formula. As the j in the
observable are fixed in this limit, it simply consists of taking the semi-classical limit in
the functional integral. For this, the functional integral can be replaced by an integral
over the space of classical fields given by the critical points of the effective action. The
effective action for Chern-Simons is the same formula as the classical action, but with k
replaced by r = k+2 [AGLR90]. This means that the physical constants are related by
(18), as before.
For the case of S3, the critical points of the effective action are all gauge-equivalent to

the trivial connection, and so, since W (j1, j2, . . .) is gauge invariant, the functional inte-
gral just amounts to evaluating W on the trivial connection. This is just the alternative
definition of the relativistic spin network for SU(2), and so leads to formula (5).
Note that we can make direct contact to the formulation of the observables in the

Ponzano-Regge context. To see this consider the observable given by inserting χj(g
+
e (g

−
e )

−1
)

into the Chern-Simons path integral for each edge of the graph, where g±e is the paral-
lel transport with respect to A± along e. As the path intgeral is gauge invariant this
observable evaluates to the same as χj(gvg

+
e gv′(g

−

e )
−1
). By gauge averaging over the gv

12



we obtain the observable W (j1, j2, . . .). On the other hand the critical points are simply
the connections gauge equivalent to the trivial one, so the non gauge invariant form of
the observable reduces to that we considered in the Ponzano-Regge model.
The Λ → 0 limit by contrast is not a semiclassical limit. Setting Λ = 0 in the

gravitational action (19) gives the Chern-Simons action for ISU(2) [Wit89b]. This is
an Inönü-Wigner contraction of the gauge group, which suggests the corrresponding
contraction of the representation matrix elements [IW53]. In such a contraction, the
representation labels are scaled simultaneously with the group contraction so that the
matrix elements of the representation converge. This is exactly the situation in the
Λ → 0 limit; however studying this systematically would stray too far from the main
aim of this paper.

4 Discussion

In this paper we discussed observables coupled to the group elements in the holonomy
formulation of the Ponzano-Regge model. Specializing to observables that are products
of characters we showed that we recover the relativistic spin network evaluation. This
also shows very simply that these have an interpretation as the evaluation of momentum
labelled Feynman diagrams on the sphere.
The previously considered observables coupled to the spin labels also have the char-

acter of momentum observables, we elucidate the presence of two types of momentum
observables by showing that they arise as two different limits of the momentum observ-
ables in the Turaev-Viro model. To understand the physics of this limit we reintroduced
the dimensionful quantities. This demonstrates that the observables introduced in this
paper, and the Ponzano-Regge model on the whole, can be understood as the semiclas-
sical limit of the Turaev-Viro model.
To further see how this happens we consider the Chern-Simons path integral formu-

lation of the Turaev-Viro model. The analogue of the holonomy observables can be
seen to be given by introducing characters depending on the product of holonomies
g+(g−)

−1
. This has a natural interpretation in terms of the geometry of a sphere as it

parametrizes the coset space of Spin(4) ∼= SU(2) × SU(2) with respect to the diagonal
subgroup SU(2)d. This coset space is just the homogeneous 3-sphere with Spin(4) as its
the global group of symmetries, our scalar observables do not see the local rotational
symmetry SU(2)d but only the translational part.
This suggests that it might be possible to interpret these observables on general

3-manifolds as particles propagating in a locally flat Cartan geometry modelled on
SU(2) × SU(2)/SU(2)d ∼= S3 on that manifold. The overall amplitude is then obtained
by averaging over the moduli space of flat Cartan geometries.
One can also consider doing a further limit that takes us from the model based on

SU(2) to the abelian model based on R
3. These should be the G → 0 limit for the

edge observables which can be considered as a semiclassical limit. This was discussed
as a commutative limit of the effective field theory in [FL06], and the Λ → 0 limit of
the group observables, which should give the same physics again in a dual picture. As
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conjectured above this should be achieved by an Inönü-Wigner contraction of the group
SU(2).
Note that in this work we find some of the dualities found by Majid and Schroers in

[MS09] at the level of the particles propagating on (non-commutative) space times at
the level of the state sums. In particular the dual limits of the Turaev-Viro observables
lead to spin network evaluations that are semi-dual in the sense of [MS09].
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[IW53] E. Inönü and E. P. Wigner, On the Contraction of Groups and Their Rep-
resentations, Proceedings of the National Academy of Sciences of the United
States of America 39(6), pp. 510–524 (1953).

[MS09] S. Majid and B. J. Schroers, q-Deformation and Semidualisation in 3d Quan-
tum Gravity, J. Phys. A42, 425402 (2009), 0806.2587.

[Oog92] H. Ooguri, Topological lattice models in four-dimensions, Mod. Phys. Lett.
A7, 2799–2810 (1992), hep-th/9205090.

[PR68] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, pages
1–58 (1968), in Spectroscopy and group theoretical methods in physics.

[Rob95] J. Roberts, Skein theory and Turaev-Viro invariants, Topology 34(4),
771–787 (1995).

[TV92] V. G. Turaev and O. Y. Viro, State sum invariants of 3 manifolds and
quantum 6j symbols, Topology 31, 865–902 (1992).

[Wit88] E. Witten, (2+1)-Dimensional Gravity as an Exactly Soluble System, Nucl.
Phys. B311, 46 (1988).

[Wit89a] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math.
Phys. 121, 351 (1989).

[Wit89b] E. Witten, Topology Changing Amplitudes in (2+1)-Dimensional Gravity,
Nucl. Phys. B323, 113 (1989).

[Yet98] D. N. Yetter, Generalized Barrett-Crane Vertices and Invariants
of Embedded Graphs, ArXiv Mathematics e-prints (January 1998),
arXiv:math/9801131.

[Yok96] Y. Yokota, Topological invariants of graphs in 3-space, Topology 35(1), 77
– 87 (1996).

15


	1 Introduction
	2 Group variables in the Ponzano-Regge model
	2.1 Character observables on S3
	2.2 General observables on S3
	2.3 Generalising S3

	3 Particles
	3.1 Particle on a Sphere
	3.2 Edge observables
	3.3 Limits of the Turaev-Viro model
	3.3.1 The limits

	3.4 Physical parameters in the limits
	3.4.1 The minimum mass
	3.4.2 The maximum mass

	3.5 The Functional Integral

	4 Discussion

