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Abstract

We study the effect of conformal anomalies on the hydrodynamic description of conformal field

theories in even spacetime dimensions. We consider equilibrium curved backgrounds characterized

by a time-like Killing vector and construct a local low energy effective action that captures the

conformal anomalies. Using as a special background the Rindler spacetime we derive a formula for

the anomaly effect on the hydrodynamic pressure. We find that this anomalous effect is only due

to the Euler central charge.
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I. INTRODUCTION AND SUMMARY

Hydrodynamics is the universal effective description of any finite temperature quantum

field theory on large time and length scales [1]. In particular, on characteristic scales L

much greater than the correlation length ℓc of the microscopic theory, the dynamics of the

theory can be effectively described in a derivative expansion by local conservation laws of the

stress-energy tensor and global symmetry currents. The conserved charges are the hydrody-

namic degrees of freedom. Quantum anomalies of the microscopic quantum field theory lead

to new non-dissipative transport terms in the hydrodynamic description. For instance, chi-

ral and mixed chiral-gravitational anomalies manifest themselves by parity violating terms

proportional to the vorticity of the fluid.

In this paper we will study how trace anomalies manifest themselves in the hydrody-

namic regime of a conformal field theory (CFT). Conformal anomalies appear in correlation

functions, e.g. two and three point functions of the stress energy tensor in two and four

dimensions, respectively (see e.g. [2]). There are no conformal-anomalies in odd dimensions.

They can also be seen in the one-point function of the energy-momentum tensor if the con-

formal field theory is coupled to an external metric g – the source for the energy-momentum

tensor – and gauge fields A – sources for conserved currents. The general structure of the

trace anomaly in d spacetime dimensions is

A(g, A) ≡ 〈T µ
µ 〉g,A = −(−)d/2aEd +

∑

i

ciIi , (1)

where Ed is the Euler-density in d dimensions and Ii are Weyl-invariant terms, their number

depending on the dimension.

In general, the trace anomaly (1) is obtained from a non-local effective action which

is derived by coupling the CFT to the external sources and integrating out the CFT [3].

In the hydrodynamic regime, however, we have a systematic derivative expansion and we

expect to be able to obtain the anomaly from a local effective action. Indeed we will show

that working on equilibrium curved backgrounds characterized by a time-like Killing vector,

there is a unique local effective action that yields the equilibrium anomalous hydrodynamics.

The independent variables that we will use are the fluid temperature T and the background

curvature. When charges are present, we also have the ratio of the chemical potential and

temperature, µ/T , and the background gauge field strength.
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The anomalous local hydrodynamic effective action takes the form

Sanom = −
∫ 1

0

dt

∫ √−g ddx ln(T/T0)A
(

(T/T0)
tg
)

, (2)

where T0 is a constant. The form of this action follows from the Wess-Zumino procedure

of integrating the anomaly [4, 5]. It is precisely the same anomalous local effective action

one obtains by adding a dilaton τ , with the replacement τ → − ln(T/T0)
1. An immediate

consequence of (2) is that the hydrodynamic effective action for the Weyl invariant parts of

the anomaly (1) is

SWeyl = −
∑

i

ci

∫ √−g d4x ln(T/T0)Ii . (3)

Consider, for instance, the four-dimensional case. The trace anomaly reads

T µ
µ = −aE4 + cW 2 + κF 2 , (4)

where

E4 = R2 − 4RµνR
µν +RµνλσR

µνλσ , (5)

W 2 is the Weyl tensor squared

W 2 = 1
3
R2 − 2RµνR

µν +RµνλσR
µνλσ , (6)

and F 2 is the square of the gauge field strength. When the symmetry current is the U(1)

R-current of an N = 1 supersymmetric theory, κ and c are equal up to an overall numerical

constant. In this case, a and c also determine the R-current anomaly.

The local effective action (2) is Sanom = SEuler+SWeyl+SVector, where the last two actions

correspond to the Weyl invariant parts of the anomaly. One obtains

SEuler = −a

∫ √−g d4x
(

ln(T/T0)E4 − 4Gµνaµaν + 4 aλa
λ(∇µa

µ)− 2 (aµa
µ)2

)

, (7)

with Gµν = Rµν − 1
2
gµνR the Einstein tensor and aµ = −∇µ lnT is the fluid acceleration.

This yields the trace anomaly part −aE4. The Weyl invariant parts (3) are

SWeyl = −c

∫ √−g d4x ln(T/T0)WµνρσW
µνρσ , (8)

1 This observation is due to A. Schwimmer.

3



which yields the trace anomaly part cW 2 and

SVector = −κ

∫ √−g d4x ln(T/T0)FµνF
µν , (9)

which yields the trace anomaly part κF 2.

The anomaly (1) arises at order d in derivatives (the vector part at order d
2
). However,

by taking the background spacetime to be a Rindler space without a background gauge

field, we will show that the anomaly has an effect also at zero order in derivatives on the

hydrodynamic pressure P

P = (ξ(λ∗) + n(2π)da)T d , (10)

where ξ(λ) represents a coupling dependent term that arises from local conformally invariant

terms in the effective action and λ∗ is the fixed point value of the coupling. n is a numerical

coefficient that depends on the normalization that one chooses for the Euler form.2 We will

show how to calculate n in arbitrary dimension and will calculate it explicitly in four and six

dimensions. Interestingly, the coefficients ci of the Weyl invariant anomalies do not appear

in the formula.

Eq. (10) is the d-dimensional analog of the two-dimensional “Cardy formula” for the

pressure of the CFT in the infinite volume limit [6, 7], with ξ = 0, n = 1

P = 4π2c T 2 . (11)

Here c is the trace anomaly central charge

T µ
µ = cR . (12)

In [8] the authors argued that this jump in the derivative expansion can be explained by

a “Casimir momentum density” and computed it by considering the theory on a Euclidean

cone.

The paper is organized as follows. In section 2 we will briefly review the hydrodynamics

framework, quantum anomalies and the partition function for non-dissipative terms. We

will introduce the use of Rindler spacetime as a background tool to study the effect of trace

anomaly on lower order terms in the hydrodynamic derivative expansion. In section 3 we

2 Our normalization will be E2p = 1

2p
Rµ1ν1ρ1σ1

· · ·Rµpνpρpσp
ǫ
µ1ν1...µpνpǫ

ρ1σ1...ρpσp = R
p + . . . .
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will consider the conformal anomaly in two-dimensional spacetime. We will briefly review

the work of [8] on effective action for d = 2 CFT’s and show explicitly how evaluating

the stress-energy tensor on the Rindler metric reproduces the Cardy formula (11). In Sec-

tion 4, we study the generalization to higher dimensions and derive the anomalous actions

hydrodynamic actions and the formula for the pressure (10).

II. HYDRODYNAMICS AND QUANTUM ANOMALIES

A. The relativistic hydrodynamics framework

Hydrodynamics is described just by local conservation laws, with conserved charges as

the low energy degrees of freedom. The most familiar example is the conservation of the

energy-momentum stress tensor T µν

∇µT
µν = 0 , (13)

where the energy density T 00 = ρ and spatial momentum T 0i = Πi are the conserved

quantities. In order to have a closed system of equations, the remaining set of variables T ij

must be determined. The hydrodynamic ansatz (constitutive relations) is to express these in

terms of the energy density and spatial momentum and work order by order in an expansion

in the dimensionless small quantity ℓc/L. This amounts to

T ij = Pδij +∆ij(∂ρ, ∂Πi) , (14)

where P is the pressure, which is related to the energy density via the equation of state, and

∆ij contains higher order corrections depending on derivatives of the conserved charges.

One can now write the stress tensor in boost covariant form and exchange the variables

(ρ,Πi) in favor of (T, uµ), where T is the fluid temperature and uµ = (γ, γvi) is the fluid

four-velocity satisfying uµu
µ = −1. The result is

T µν = (ρ(T ) + P (T ))uµuν + P (T )gµν +∆µν(∂T, ∂u) . (15)

In cases where there are additional conserved charges the hydrodynamics equations must be

supplemented by an additional conservation equation for each such charge density n

∇µJ
µ = 0 . (16)
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Following the same procedure as before, the current takes the form

Jµ = nuµ + νµ, (17)

where νµ contains derivative corrections.

The first two terms in (15) and the first term in (17) at zeroth derivative order represent

an ideal, equilibrium fluid. Indeed, using the thermodynamic relations

ρ+ P = s T + µn ,

dρ =T ds+ µ dn , (18)

dP = s dT + n dµ ,

where s is the fluid entropy density and µ a chemical potential, one can show that the

equation uν∇µT
µν = 0 can be re-expressed as the conservation of the entropy current sµ [1]

∇µs
µ = ∇µ(su

µ) = 0 . (19)

In the standard theory [1], higher derivative corrections are associated with non-

equilibrium physics. In this setting, the meaning of the fluid variables (ρ, n, uµ), which

were originally defined relative to the equilibrium, is ambiguous. This field redefinition am-

biguity can be fixed by the choice of Landau “frame”: ∆µνuν = 0 and νµuµ = 0, which

means higher order derivative corrections do not change the energy density and conserved

charge n. Imposing this condition and requiring that higher order corrections to the entropy

are such that the Second Law ∇µs
µ ≥ 0 holds, one finds

∆µν = −2η σµν − ζP µν(∇λu
λ) . (20)

νµ = −σc T P µν∂ν

(µ

T

)

, (21)

where P µν = gµν +uµuν and σµν = P µλP νσ
(

∇(λuσ) − 1
d−1

Pλσ(∇λu
λ)
)

is the trace-free shear

tensor. We define ∇(µuν) =
1
2
(∇µuν +∇νuµ) and likewise (with minus sign) for ∇[µuν]. The

transport coefficients η, ζ and σc are the shear viscosity, bulk viscosity and conductivity,

respectively. To first order, the dissipative correction to the entropy current has the form

sµ = suµ − µ

T
νµ . (22)

Interest in hydrodynamics as an effective field theory has been re-kindled over the past

several years largely due to the holographic AdS/CFT correspondence [9] which states that
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certain conformal field theories are equivalent to (quantum) gravity on asymptotically anti-

de-Sitter (AdS) space-times in one higher dimension. An interesting consequence of this

duality is that the hydrodynamic regime of a strongly coupled conformal field theory (e.g.

the N = 4 super Yang-Mills theory at large Nc) is dual to a perturbed classical black brane

solution in five-dimensional asymptotically AdS spacetime [10]. The hydrodynamics of this

theory with a R-charge was studied in [11, 12] using the dual gravitational solution with a

bulk Chern-Simons term. It turns out that the charge current in (21) receives an unexpected

additional parity violating term ξωµ proportional to the fluid vorticity,

ωµ =
1

2
ǫµνλσuν∇λuσ . (23)

The existence of this term at the hydrodynamical level is a consequence of the chiral anomaly

of the microscopic quantum field theory and is independent of any holographic duality

[13, 14]. Similarly, the mixed chiral gravitational anomaly also leads to new, non-trivial

transport coefficients at hydrodynamical level [15–17]. Note, that these various anomalous

terms and new transport coefficients are non-dissipative even though they are higher order

in the derivative expansion. Positivity of the entropy current divergence provides means of

constraining the transport coefficients. In particular, it fixes uniquely the form of the chiral

anomalous transport in hydrodynamics.

B. Partition function

It has recently been shown [18, 19] that the relations between the non-dissipative co-

efficients appear because equilibrium hydrodynamics can be alternatively described by a

single partition function or effective action. The constraints on the form of the stress tensor

and currents arising via the variation of a Lagrangian are the same as if one introduced

a conserved entropy current at the level of the equations of motion. The idea is that in

hydrodynamic equilibrium, correlation functions can be obtained by the variation of a local

action

S =

∫

ddxL(x) . (24)

In order to be gauge and diffeomorphism invariant, the Lagrangian is made up of scalars

constructed out of the background metric gµν and background gauge fields Aµ, the temper-

ature, any chemical potentials, and the fluid four-velocity. One computes the stress-energy
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tensor and the charge current via the effective action using

T µν =
2√−g

δS

δgµν
, Jµ =

1√−g

δS

δAµ

. (25)

The notion of equilibrium is characterized by the existence of a timelike Killing vector

V µ defined such that

LV gµν =0 , (26)

LVAµ =0 , (27)

where LV is the Lie derivative. Identifying uµ = V µ/
√
−V 2, one can show these equations

imply the vanishing of the fluid shear and expansion

σµν = 0 , (28)

∇µu
µ = 0 , (29)

and thus, using also T = T0/
√
−V 2 with constant T0 and µ = T

T0
AµV

µ, we have the relations

∇µuν = −uµaν + Ωµν , ∇µ lnT = −aµ, ∇µµ = −µaµ + Eµ , (30)

where the acceleration and vorticity tensor are

aµ = uν∇νuµ, Ωµν = P µλP νσ∇[λuσ] , (31)

and Eµ = F µνuν .

Thus, we construct the effective action in the following way. In addition to the tem-

perature and the chemical potential, we build scalars from aµ, Ωµν , Eµ, and invariants of

the background Riemann tensor Rµνλσ and their derivatives. An equivalent and sometimes

useful representation is to choose V µ∂µ = ∂t. One can then write the equilibrium metric in

the Kaluza-Klein (KK) form (dimensionally reducing over the time coordinate) and splitting

the gauge potential into time and space components [19]:

ds2 =− e2f(x)(dt+ bi(x)dx
i)2 + gij(x)dx

idxj , (32)

Aµ =(A0, Ai) . (33)

In this representation, T = T0e
−f , where T0 is a constant. In addition, ai = ∇if and the

KK photon field bi is related to the vorticity tensor, while the full d-dimensional curvature

is replaced by the (d− 1)-dimensional curvature constructed from the spatial metric gij.
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C. Conformal anomaly and Rindler space

Consider the conformal anomaly in d = 2 (12). The anomaly arises here at second order

in derivatives (due to the Ricci scalar), but it was shown in [6, 7] that there is a “Cardy

formula” for the pressure of the CFT in the infinite volume limit (11). Thus a zeroth order,

equilibrium quantity is related to the anomaly coefficient, which one would naively expect

to first appear at second order hydrodynamic expansion. In [8] the authors argued that this

jump in the derivative expansion can be explained by a “Casimir momentum density” and

computed by considering the theory on a Euclidean cone

ds2 = dr2 + r2dτ 2 , (34)

where τ ∼ τ +2πδ, such that 2π(1−δ) is the deficit angle of the cone. The conical geometry

(periodicity in time coordinate) induces a temperature, which depends on the value of the

deficit angle

T−1 = 2πδr . (35)

In this setting ∇T/T = −r−1 which means the derivative expansion breaks down when

r . 1. Computing the stress-energy tensor (25) on the conical geometry and taking the

limit δ → 1 where the theory approaches the Euclidean vacuum, one finds that the Cardy

formula (11) arises from the requirement that both the temperature T and the stress tensor

vanish in this limit [8].

Placing the theory on a conical geometry requires to deal with the singularity at the tip.

In principle, one should worry about potential degrees of freedom at the singularity. Also,

in the limit δ → 1 where field theory states on the cone geometry become the Euclidean

vacuum, the effective action is not continuous. This suggests the possibility that relations

between transport coefficients and anomaly coefficients should be dealt with care and may

not hold in general. In this paper we will rephrase the argument of [8]. First, we will

consider a theory at finite temperature T0 in ordinary Minkowski space. Here T0 is the

intrinsic temperature of the theory and is not induced by the geometry itself. Suppose now

that this theory is placed in Rindler wedge of Minkowski space, which is given by

ds2 = −x2
1dt

2 + dxidx
i , (36)
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where i = 1, . . . , (d− 1). In this setting, the effective (Tolman) temperature is

T =
T0

x1
. (37)

Despite the fact that the temperature is no longer a constant, the theory is in equilibrium.

In fact the form of the temperature follows from the equilibrium condition aµ = −∇µ lnT

derived above, where aµ is the non-zero acceleration of V µ/
√
−V 2, where V µ∂µ = ∂t is

the timelike Killing vector of the Rindler metric. As in the conical case, this form of the

temperature implies the breakdown of the derivative expansion near the Rindler horizon at

x1 = 0. Now the key step is to tune the temperature to the special value T0 = 1/2π. This

is crucial because it has been proven that for any interacting field theory [20, 21]

Z−1Tr(e−2πHRO) = 〈0|O|0〉 , (38)

where HR is the Rindler Hamiltonian generating time translations on the Rindler metric

and |0〉 is the zero temperature Minkowski vacuum. Thus, at this special temperature,

the thermal expectation value of an operator O in a given theory on the Rindler wedge is

equivalent to the zero temperature Minkowski vacuum expectation value. Taking O = T µν

and

〈0|T µν|0〉 = 0 , (39)

reproduces the essential features of the cone argument but without having to deal with

a singular point as the Rindler metric is flat everywhere. More physically, although the

Rindler metric is flat, there is an effectively constant background gravitational field which

illuminates the anomaly structure.

In section 4, we will use this procedure to analyze conformal hydrodynamics with anomaly

in four and higher dimensions and derive the relation (10). Note that recently the conformal

anomaly has been discussed in the context of heavy ion collisions [22].

III. CONFORMAL HYDRODYNAMICS AND ANOMALY IN d = 2

In this section we consider the conformal anomaly in d = 2 hydrodynamics. The discus-

sion parallels the one in [8] and is a preparation for the higher dimensional analysis in the

next section. As discussed, the effective action is built from the background metric and other
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fields characterizing the equilibrium state. In addition to being diffeomorphism and gauge

invariant, a non-anomalous effective action must also be conformally (or Weyl) invariant.

To consider the conformal anomaly, we introduce a conformally non-invariant, second order

term into the effective action such that

δσSanom =

∫ √−g σ T µ
µ , (40)

where δσ is a Weyl variation of the background fields.

Under a Weyl transformation, in general dimension,

gµν → g̃µν = e2σgµν , (41)

from which the (infinitesimal) transformation of our fields follow:

δσgµν = 2 σ gµν ,

δσu
µ = −σ uµ ,

δσT = −σ T ,

δσµ = −σ µ ,

δσaµ = ∇µσ , (42)

δσΩµν = σΩµν ,

δσFµν = 0 ,

δσEµ = −σ Eµ .

In two dimensions there are two important simplifications. The vorticity tensor Ωµν is

identically zero and the background Riemann curvature for the equilibrium metric (e.g. (32))

is not independent

Rµνρσ = −∇λa
λ (gµρgνσ − gµσgνρ) . (43)

Thus, we have T , µ, aµ, Eµ and their derivatives from which we can construct scalars. One

can always trade derivatives of the temperature and the chemical potential for aµ and Eµ

using the equilibrium relations.

Up to second order in derivatives, the conformally invariant effective action in two di-

mensions takes the generic form

Sinv =

∫

d2x
√−g

(

T 2 p0 +
1

T 2
αEµE

µ

)

, (44)
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where p0 and α are functions of the Weyl invariant ratio µ/T . In the case where the theory

has no charge,

Sinv =

∫

d2x
√−g T 2p0 (45)

with p0 = const. Sinv is exact to all orders in the derivative expansion. The reason is

that the Weyl tensor Wµνρσ, which transforms homogeneously under a Weyl transformation,

is identically zero in 2d and there are no invariant scalars one can construct only from

derivatives of aµ.

Consider next the conformal anomaly (12). In general the trace anomaly is generated by

a non-local effective action. In two dimensions the conformal variation δσ of the Polyakov

action

SP ∼
∫

d2x
√−g R�−1R , (46)

yields (12) in general. However, on the equilibrium background metric (32), R = −2�f .

This indicates that the Polyakov action may take a local form on these backgrounds. Note,

however, that �−1�f = f only when f is zero at infinity.

One procedure is to find all the possible scalars constructed from aµ at second order in

derivatives and to find the linear combination whose Weyl variation gives the anomaly. In

2d the task is simple: the only possibility is

Sanom = c

∫

d2x
√−g aµa

µ , (47)

since ∇µa
µ is a total derivative. Indeed, δσSanom = −2c

∫

d2x
√−g σ∇µa

µ which is equivalent

to cR on the equilibrium background metric. Thus, the trace anomaly can be generated from

a local effective action in the hydrodynamic regime.

An alternative way of writing the effective action is to use (2)

Sanom = c

∫

d2x
√−g (− ln(T/T0)R− aµa

µ) . (48)

The equivalence holds on the equilibrium metric backgrounds, using (43) and (30) and

integrating by parts.

The resulting equilibrium hydrodynamic stress-energy tensor follows from the metric

variation of S = Sinv +Sanom via (25). Note, that in addition to the explicit metrics, aµ and
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T also implicitly depend on the metric. One can write the stress-energy tensor up to second

order in perfect fluid form

T µν = ρ uµuν + P P µν , (49)

where

ρ = p0T
2 − caµa

µ − α

T 2
EµE

µ + 2c∇µa
µ (50)

P = p0T
2 − caµa

µ − α

T 2
EµE

µ . (51)

Again, in the uncharged theory (µ = 0), the results for the energy density and pressure are

exact to all orders. This result shows that, as expected, the anomaly coefficient affects the

hydrodynamics at second order in the derivative expansion on a generic curved background.

We now evaluate this stress-energy tensor on the Rindler metric (36). In this case R ∼
∇µa

µ = 0, but

aµa
µ =

1

x2
1

=
T 2

T 2
0

, (52)

has a non-trivial value. One finds

ρ = P =

(

p0 −
c

T 2
0

)

T 2 . (53)

So while the trace vanishes on the flat background, the anomaly still appears in the values

of the energy density and pressure. Setting T0 = 1/2π and requiring that the stress-energy

tensor vanishes yields (11) for Minkowski space, exactly as found in [8], by putting the

theory on the Euclidean cone. As before, this result is exact in the uncharged case, if a

charge current is present on the Rindler background there are O(µ) corrections.

IV. CONFORMAL HYDRODYNAMICS AND ANOMALY IN HIGHER DIMEN-

SIONS

A. Four dimensions

We will first consider the generalization of the effective action approach to the case of four-

dimensional CFT’s. As before, the first step is to find all the conformally invariant scalars

that can contribute, at a given order in derivatives. In this case we have a proliferation of
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possible terms because the curvature is now an independent variable and the vorticity tensor

is non-zero. At zeroth order we have just

L
(0)
inv =

√−gp0T
4 , (54)

where p0 is a function of the Weyl invariant ratio µ/T . At higher orders, one can construct

conformal invariants from Fµν , which is invariant, and the vorticity, which transforms ho-

mogeneously. Another possible tensor which transforms homogeneously is ∇µaν − ∇νaµ,

but for aµ = −∇µ lnT it vanishes. Finally, one can also build invariants from the Riemann

tensor Rµνλσ constructed from a Weyl covariant connection [23],

Rµνλσ = Rµνλσ − 4 δα[µgν][λδ
β
σ](∇(αaβ) + aαaβ −

1

2
gαβaλa

λ) . (55)

It is constructed such that it is, as the Weyl tensor, invariant under Weyl transformations

δσRµνλ
τ = 0 . (56)

At second order in derivatives in Linv there are the terms
√−gFµνF

µν ,
√−gT 2R,

√−gT 2ΩµνΩ
µν , and

√−gTFµνΩ
µν . At fourth order we have e.g.

√−gRµνρσRµνρσ,
√−gRµνRµν ,

√−gR2,
√−g(ΩµνΩ

µν)2, etc. All of these terms are multiplied, in general, by

functions of the invariant quantity µ/T , which depend on the microscopic theory.

We want to derive the trace anomaly (4) from a local effective action. Note, that

δσ ln(T/T0) = −σ and recall from (30) aµ = −∇µ ln(T/T0). The Weyl transformation

of − ln(T/T0) is the same as that of the dilation τ in an spontaneously broken CFT, for

which the effective action with the dilaton can be constructed by integrating the anomaly.

The effective action in the hydrodynamic regime is then simply obtained by the replacement

τ → − ln(T/T0). This yields the anomalous actions (7), (8) and (9). Note, however, that

ln(T/T0) is not an independent field from the background and it transforms under generic

variations of the metric which contribute to the energy-momentum tensor.

There is an alternative form for SEuler, just as in 2d there were two equivalent actions,

(47) and (48). This is because the Euler density Ed is a total derivative in d dimensions and

one can integrate the − ln(T/T0)Ed term by parts. In the case of vanishing vorticity, i.e.

bi(x) = 0 in (32) on equilibrium backgrounds, E4 = ∇µV
µ with

V µ = 8(aλa
λ)aµ + 8Gµνaν − 8(∇λa

λ)aµ + 4∇µ(aλa
λ) . (57)
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Inserting this into (7) and integrating by parts leads to

SEuler = −2a

∫ √−g d4x
(

4aλa
λ(∇µa

µ)− 2Gµνaµaν − 3(aµa
µ)
)

. (58)

It is straightforward to show that this action reproduces the Euler anomaly when evaluated

on an equilibrium background with zero vorticity.

From the metric variation of SEuler +SWeyl + SVector one can find the contributions to the

stress-energy tensor, T µν
Euler + T µν

Weyl + T µν
Vector, due to the anomaly (which is at fourth order).

As SWeyl and SVector contain only terms quadratic in the curvatures of the background fields,

it follows immediately that they do not contribute in a flat background. This leaves the

contribution from SEuler. It is straightforward to evaluate T µν
Euler, but the resulting expression

is not very illuminating. Its evaluation on a Rindler background is, however, very simple

and we find it takes the perfect fluid form, with

PEuler =
1

3
ρEuler = −2a

T 4
0

T 4 . (59)

The zeroth order contribution from the invariant part (54), evaluated on Rindler space, also

yields

T µν = p0T
4(4uµuν + gµν) (60)

so that P0 = p0T
4 and ρ0 = 3P0, as expected. Finally, the higher derivative invariant

terms in the effective action also contribute, but in a model dependent way. Since the

derivative expansion breaks down in Rindler space, there are in principle an infinite number

of these terms at arbitrary order in derivatives contributing to the equilibrium pressure.

Parametrizing their contribution by a function ξ(λ, T0), where λ is a coupling constant in

the microscopic theory, we obtain

Ptot =

(

p0 − ξ(λ, T0)−
2a

T 4
0

)

T 4 . (61)

Demanding that the stress tensor vanishes in the Minkowski vacuum T0 = 1/2π yields the

analog of the Cardy formula in 4d (10) with n = 2. Thus, unlike in two dimensions, there

is no simple, universal Cardy formula where the pressure depends only on the anomaly and

therefore is independent of the coupling. In fact, we know that in general the pressure of

a 4d CFT should depend on the coupling. For example, in the N = 4 SYM at large Nc,

the pressure in the free field theory limit differs from the strong coupling value determined
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via the AdS/CFT correspondence by the famous factor of 4/3, while the trace anomaly

coefficients do not change from weak to strong coupling [24]. Also, field theory calculations

at weak coupling show that the pressure is indeed coupling dependent [25].

B. Higher dimensions

It is straightforward to generalize the above analysis to arbitrary even dimension. First,

since the anomalous action for the Weyl invariant terms SWeyl (3) contains only terms of at

least second power in the curvatures of the background fields, it follows that they do not

contribute the stress-energy tensor in a flat background. This leaves only the contribution

from SEuler. This action can be calculated from (2). For instance, in six dimensions it can

be read from the dilaton action (B.17) in [26] by replacing τ → − ln(T/T0). Evaluating it

on a Rindler background gives

PEuler =
1

d− 1
ρEuler = −na

T d
0

T d , (62)

which is the value of the dilaton Lagrangian density evaluated on Rindler space.

The zeroth order contribution from the invariant part

L
(0)
inv =

√−gp0T
d , (63)

evaluated on Rindler space, also yields

T µν = p0T
d(duµuν + gµν) , (64)

and P0 = p0T
d, ρ0 = (d − 1)P0. As in four dimensions we parametrize the contributions of

the higher derivative invariant terms in the effective action by ξ(λ, T0). Then,

Ptot =

(

p0 − ξ(λ, T0)−
na

T d
0

)

T d . (65)

Demanding that the stress-energy tensor vanishes in the Minkowski vacuum T0 = 1/2π

yields (10). In six dimensions we get n = 24.
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