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1,2 Université de Mons – UMONS, 20 Place du Parc, 700 Mons, Belgium

3 Albert Einstein Institute, Golm, Germany, D-14476, Am Mühlenberg 1

3 Lebedev Institute of Physics, Moscow, Russia, 119991, Leninsky pr-t, 53

Abstract

We use the Fradkin-Vasiliev procedure to construct the full set of non-abelian cubic vertices for

totally symmetric higher spin gauge fields in AdSd space. The number of such vertices is given by

a certain tensor-product multiplicity. We discuss the one-to-one relation between our result and

the list of non-abelian gauge deformations in flat space obtained elsewhere via the cohomological

approach. We comment about the uniqueness of Vasiliev’s simplest higher-spin algebra in relation

with the (non)associativity properties of the gauge algebras that we classified. The gravitational

interactions for (partially)-massless (mixed)-symmetry fields are also discussed. We also argue that

those mixed-symmetry and/or partially-massless fields that are described by one-form connections

within the frame-like approach can have nonabelian interactions among themselves and again the

number of nonabelian vertices should be given by tensor product multiplicities.
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1 Introduction

In 1987, Fradkin and Vasiliev solved the problem of cubic interactions for higher spin gauge fields

among themselves and with gravity [1,2]. A key ingredient of their construction was the expansion of

all fields around the anti-de Sitter (AdS) background of dimension four instead of the Minkowskian

flat background. It proved very convenient to use commuting sl(2,C) Weyl spinors although there

is a priori nothing fundamental, at that stage, with the dimensionality of the background. The

problem can indeed be considered in an AdSd background of arbitrary dimension d > 4 , which is

the framework of the present paper where we explicitly build and classify all the possible non-abelian

couplings between totally-symmetric higher-spin (including spin-2) gauge fields in AdSd with d > 4 .

By non-abelian cubic vertices, we mean those which non-trivially deform the abelian gauge algebra of

the free theory.

For that purpose, we use the Fradkin-Vasiliev procedure whereby the free theory is presented in

the frame-like approach, starting from a Lagrangian quadratic in the linear curvature two-forms. The

cubic vertices are obtained by substituting non-linear deformations of the curvature two-forms inside

the quadratic, free action. The very structure of these non-linear deformations automatically implies

that the gauge algebra is non-abelian to the first non-trivial order in deformation. We also adopt the

MacDowell-Mansouri-Stelle-West formulation of gravity [3–5] and its higher-spin generalization [6]

which makes the AdSd symmetry manifest through the introduction of an extra field, sometimes

called compensator, inside the Lagrangian. For recent works along the same lines, see e.g. [7–12].

Our main result can be stated in a concise way: given three totally-symmetric gauge fields with

spins s, s′ and s′′, the number of independent non-abelian vertices is given by the tensor product

multiplicity

s− 1
⊗

s′ − 1 −→ s′′ − 1 , (1.1)

i.e. by all the possible independent ways to contract two rectangular two-row so(d − 1, 2) tensors

in order to form another two-row rectangular so(d − 1, 2) tensor of given length. The lengths of

the diagrams involved are related to the spins as indicated above. The gauge fields valued in such

irreducible tensor representations of the anti-de Sitter algebra so(d − 1, 2) have been proposed for

the description of higher-spin fields by Vasiliev in [6]. At the same time, this multiplicity equals the

number of non-abelian vertices in Minkowski space, [13]. The vertices we construct are off-shell and

not subjected to any transverse/traceless gauge condition. A particular way of contracting indices in

(1.1) is given by the Vasiliev higher-spin algebra [14]. This algebra is a unique associative algebra with

spectrum of generators (1.1) and all other non-abelian deformations lead to nonassociative algebras

that can hardly be consistent at the quartic level.
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Among all the possible types of vertices: abelian, non-abelian, Chern-Simons-like etc.4, the non-

abelian ones contain more information about the full theory, whatever it is. Consistency at the quartic

level may however require some abelian cubic vertices to be added, see the discussion in [16] and [17].

The construction that we present here for the classification of the non-abelian cubic vertices in

AdSd uses the sp(2) technology developed by Vasiliev and collaborators [14, 18, 19] and shows some

similarity with the cohomological method [20] used in [13] for the classification of the non-abelian

algebras in flat space, to first order in deformation. Both the present approach to consistent vertices

and the cohomological one have the advantage that they provide a completely algebraic reformulation

of the consistent-coupling problem. It is a priori not clear that the Fradkin-Vasiliev ansatz leads to

the most general non-abelian deformations. As a matter of fact, and in agreement with what was

argued in [12], we find that it actually produces the exhaustive list of non-abelian cubic vertices in

AdSd . This follows from the following argument: On the one hand, we have at our disposal [13] the

complete classification of non-abelian gauge-algebra deformations, for any given triplet (s, s′, s
′′

) of

higher-spin gauge fields in flat background. On the other hand we know that to every non-abelian

vertex in AdSd for totally symmetric gauge fields there is a corresponding non-abelian vertex in flat

space [16]. Therefore, if one constructs – as we do in this paper – a list of independent non-abelian

vertices in AdSd whose number corresponds to the number of non-abelian vertices in flat space, then

one automatically has access to the full list of non-abelian vertices in AdSd . Indeed, assuming the

existence of additional, independent non-abelian vertices in AdSd , the corresponding flat limit along

the lines of [16] – which entails starting from the nontrivial terms in the Lagrangian containing the

highest number of partial derivatives, a filtration that can always be done for cubic vertices in AdSd

– would give rise to additional and independent non-abelian vertices in flat space, thereby giving a

total number of non-abelian vertices exceeding the upper bound obtained in [13].

Manifestly covariant cubic vertices in flat space of arbitrary dimension have been explicitly written

by many authors by now [21–24]5. The situation is not exactly the same in AdSd , see e.g. [29–31] for

some very recent endeavours. A noticeable exception is the very general analysis provided in [12], that

shows how to classify vertices in AdSd using the frame-like formalism. In [12] the set of generating

functions for non-abelian vertices has also been suggested. Our goal is to elaborate on the algebraic

structure of non-abelian cubic vertices. Vertices that explicitly involve the (generalized) Weyl tensors

will not be studied here. The triplets of spins (s, s′, s′′) with s 6 s′ 6 s
′′

considered in [12] have to

satisfy the triangle inequality s
′′

< s+ s′ that coincides with the necessary condition obtained in [13]

4See e.g. [12] for some terminology in the present context, and [15] in the general case of a local gauge theory.
5The fundamental results on cubic interaction have been obtained by Metsaev within the light-cone approach, [25–27].

For a non-technical review on higher-spin gravity that includes a discussion on cubic vertices, see [17]. See also [28].
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for the existence of non-abelian vertices in flat spacetime.

We also discuss gravitational interactions of various (partially)-massless (mixed)-symmetry fields.

The gravitational interactions are the simplest ones and we show that these can always be introduced

for certain types of gauge fields, though not for all interestingly enough. At the end we give a

general argument that the number of nonabelian vertices among various (partially)-massless (mixed)-

symmetry fields should again be given by certain tensor product multiplicities.

The plan of the paper is as follows. Section 2 reviews the frame-like formulation of free, totally

symmetric higher-spin gauge fields in manifestly so(d − 1, 2)-covariant fashion along the lines of [6].

In Section 3 we briefly review the Fradkin-Vasiliev ansatz for cubic, non-abelian vertices in AdSd ,

in the frame-like formalism. A more detailed account can be found in [12]. In Section 4 we present

the sp(2)-invariant operators from which we construct the full list of non-abelian gauge algebras for

candidate cubic vertices. In Section 4 we also show that, among the various gauge algebras that

are obtained at the first nontrivial order in interaction, only one can be elevated to an associative,

infinite-dimensional higher-spin algebra. This algebra is nothing but the algebra originally found by

Eastwood [32], isomorphic to the one used by Vasiliev [14] for his construction of fully nonlinear

equations in AdSd . We then show in Section 5 that all the possible, non-equivalent gauge algebra

deformations are indeed realized by consistent cubic vertices, and that their number coincides with the

total number of non-abelian gauge algebras in flat spacetime found in [13]. The computation of some

coefficients entering the cubic vertices is given in the Appendix. The gravitational interactions for more

general types of fields including partially-massless fields and mixed-symmetry fields are considered in

Section 6. Finally, Section 7 contains our conclusions.

2 Free fields and the linear action

Nonlinear equations for an infinite tower of totally symmetric gauge fields in arbitrary dimension have

been given by Vasiliev in [14]. These equations are background independent, but the gauge algebra

contains the AdSd algebra as maximal finite-dimensional subalgebra, and the simplest exact solution

of Vasiliev’s equations is empty AdSd spacetime.

The AdSd exact solution around which one can linearize the full nonlinear equation is presented

in the way used by MacDowell-Mansouri and Stelle-West [3, 5]:

RA,B
0 = (D0)

2 = dWA,B
0 +WA,C

0 ∧W0C
B = 0, (2.1)

whereWA,B
0 = −WB,A

0 is the background 1-form connection transforming in the adjoint representation

of so(d − 1, 2) , namely in the antisymmetric rank-2 representation of so(d − 1, 2) . The differential

D0 is the corresponding covariant derivative around AdSd . The important ingredient that allows to
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combine the vielbein and spin-connection fields of Lorentz-covariant formulation of gravity into the

single so(d− 1, 2) -connection W0 is the compensator vector V A that is constrained to satisfy

V AV BηAB = −Λ−1, (2.2)

where Λ is the cosmological constant. Assuming one fixes V in such a way that (2.2) is satisfied, the

algebra of so(d− 1, 2) rotations preserving V is identified with the Lorentz algebra so(d− 1, 1) . Then

one can introduce a one-form frame field

EA
0 := D0V

A = dV A +W0
A
BV

B , (2.3)

which is assumed to have maximal rank d . From (2.2) we find

EA
0 VA = 0 . (2.4)

A spin-s massless field in AdSd spacetime can be described [6] by a one-form WA(s−1),B(s−1)

carrying the irreducible representation of the AdSd isometry algebra so(d − 1, 2) described by the

traceless two-row rectangular Young diagram of length s − 1. Then one constructs the linearized

higher-spin two-form curvature

R
A(s−1),B(s−1)
1 = D0W

A(s−1),B(s−1) . (2.5)

The curvature (2.5) is gauge invariant with respect to abelian gauge transformations

δ0W
A(s−1),B(s−1) = D0ξ

A(s−1),B(s−1), (2.6)

which follows from the fact that (D0)
2 = 0 .

To properly describe free massless spin-s field one should impose the following equations of motion

[6, 33], called the first on-mass-shell theorem,

R
A(s−1),B(s−1)
1 ≈ EM

0 EN
0 CA(s−1)

M,
B(s−1)

N , (2.7)

where CA(s),B(s) is an irreducible two-row so(d − 1, 2) tensor subjected to the extra V -transversal

constraint

CA(s−1)M,B(s)VM = 0 . (2.8)

The zero-form CA(s),B(s) generalizes the Weyl tensor of gravity to the higher-spin case, in the sense

that, in the spin-2 case, the Einstein equations linearized around AdS can be written in the form

RA,B
1 ≈ EM

0 EN
0 CA

M,
B
N , (2.9)

where CA(2),B(2) only contains the linearized Weyl tensor of gravity when decomposed under so(d −

1, 1) , as a consequence of the V -transversality condition (2.8).
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The quadratic action for the symmetric spin-s gauge field is [6]

S0 =
1

2

∫

ddx

s−2∑

p=0

a(s, p)VC(2(s−2−p))GMNPQR1
MB(s−2),NC(s−2−p)D(p)R1

P
B(s−2),

QC(s−2−p)
D(p),

(2.10)

where

VA(n) =

n
︷ ︸︸ ︷

VA . . . VA, GM1M2...Mi
= ǫNM1M2...MiRi+1...Rd

V NE
Ri+1

0 . . . ERd

0 ,

a(s, p) = αs(−1)pΛ−p (d− 5 + 2(s − p− 2))!!(s − p− 1)

(d− 5)!!(s − p− 2)!

and αs is an arbitrary normalization coefficient.

3 Fradkin-Vasiliev procedure

Deformation procedure. Given a quadratic action S0 (2.10) that is gauge invariant under the

gauge transformation (2.6) one looks for a deformation of both the action and gauge transformations

by higher-order, field-dependent corrections S = S0 + g S1 + O(g2) , δ = δ0 + g δ1 + O(g2) . The

consistency condition reads

δ0S0 + g (δ1S0 + δ0S1) + g2 (δ1S1 + δ0S2 + δ2S0) +O(g3) = 0 (3.1)

with the first term vanishing because of gauge invariance of S0 . At the cubic level one looks for a

solution of δ1S0 + δ0S1 = 0 . If one succeeds in finding such a cubic part S1 whose variation under

linearized gauge transformations δ0 vanishes on free mass-shell, then it implies that δ0S1 is proportional

to free field equations

δ0S1 = F

(
δS0

δW
, ξ,W

)

, and F (0, ξ,W ) = 0 , (3.2)

where F is trilinear in its arguments and can be used to extract δ1 . As always, the cubic action S1

and the gauge transformations δ1 are defined modulo field and gauge parameter redefinitions. The

problem of extracting δ1 out of F is purely technical and one does not need to solve it once a nontrivial

solution to S1 is found.

The Fradkin-Vasiliev procedure [1, 2] does not give the general solution to the problem of con-

structing of cubic action. However, as we will show below, it actually leads to the exhaustive list of

non-abelian cubic vertices. To cover all cubic vertices one has to extend the Fradkin-Vasiliev setup

with Weyl zero-forms, see [12] for more detail.

Yang–Mills-like transformations. The Fradkin-Vasiliev [1,2] procedure is based on the idea that

one should look for Lagrangians that are quadratic in the curvature two-forms, similarly to what

happens in Yang-Mills theory. In other words, in order to generate a cubic action, one replaces the
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linearized curvature R1 by a nonlinear completion R2 of it inside the quadratic action S ∼
∫
R1R1

from which one starts. Indeed, the action (2.10) is quadratic in the curvatures.

This implies that the one-forms {W k} are valued in some internal algebra whose product we denote

by ⋄ , with the understanding that the algebra is not necessarily associative. To fix the notation, we

have Tm ⋄ Tn = 1
2 g

k
mnTk , where the T ’s give a basis of the (possibly non-associative) internal algebra

A to which the one-forms belong. As we are going to construct the most general non-abelian cubic

vertices coupling symmetric gauge fields around AdSd, the symbol ⋄ does not denote the star product

of Vasiliev’s theory. As we said, it denotes an arbitrary product that acts on rectangular Young

diagrams of so(d− 1, 2) and can be non-associative. The curvature

R = dW +W ⋄W (3.3)

is given, in components along the generators Tk, as

Rk = dW k + fk
mnW

m ∧W n , fk
mn := gk[mn] . (3.4)

Under the Yang–Mills-like gauge transformation

δYMW = dξ + [W, ξ]⋄ , (3.5)

the curvature transforms as

δY MR = [R, ξ]⋄ + JAC (3.6)

where

JAC := [ξ ⋄ (W ⋄W )− (ξ ⋄W ) ⋄W ]− [W ⋄ (ξ ⋄W )− (W ⋄ ξ) ⋄W ] (3.7)

+ [W ⋄ (W ⋄ ξ)− (W ⋄W ) ⋄ ξ] (3.8)

is the Jacobiator. It vanishes for an associative algebra. We will not be bothered by the Jacobiator

in the following, since it comes at order W 2 and for the problem of cubic vertices we only need the

transformation of the curvature to order W . As it will be shown below, to achieve gauge invariance

of the cubic vertices, the gauge transformation will receive an extra piece δext1 having no simple

geometrical interpretation in the current framework. However, as long as we are interested in the

cubic vertices and not in the explicit form of δext1 W , this issue will not be relevant to us.

Perturbation around AdSd. We want to include the AdSd connection as part of the set of one-

forms W k , or in other words, we include the so(d − 1, 2) generators among the generators Tk of the

internal algebra A . We ask that the one-form gauge fields should be expanded around the AdSd

background solution (2.1)

R0 = dW0 +W0 ⋄W0 = 0 , (3.9)
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namely, we have the weak field decomposition W = W0+W1 and impose a constraint on the ⋄ -product

among the class of two-row Young tableaux with a single column, , namely, that (3.9) should be

identical with (2.1). Then, the curvature (3.3) reads, to first order in expansion around AdSd , as

R1 = dW +W0 ⋄W +W ⋄W0 . (3.10)

Again, we impose that this formula should reproduce (2.5), which gives an additional restriction on

the ⋄ -product and implies that the higher spin fields W1 transform as tensors under the (adjoint)

action of so(d− 1, 2) ⊂ A . The linearized gauge transformation (2.6) reads

δ0W = dξ +W0 ⋄ ξ − ξ ⋄W0 , (3.11)

and we rewrite the quadratic action (2.10) in the form

S
{s}
0 [W s] =

∫

〈R
{s}
1 , R

{s}
1 〉W0

, (3.12)

where we added a label {s} in order to specify the spin under consideration.

Cubic ansatz. At the next stage we seek a cubic deformation of the quadratic Lagrangian. Following

Fradkin and Vasiliev, the idea is to keep the form of the quadratic action (3.12) and replace the linear

curvature R1 with the non-linear R = R1 +R2 , where

R2 = W ⋄ W , (3.13)

so as to obtain

S0 + S1 +O(W 4) =
∑

s

αs

∫

〈R{s} , R{s}〉W0
. (3.14)

We want to constrain the ⋄-product in such a way that δYM
1 S0 + δ0S1 should vanish on the free shell,

up to terms of order O(W 3ξ) , where δYM
1 is the part of (3.5) that is linear in the weak fields:

δYM
1 W = W ⋄ ξ − ξ ⋄W . (3.15)

Taking into account that δ0R2 + δYM
1 R1 = [R1, ξ]⋄ (non-associative terms in (3.6) do not contribute

at this order), one can easily compute the variation of the action:

δY M
1 S0 + δ0S1 = 2

∑

s

αs

∫

〈R
{s}
1 , [R1, ξ]

{s}
⋄ 〉W0

+O(W 3ξ), (3.16)

where [R1, ξ]
{s}
⋄ denotes the restriction of [R1, ξ]⋄ to the spin-s sector. According to the central result

recalled in (2.7), this variation on free shell gives

δYM
1 S0 + δ0S1 ≈ 2

∑

s

αs

∫

〈(E0E0C){s} , ([E0E0C, ξ]⋄)
{s}〉W0

+O(W 3ξ) , (3.17)
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where (E0E0C) is the r.h.s. of (2.7).

By arguments similar to those at the beginning of this section, if one succeeds in adjusting the free

coefficients αs in such a way that the gauge variation (3.17) is zero on free shell and up to terms cubic

in the fields, then there exists a certain completion δext1 of δYM
1 that yields the full gauge invariance of

the action S0+S1 . We recall that δ1 was split into a Yang–Mills-like part δY S
1 plus the rest δext1 , where

the latter cannot be presented in a simple, geometric, form within the current approach. Whatever

δext1 is, the vanishing of the right-hand side of (3.17) up to terms cubic in the fields is sufficient to

prove that the action S0 + S1 is gauge invariant under a certain δ1 transformation containing the

non-abelian part δY M
1 . Let us add the comment that, by construction, δext1 W is linear in R1 and

in the gauge parameters, and therefore does not contribute to the non-abelian nature of the gauge

transformation at the first nontrivial order where we work; only δYM
1 does.

The Fradkin-Vasiliev procedure amounts to solving

0 =
∑

k,m,n

αk

∫

〈(E0E0C){k} , fk
mn(E0E0C){m}ξ{n}〉W0

=:
∑

k,m,n

Ikmn (3.18)

for the free coefficients αs and for the structure constants fk
mn . Let us consider the terms in (3.18)

involving only fields and gauge parameters of three fixed spins k, m and n . Obviously, such terms are

independent from the others and to solve (3.18) they should cancel among each other. The Fradkin–

Vasiliev condition, in the fixed sector we consider, therefore reads

Ikm,n + Imn,k + Ink,m = 0 . (3.19)

Regrouping terms pairwise, it implies that one should have

αkf
k
nm

∫

〈(E0E0C){k} , ξ{n}(E0E0C){m}〉W0
= αmfm

kn

∫

〈(E0E0C){m} , (E0E0C){k}ξ{n}〉W0
, (3.20)

where there is no sum over the Latin indices k,m and n . Our aim in this paper is therefore to find

the most general solution of the above equation.

This leads us to the following two problems:

1. Find the full set of independent fk
mn coefficients. This is done in the next Section 4;

2. For each independent product rule found in item 1, solve (3.20). This is done in Section 5.

4 Non-abelian deformations

Let us recall that the one-form gauge fields W s entering the formulation of free higher-spin theory

around AdSd transform as so(d− 1, 2) tensors characterized by a Young diagram made of two rows of
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equal lengths (s− 1) . In the spin-s sector one therefore has the following correspondence

W s
! WA(s−1),B(s−1) . (4.1)

It is convenient to follow the notation of [6,14] and introduce a set of 2(d+1) bosonic oscillators Y A
α ,

α = 1, 2 that are used to realize sp(2) generators Kαβ by

Kαβ :=
i

2

(

Y A
α

∂

∂Y β A
+ Y A

β

∂

∂Y αA

)

, (4.2)

so that indeed

[Kαβ , Kγδ] = ǫγ(αKβ)δ + ǫδ(αKβ)γ , (4.3)

where one raises and lowers indices with the sp(2)-invariant symbol ǫαβ = −ǫβα according to the rule

Y α = ǫαβYβ , Yα = Y βǫβα where ǫ12 = 1 = ǫ12 . One then represents the spin-s gauge field by

W s := 1
(s−1)!(s−1)! W

A(s−1),B(s−1)Y 1
A . . . Y 1

A Y 2
B . . . Y 2

B (4.4)

so that the sp(2)-singlet conditions

[Kαβ , W
s] = 0 (4.5)

impose that the coefficients WA(s−1),B(s−1) are two-row irreducible tensors of gl(d + 1) , see e.g. [12]

for more details and references.

Given two sp(2)-singlet fields W n(Y ) and Wm(Z) – we hereby double the set of Y A
α oscillators

by introducing the oscillators ZA
α that play exactly the same role, there is a natural operator that

contracts a pair of indices:

ταβY Z :=
∂2

∂Y A
α ∂ZAβ

.

FromW n(Y ) andWm(Z) one can produce another sp(2) singlet by acting on the productW n(Y )Wm(Z)

with some sp(2)-invariant operator built out of ταβY Z and then setting ZA
α = Y A

α . As an sp(2) module,

ταβ decomposes into • ⊕ , so that the problem is to find all the sp(2)-invariants of • ⊕ . There

are two generating sp(2)-invariants:

sY Z := ταβY Zǫαβ ≡
∂2

∂Y A
1 ∂Z2A

−
∂2

∂Y A
2 ∂Z1A

, (4.6)

pY Z := det (ταβY Z) ≡
∂2

∂Y A
1 ∂Z1A

∂2

∂Y B
2 ∂Z2B

−
∂2

∂Y A
1 ∂Z2A

∂2

∂Y B
2 ∂Z1B

. (4.7)

The Vasiliev higher-spin algebra [14] is defined as a certain quotient of the Weyl algebra or of the

universal enveloping algebra U(so(d − 1, 2)) , where the Weyl algebra is realized by the star product

algebra

W n(Y ) ⋆Wm(Y ) = exp
(
1
2 sY Z

)
W n(Y )Wm(Z)

∣
∣
Z=Y

(4.8)
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modulo the ideal generated by the traces. Fortunately for us, the long tail of terms projecting out

the ideal does not contribute to the Fradkin-Vasiliev condition (3.20) since any ηAB-proportional term

vanishes in the variation of the action when put on the free mass-shell.

One may try to define some other sp(2)-invariant product rules via

W n(Y ) ⋄Wm(Y ) =
∑

k

χk
n,m(sY Z , pY Z)W

n(Y )Wm(Z)

∣
∣
∣
∣
∣
Z=Y

, (4.9)

with χk
n,m(•, •) being a polynomial function in its two arguments, which can depend on k,m and n .

The list of all the possible inequivalent functions χk
n,m gives all the inequivalent ways to contract two

two-row so(d − 1, 2)-Young diagrams with lengths ň := n − 1 and m̌ in order to produce a similar

Young diagram with length ǩ . The corresponding composition rules (4.9) are not associative if they

contain at least one p operator. Indeed, by the universal property, the only associative algebra on the

vector space of two-row rectangular so(d − 1, 2) Young tableau is given by A ∼=
U(so(d−1,2))

Isingl.
, where

Isingl. is the ideal that annihilates the scalar Dirac singleton, see e.g. [34] and references therein. The

corresponding associative product (4.8) is generated by the s contraction only. Crucial in this line

of reasoning is the fact that the higher-spin tensors generating the algebra under consideration are

required to transform under the adjoint action of so(d− 1, 2) , which in physical terms means that the

corresponding higher-spin gauge fields couple to gravity in the way explained below (3.10).

Leaving aside all the possible constrains that will be imposed on the cubic vertices when investi-

gating gauge invariance of the action S = S0 + g S1 + g2 S2 at order O(g2) , let us find all the possible

independent sp(2)-invariant contractions of sp(2) singlets given by two-row rectangular diagrams of

some particular lengths ň and m̌ with ň 6 m̌ . As it was explained above, in the general case (of

arbitrarily long Young diagrams f ň(Y ) and gm̌(Z) with degree of homogeneity in Y A
α and ZA

α being

2ň and 2m̌ , respectively), all the independent polynomials in sY Z and pY Z produce independent con-

tractions. On the other hand, it is obvious that finite Young diagrams cannot be contracted in an

infinite number of independent ways. Moreover, it is clear that contractions with sufficiently large

powers of 6 s and p annihilate any given Young diagrams, each being a monomial of finite degree

in Y or Z , like f ň(Y ) and gm̌(Z) . So, our goal is to study the independent contractions for finite

Young diagrams. This problem can be solved by representation theory methods, where it amounts to

taking tensor product of two representations associated with W n and Wm and decomposing the result

into irreducible two-row Young tableaux parts. This being said, we will make a more direct analysis

that gives an explicit realization of all the independent contractions in terms of polynomials in the

operators s and p .

Given two sp(2)-singlets f ň(Y ) and gm̌(Z) of degree ň and m̌ in Y and Z respectively, first note

6In the following we will often use the notation s and p in place of sY Z and pY Z when no confusion can arise.
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that the action of a single pY Z operator on f(Y )g(Z) contracts twice as many indices as sY Z does,

see (4.7). The total number of contracted indices in one of the two Young tableaux will be called the

degree of contraction and denoted by k . So, for the contraction pαsβ , the degree of contraction is

k = 2α + β . Obviously, only contractions of the same degree may be linearly dependent. The next

thing to note is that the significant difference between s2 and p is that p contracts the same number of

indices in the first and in the second row of, say, the first Young tableau. In contrast to p , s2 contains

terms that contract two indices in only the first or the second row of f ň(Y ) .

In general, let us consider the operator O
(α,β)
1 = pαsβ. The maximal number of indices it contracts

in the first row of f ň(Y ) is M(O
(α,β)
1 ) = α + β . Let us note that M(O), i.e. the number of indices

contracted in the first row of f ň(Y ) by an operator O , is a quantity that cannot be changed by using

Young symmetry properties of f ň(Y ) . Now we consider the operator O
(α−1,β+2)
2 = pα−1sβ+2 of the

same degree as O
(α,β)
1 . The maximal number M2 of indices contracted in the first row now is α+β+1 .

From the fact that O
(α−1,β+2)
2 contains the terms where α+β+1 indices are contracted in the first row

and O
(α,β)
1 does not, it follows that O

(α,β)
1 and O

(α−1,β+2)
2 produce linearly independent contractions.

Following this logic, one can show that all the contractions pαsβ of fixed degree k = 2α + β are

independent when k 6 ň . We call this Case I in what follows.

On the other hand, in Case II when k > ň , the above logic is not applicable because some operators

O such as sk are such that M(O) > ň , namely they have the maximal number of contractions in the

first row of f ň(Y ) exceeding the total number of indices available. Still, the operators with M(O) 6 ň

are linearly independent, following the logic explained above. More precisely, all the operators pαsβ

of fixed degree k = 2α + β and having M = α + β are independent for α + β 6 ň . Let us call them

definitely-independent Case II operators. What is less easy to see is that all the remaining operators

(i.e. those that have M > α + β) of the same degree can be given as linear combinations of those

having M = α+ β 6 ň . One can prove this proposition from the associativity of the tensor product,

as follows.

Let us consider the operators belonging to Case I and let us compute how many of them can

contract two Young tableaux of respective lengths ň and m̌ (with ň 6 m̌) and produce a resulting

Young tableau of length ℓ̌ . The first obvious relation is

ň+ m̌− k = ℓ̌ . (4.10)

Now we fix ň, m̌, ℓ̌ , and consequently k . The independent contractions belonging to Case I (so that

k 6 ň) are such that m̌ 6 ℓ̌ . So, the operators in Case I can be alternatively be specified by

ň 6 m̌ 6 ℓ̌ . (4.11)

By definition of Case I , all the operators pαsβ in this case are independent, so the total number of

independent operators equals to the number of partitions of k as k = 2α+ β with non-negative α and
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β . It is easy to see that the number of such partitions is

NI =
[k

2

]

+ 1 =
[ ň+ m̌− ℓ̌

2

]

+ 1. (4.12)

This gives the desired multiplicity of contractions of f ň and gm̌ that produce a Young tableau hℓ̌ with

ℓ̌ > m̌ .

Obviously, once the multiplicities (4.12) for Case I, (4.11), are known, and from the associativity

of the tensor product, one can derive the multiplicities of the contractions of f ň and gm̌ that give rise

to hℓ̌ with ℓ̌ < m̌ . This is nothing but Case II since ℓ̌ < m̌ is equivalent to ǩ > ň, cf. (4.10). From

(4.12) one can find that the multiplicity in this case is

NII =
[ ň+ ℓ̌− m̌

2

]

+ 1. (4.13)

Now we want to show that this multiplicity is the number of definitely-independent operators as was

explained above, which will therefore prove that the remaining operators are just linear combinations

of the definitely-independent ones, thereby proving our proposition.

So, we compute the number of definitely-independent operators pαsβ with the fixed degree k =

2α + β in Case II and having α + β 6 ň . This multiplicity is the number of partitions of k in the

form k = 2α + β such that α + β 6 ň and where both α and β are non-negative integers. It is not

hard to show that this gives exactly

N = ň−
[k

2

]

=
[

ň−
k

2

]

+ 1 =
[ ň+ ℓ̌− m̌

2

]

+ 1,

as anticipated. To conclude, the definitely-independent contractions indeed provide a basis of operators

in Case II.

To summarize, both possibilities m̌ 6 ℓ̌ and m̌ > ℓ̌ have been considered, and the bases of all the

possible contractions have been given.

5 Trace-associativity or invariant-normed algebra condition

With the basis for independent contractions known, we can find the solution to Fradkin-Vasiliev

condition (3.20) derived in Section 3. The on-shell curvatures are V -transversal because of (2.7) and

(2.8), thereby only the last term in the sum (2.10) of the quadratic action remains non-zero on-shell,

S0 ≈
1

2

∫

ddx a(k, k − 2)GMNPQR
MB(k−2),ND(k−2)RP

B(k−2),
Q
D(k−2) , (5.1)

and therefore nontrivial cubic interactions are obtained by substituting R = R1 + R2 in the above

expression, instead of using the full action (2.10).
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The first on-mass-shell theorem can be rewritten as

R
A(k−1),B(k−1)
0 ≈ EM

0 EN
0 CA(k−1),B(k−1);

MN or R
{k}
0 ≈ EM

0 EN
0 C{k};

MN .

Here C{k};
MN has two groups of indices: (i) 2(k−1) indices having a symmetry of two-row rectangular

Young tableau denoted implicitly by {k}, and (ii) two indicesM andN antisymmetrized by contraction

with two frame fields. It is important to split the indices of C into two groups, because only the indices

{k} are sensitive to gauge transformations – see also [11]. Indeed, from

δYM
1 R{k} = −ξ{n} ⋄R{m} +R{n} ⋄ ξ{m} +O(W 2) ,

it follows that

δYM
1 (EM

0 EN
0 C{k};

MN ) = EM
0 EN

0 (−ξ{n} ⋄ C{m};
MN +C{n};

MN ⋄ ξ{m}). (5.2)

Therefore

δYM
1 S0 + δ0S1 ≈ 2

∫

ddx a(k, k− 2)GMNPQR
MB(k−2),ND(k−2)δYM

1 RP
B(k−2),

Q
D(k−2) +O(W 3ξ) (5.3)

can be rewritten as

δYM
1 S0 + δ0S1 ≈

∫

ddx a(k, k − 2)GMNPQE
RESCRS;

MN ;B(k−2),D(k−2) ×

ET
0 E

U
0 (−ξ{n} ⋄ C{m};

TU + C{n};
TU ⋄ ξ{m})PQ;

B(k−2),D(k−2) +O(W 3ξ) . (5.4)

One can write Lorentz indices everywhere instead of (anti)-de Sitter indices because of (i) the on-

mass-shell theorem states that curvatures are V -transversal on-shell; and (ii) since the symbol GMNPQ

defined in (2) contains an explicit contraction of the totally antisymmetric so(d − 1, 2) tensor with

a compensator V , so that all the remaining indices of the antisymmetric tensor run only over the

V -transversal, or Lorentz, directions. Using the identity [6]

EC
0 GA1...Ak

=
1

(d− k + 1)

i=k∑

i=1

(−)i+kδCAi
G

A1...Âi...Ak

one can show that

GMNPQE
R
0 E

S
0 E

T
0 E

U
0 ∝ δ

[RSTU ]
[MNPQ]G . (5.5)

We do not specify the precise coefficient because it only depends on the dimension of the space and

cancels in the following computations.

Let us focus on the first term in the bracket of (5.4). According to (5.5) it can be rewritten as

∫

ddxGa(k, k − 2)δ
[RSTU ]
[MNPQ]CRS;

MN ;B(k−2),D(k−2)(−ξ{n} ⋄ C{m};
TU)

PQ;
B(k−2),D(k−2) . (5.6)

13



Due to the tracelessness of the Weyl tensor, the indices R and S can be contracted with P and Q

only, so we can rewrite (5.6) as

∫

ddxGa(k, k − 2)CMN ;B(k−1),D(k−1)(−ξ{n} ⋄ C{m};
MN )B(k−1),D(k−1) . (5.7)

Regrouping terms as in (3.20) one finds that the Fradkin-Vasiliev condition is equivalent to

a(k, k − 2)CMN ;B(k−1),D(k−1)(ξ{n} ⋄ C{m};
MN )B(k−1),D(k−1) =

a(m,m− 2)CMN ;B(m−1),D(m−1)(C{k};
MN ⋄ ξ{n})B(m−1),D(m−1) . (5.8)

Suppose that the particular ⋄-product between ξ{n} and C{m};
MN is realized as kkn,mpαsβ and

produces a Young tableau that belongs to the spin-k sector, which implies

ǩ = ň+ m̌− 2α− β . (5.9)

In the appendix it is shown in (8.11) that

CMN ;B(k−1),D(k−1)(ξ{n}pαsβC{m};
MN )B(k−1),D(k−1) =

(α+β+1)
(α′+β+1) C

MN ;B(m−1),D(m−1)(C{k};
MN pα

′

sβ ξ{n})B(m−1),D(m−1) , (5.10)

where α′ = ň− α− β. Therefore, in order to solve (5.8) the ⋄-product between C{k} and ξ{n} should

have the form kmk,np
α′

sβ and

a(k, k − 2) kkn,m = (α+β+1)
(α′+β+1) a(m,m− 2) kmk,n .

In terms of the spins m, n, k and the free parameter β , it gives

a(k, k − 2)kkn,m = (n+m−k+β+1)
(n+k−m+β+1) a(m,m− 2) kmk,n . (5.11)

This equation explicitly displays the implication of Fradkin-Vasiliev condition on the free coefficients

a and k. Obviously, if the particular ⋄ contraction between ξ{n} and C{m};
MN is realized as kkn,mpαsβ ,

then one can always find kmk,n so as to satisfy (5.11), which means that every such contraction can be

promoted to a consistent higher-spin cubic vertex. Having classified all the independent contractions

in Section 4, we thereby classified all the independent higher-spin cubic vertices.

Finally, it is easy to see that the number of independent contractions given in Section 4 coincides

with the number of possible non-abelian algebra deformations obtained in [13] 7, thereby proving that

our list of independent non-abelian vertices in AdSd is exhaustive.

7We recall that, for a triplet of spins with s 6 s′ 6 s′′ , the non-abelian deformations of the gauge algebra can give

rise to vertices with a number of derivatives k ranging from kmin = s′′ + s′ − s to kmax
o = 2s′ − 1 for odd s := s+ s′ + s′′

or to kmax
e = 2s′ − 2 for even s . Therefore the multiplicity of non-abelian vertices is No = s+s′−s′′+1

2
≡

[

s+s′−s′′

2

]

+ 1

for odd s and Ne = s+s′−s′′

2
for even s , which exactly matches the multiplicity formula found in Section 4.

14



6 (Mixed)-symmetry (partially)-massless fields

In this section we discuss how to construct gravitational interactions in anti-de Sitter space for gauge

fields of various types8 and discuss briefly general non-abelian interactions. The simplest example is

provided by a spin-s partially-massless field of depth-t. Partially-massless fields [41] have the following

higher-derivative transformation law

δφµ1...µs = Dµ1
...Dµtξµt+1...µs + . . . , (6.1)

where the parameter t ∈ {1, . . . , s} is called the depth and ... stands for the terms with less derivatives.

As shown in [42] a spin-s partially-massless field of depth-t can be described by a one-form connection

that takes values in the irreducible tensor representation of so(d − 1, 2) defined by a two-row Young

diagram

δWA(s−1),B(s−t) = D0ξ
A(s−1),B(s−t) ,

s− t
s− 1 . (6.2)

Massless fields arise at t = 1. The equations of motion are similar to (2.7)

RA(s−1),B(s−t) = D0W
A(s−1),B(s−t) , RA(s−1),B(s−t) = EM

0 EN
0 CA(s−1)

M
,B(s−t)

N , (6.3)

where the Weyl tensor for partially-massless field has the symmetry of
s− t+ 1

s and it is V -

transverse.

As before we write the most general quadratic corrections to the field strength of the spin-2 field

WU,U and to that of the partially-massless field WA(s−1),B(s−t)

RU,U = DΩW
U,U + g1W

A(s−2)U,B(s−t) ∧W
U

A(s−2) ,B(s−t)+

+ g2W
A(s−1),B(s−t−1)U ∧W

U

A(s−1),B(s−t−1) ,

RA(s−1),B(s−t) = DΩW
A(s−1),B(s−t) +WA,

M ∧WMA(s−2),B(s−t) +WB,
M ∧WA(s−1),MB(s−t−1) .

Note that there are two independent contributions to RU,U . The quadratic correction to RA(s−1),B(s−t)

is just an so(d−1, 2)-covariant derivative. The quadratic actions for the graviton and partially-massless

field read

S{2} = α2

∫

RU,U ∧RV,VGUUV V

S{pm} =
∑

αs,t
q,m

∫

RUA(s−m−2)C(m),UC(q)B(s−q−2) ∧R
V C(m),V C(q)
A(s−m−2) B(s−q−2)V2q+2mGUUV V

where as,tq,m are certain coefficients fixed up to an overall factor [42], which we identify with αs,t
0,0.

8For some results on interactions of mixed-symmetry fields on flat background see [27, 36–39], as for anti-de Sitter

space a few results are available [7,9–11]. Interactions of partially-massless fields has been studied recently in [40]
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Using the general formulae (3.5), (3.6) and (3.20), one requires the gauge invariance of the cubic

terms on the free mass-shell, resulting in the condition δS{2} + δS{pm} = 0 , where

δS{2} = 4g1α2

A
︷ ︸︸ ︷∫

Cuu,vv ξ
v,

a(s−2) b(t)C
a(s−2)uv,b(t)u +4g2α2

B
︷ ︸︸ ︷∫

Cuu,vv ξ
v

a(s−1),b(t−1) Ca(s−1)u,b(t−1)uv ,

δS{pm} = αs,t
0,0(−2s)A+ αs,t

0,0(−
2st

s− 1
)B .

Obviously, the condition δS{2}+ δS{pm} = 0 admits a unique solution. The ratio g1/g2 is a fixed num-

ber. Therefore the freedom in g1, g2 does not lead to two different types of gravitational interactions.

Let us now comment of the general case of gravitational interactions of mixed-symmetry and/or

partially-massless fields described by one-form connections WY with values in any irreducible tensor

representation of so(d − 1, 2) specified by a Young diagram Y with rows of lengths s1, s2, ..., sn,

Y = Y(s1, ..., sn) . The dictionary between WY and the metric-like formalism was given in [43–46].

The case of one-forms WY does not cover the variety of all possible types of mixed-symmetry and

partially-massless fields. In order to take into consideration all gauge fields possible one has to include

gauge connections WY that are forms of higher degree too. However, only one-form connections WY

can give rise to a Lie algebra and only one-forms can source gravity in the Fradkin-Vasiliev framework

as in this case one can write WY∧WY contribution to the spin-2 field strength RU,U as we did above.

The most general ansatz reads

RU,U = DΩW
U,U +

∑

Y/

giW
;U ∧W ;U , (6.4)

RY = DΩW
Y +

∑

i

WB,
M ∧WA(s1),...,MB(si−1),... , (6.5)

where in the first line the sum is over all possible ways to cut one cell from Y such that the result

is a valid Young diagram. The number of such ways is equal to the number of blocks of Y. If there

are no rows in Y that have equal length, then the sum is over all rows and in the i-th summand one

isolates one index in the i-th row, denotes it by U and contracts the rest of the indices pairwise. The

deformation of RY is just a covariant derivative with respect to dynamical spin-2 connection WU,U .

The linear equations of motion for WY read [43,45–48]

RY = EM
0 EN

0 ΠMN (CX)Y , (6.6)

where the generalized Weyl tensor CX is an irreducible so(d − 1, 2)-tensor having the symmetry of

X = Y(s1 + 1, s2 + 1, s3, ..., sn) and the projector ΠMN isolates two indices of C and projects onto Y.

TheWeyl tensor for generic mixed-symmetry field is not fully-transverse and satisfies more complicated

V -dependent constraints, [43,45–48], which implies that C contains more than one Lorentz component

in general. This is not the case for totally-symmetric (partially)-massless fields.
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In order for the gravitational interactions of WY to exist in the first nontrivial order one has to

prove that there is enough free coefficients to impose the invariance of the cubic vertex on the free

mass-shell, (3.2). We will give an argument that this is indeed true despite the fact that the quadratic

actions are not known in full generality. In general to construct a Lagrangian the connection WY has

to be supplemented with certain additional fields, see e.g. [49–51] for specific examples. Fortunately,

to check the gauge invariance of the cubic vertex we only need to know the on-shell action, i.e. the

terms in the action to which the generalized Weyl tensor contribute,

(S{2} + S{Y})
∣
∣
∣
on−shell

= α2

∫

RU,U ∧RV,VGUUV V +
∑

Y/

αn

∫

R;UU ∧R;V V GUUV V , (6.7)

where the sum is over all possible ways to isolate two anti-symmetric indices in tensor with the

symmetry of Y, these are to be contracted with GUUV V , the rest are contracted pairwise. These

leading terms can be extracted from the results of [43, 52, 53]. That the Weyl tensor is not fully V -

transverse imposes severe restrictions on such terms. Indeed, one would naively add to (6.7) the terms

where in addition to a pair of anti-symmetrized indices one isolates a group of symmetric indices to be

contracted with V . These additional V contractions may be nonzero as the Weyl tensor in not fully

V -transverse. Taking then the variation of (6.7), one finds

δ(S{2} + S{Y})
∣
∣
∣
on−shell

∼ α2

∫

[R, ξ]UU ∧RV,VGUUV V +
∑

Y/

αi

∫

[R, ξ];UU ∧R;V V GUUV V , (6.8)

where [R, ξ] can be read off from (6.4)-(6.5) according to general formulae of Section 3. One observes

that ξA,B contributes only to δS{Y} and not to δS{2} . Therefore, ξA,B-variation must vanish on its

own. Indeed, that there is no in the symmetric tensor product Sym(X ⊗ X) for any X implies

that any singlet built of ξA,B and two Weyl tensors CX is identically zero. Now we have to cancel

the ξY-part of the variation. Note that δS{2} has no V explicitly besides in GUUV V since neither

the deformation (6.4) nor the spin-2 action contain V . The latter implies that δS{Y} and hence the

on-shell part of S{Y} must not have any explicit V -contractions. This justifies the form of (6.7).

Then, using the symmetric basis for Young diagrams it is easy to see that the sums in (6.4) and (6.5)

produce pairwise identical terms in δS{2} and δS{Y} . In particular all the terms in the sum of (6.7)

vanish except for the one where two anti-symmetrized indices UU belong to the first two rows of Y.

Equivalently, using the freedom of adding total derivatives of the form
∫
D0(RRV G), [43, 44, 52, 53],

one can reduce the number of terms in the sum of (6.7) to a single term described above. Again all the

ratios gi/gj are certain fixed numbers and hence the gravitational interactions are essentially unique.

Let us make some comments about general non-abelian interactions of (mixed)-symmetry and/or

partially-massless fields. We restrict ourselves to those gauge fields in the metric-like approach that

are described by one-form connections WY within the frame-like approach. The condition for the
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variation to vanish amounts to

(A|B ⋄ C)− (A ⋄B|C) = 0 , (6.9)

where A, B, C correspond to two Weyl tensors and one gauge parameter; ⋄ stands for some particular

way of contracting indices; (x|y) takes the singlet part. Given some A ⋄B one can always adjust the

contraction B ⋄C such that (6.9) is true. As we argued above, see also [11], already the gravitational

interactions restrict the freedom of adding topological terms
∫
D0(RRV G) in such a way that the Weyl

tensor has no V -contractions in the on-shell action. The appearance of the Weyl tensor contracted

with a number of compensators V would invalidate the arguments above. Therefore we see that each

independent way of contracting indices among two connections WY1 andWY2 gives rise to a consistent

cubic vertex, which is non-abelian by definition.

Similitude with Yang–Mills and invariant-normed algebra. The parallel between the above

discussion and the spin-1 case is obvious, and we have seen that it is always possible to contract

the indices of rectangular two-row Young tableaux in such a way that the resulting cubic action is

consistent at that order. This becomes clear if one highlights the similitude of the Fradkin-Vasiliev

construction with the Yang-Mills one. The Fradkin-Vasiliev procedure is precisely inspired by the

Yang-Mills, geometric treatment of gauge systems. Consider, as a starting point, a positive sum of n

Maxwell’s actions for a set of one-form gauge fields {Aa}a=1,...,n

S0[A
a] =

∫

M4

〈F1, F1〉 ≡

∫

M4

kab F
a
1 ∧ ∗F b

1 , F a
1 := dAa , (6.10)

where kab is diagonalized to kab = caδab with ca > 0 for the sake of unitarity. In order to introduce

cubic interactions one performs the substitution

F a
1 −→ F a := F a

1 + g fa
bcA

aAb (6.11)

inside S0 while disregarding quartic terms, as we did with the Fradkin-Vasiliev procedure. By definition

of F a and because Aa are one-forms, one has

fa
bc = −fa

cb , (6.12)

which defines an internal anti-commutative algebra A with basis elements {ea} and product law ⋄

given by

ea ⋄ eb = f c
ab ec = −eb ⋄ ec . (6.13)

As is well-known and easy to see – a cohomological derivation can be found in [35], the resulting

deformed action S0 + S1 is consistent to order O(g) provided one has the following antisymmetry

condition

fabc := kad f
d
bc = f[abc] . (6.14)
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In turn, this means that A is an invariant-normed (sometimes called graded-symmetric) algebra,

namely

∀x, y, z ∈ A , (x ⋄ y, z) = (x , y ⋄ z) , (6.15)

where the norm is defined by

(x, y) = kab x
ayb , x = xa ea , y = ya ea . (6.16)

Given some constants fa
bc that satisfy fa

bc = −fa
cb , it is always possible to find fabc that are

completely antisymmetric, thereby producing a consistent cubic vertex.

The story repeats itself in the higher-spin context where the internal index a is replaced with a

rectangular two-row tensor representation of so(d − 1, 2) . The fact that the Yang-Mills index a now

has an inner structure in the higher-spin case implies that there is a multiplicity of choices for the

⋄-products or equivalently for the constants fa
bc ’s – and where one may need to add a color index

on every higher-spin gauge fields in order to ensure the antisymmetry of fa
bc = −fa

cb ; this is the

case for example when the ⋄-product is given by pure p contractions in the sector of odd spins. The

determination of these multiplicities was done in Section 4 or could be obtained from group theory.

As in the spin-1 Yang-Mills case, the invariant-norm condition (x ⋄ y, z) = (x , y ⋄ z) can also be

achieved in the higher-spin case, for every independent choice of ⋄-product.

What will severely constrain the ⋄-product is the Jacobi condition that arises at second order in the

coupling constant g ,

fa
b[cf

b
de] = 0 . (6.17)

In the spin-1 case, it implies that fa
bc define the structure constants of a semi-simple Lie algebra.

7 Conclusions

In this paper we have classified and explicitly built all the possible non-abelian cubic vertices among

totally symmetric gauge fields in AdSd . The universal property of the universal enveloping algebra

guarantees that there exists only one gauge algebra that can lead to an associative higher-spin algebra,

and that the latter precisely coincides with the algebra used by Vasiliev in [14] for the construction

of his nonlinear equations. When pushing the analysis of vertices to the next, quartic order, one

typically finds that the internal algebra with (graded)-antisymmetric structure constant should obey

the Jacobi identity, which is automatically satisfied if the commutator arises from the underlying

associative structure, see e.g. the discussion and the results reviewed in [54]. It is likely that the
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only cubic vertex that has a chance to be promoted to the next order is the one associated with the

so-called “s-contraction” rule of Section 4, where the latter is the germ for the associative algebra

used in [14] via the Moyal-Weyl star-product formula (4.8). There is still a loophole in that there can

exist a higher-spin algebra, which is essentially a Lie algebra. For example, a Poisson contraction of

the Vasiliev algebra, i.e. the one where exp ~s, (4.8), is expanded to the leading order in a formal

non-commutativity parameter ~ would seem a good candidate. However, the Poisson contraction is

inconsistent even at the cubic level, as was pointed in [1] for the 4d case and the statement is valid

for any d. The technique developed in this paper can be used to examine the question of uniqueness

of higher-spin algebra in full generality and we leave it for a future publication.

We view the determination of cubic vertices as one way to gain insight into the structure and

uniqueness of the full theory proposed in [14, 55, 56]. In this sense, our results strongly confirm

the belief that Vasiliev’s construction is the unique way to obtain fully nonlinear and consistent

interactions among higher-spin gauge fields. In the spirit of the Noether procedure for consistent

interactions this implies that Vasiliev’s theory can be viewed as the gauging of the rigid star-product

algebra hu(1|2 : [d− 1, 2]) , and that this is the only way to construct a fully nonlinear theory starting

in perturbation around a fixed (here AdSd) background.

We showed that the (partially)-massless (mixed)-symmetry gauge fields that are described by one-

form connections WY valued in irreducible representations of so(d − 1, 2) can interact with gravity.

This gives a nontrivial indication that within the metric-like approach one will face certain difficulties

in trying to make interact with gravity those gauge fields that are described by gauge connections of

higher degree within the frame-like approach we use. It seems that the frame-like approach contains

more information about interactions even at the linear level. Another example of this phenomenon

was observed in [57], where a simple argument prevents constructing Lagrangians for certain types of

fermionic fields, which is highly nontrivial to see in the metric-like approach [58,59]. The gravitational

interactions for fields that are described by forms of higher degree in the frame-like approach are

severely constrained, see e.g. [60] and references therein. The gauge transformations for the p-form

gauge fields can only be deformed à la Chaplin-Manton [61] or Freedman-Townsend [62], so that the

gauge algebra in the p-form sector remains abelian although the gauge transformations are modified

non-trivially, sometimes even non-polynomially.

We also argued that those mixed-symmetry and/or partially-massless fields that are described by

one-form connections within the frame-like approach can have nonabelian interactions among them-

selves and again the number of nonabelian vertices should be given by tensor product multiplicities.

Within the metric-like approach such gauge fields have the gauge parameter whose Young diagram is

obtained by removing cells from the first row of the Young diagram of the field potential. For the rest

of gauge fields, which are all nonunitary in AdS, [63,64], within the metric-like approach one still can
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write a lot of terms for the most general ansatz for the cubic vertex, but we expect that the gauge

invariance will result in a trivial solution only.

The technique used in the paper can be generalized to various cases of (partially)-massless fields [42]

and (mixed)-symmetry fields [43,45,46,46,53].

Note added

During the final stage when the file was being prepared for submission to the arxives, the paper [65]

appeared where cubic vertices for (partially-)massless fields are constructed, following a different

procedure. The tools presented there allow the construction of all possible types of vertices. The

nature of the gauge algebras associated with the vertices is not clear, though, except in the Born–

Infeld cases for obvious reasons. After identifying which of the vertices in [65] are non-abelian, it

would be interesting to see if their number is indeed given by certain tensor product multiplicities as

we showed in the present paper. Some simple examples show that this is the case.
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8 Appendix

Here we introduce some notations and prove certain identities required for solving the Fradkin-Vasiliev

condition for a general cubic vertex.

Let us first introduce a projection f operation which antysimmetrizes two indices that belong to

different rows of a Young diagram

f(W ) = WM1N1;A(m−1),B(m−1) =
1

2

(

WA(m−1)M1,B(m−1)N1 −WA(m−1)N1,B(m−1)M1

)

.

This operation is relevant to p contraction

W npWm = WA(n−1)M,B(n−1)N
(

WA(m−1)
M

,B(m−1)
N −WA(m−1)

N
,B(m−1)

M

)

=

= 2WA(n−1)M,B(n−1)NWMN
;A(m−1),B(m−1) = 2WMN ;A(n−1),B(n−1)WMN

;A(m−1),B(m−1).
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An iterative application of an f -projector α times gives

fα(WA(m),B(m)) = WM1N1,M2N2,...MαNα;A(γ),B(γ). (8.1)

where γ = m−α. It is straightforward to check that the right hand side of (8.1) possesses symmetry of

Y(α,α) in the antisymmetric basis in the first group of 2α indices in the same time having symmetry

of Y(γ, γ) in the symmetric basis in the remaining indices.

By iterative application of

WM1N1,...Mα−1Nα−1,AB;A(γ),B(γ) =
1

2
·
γ + 2

γ + 1
·WM1N1,...Mα−1Nα−1;A(γ+1),B(γ+1)

one can find

W

α
︷ ︸︸ ︷
AB,...AB,AB;A(γ),B(γ) =

1

2α
·
α+ γ + 1

γ + 1
·WA(α+γ),B(α+γ). (8.2)

Another useful representation appears when one symmetrizes only M and N indices among each

other in (8.1) resulting in

WM1N1,M2N2,...MαNα;A(γ),B(γ) → W

α
︷ ︸︸ ︷
MN,MN,...MN ;A(γ),B(γ). (8.3)

This tensor has a symmetry of two row rectangular Young diagram in symmetric convention in both

groups of indices. Obviously the same symmetry can be reached in a different way

fγ(WM(α+γ),N(α+γ)) = WA1B1,A2B2,...AγBγ ;M(α),N(α) → W

γ
︷ ︸︸ ︷
AB,AB,...AB;M(α),N(α), (8.4)

which implies that right hand sides of (8.3) and (8.4) are proportional, that is

W

α
︷ ︸︸ ︷
MN,MN,...MN ;A(γ),B(γ) = X(α, γ)W

γ
︷ ︸︸ ︷
AB,AB,...AB;M(α),N(α) (8.5)

with some X(α, γ). To find X we symmetrize M with A and N with B in both sides of (8.5), which,

according to (8.2) results in

1

2α
·
α+ γ + 1

γ + 1
·WA(α+γ),B(α+γ) = X(α, γ)

1

2γ
·
α+ γ + 1

α+ 1
·WA(α+γ),B(α+γ), (8.6)

which in turn implies

X(α, γ) = 2γ−αα+ 1

γ + 1
. (8.7)

So, we introduce a notation

WM(α),N(α);A(γ),B(γ) = WA(γ),B(γ);M(α),N(α) =

2α

α+ 1
W

α
︷ ︸︸ ︷
MN,MN,...MN ;A(γ),B(γ) =

2γ

γ + 1
W

γ
︷ ︸︸ ︷
AB,AB,...AB;M(α),N(α). (8.8)

One can proceed in the same manner by breaking each small sub-Young diagram into even smaller

pieces using the same formulas.
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Computation Our goal is to find out how to relate two terms of (5.8). Terms

CMN ;B(k−1),D(k−1)(−ξ{n} ⋄ C{m};
MN )B(k−1),D(k−1) (8.9)

and

CMN ;B(m−1),D(m−1)(C{k};
MN ⋄ ξ{n})B(m−1),D(m−1) (8.10)

are proportional and our aim is to find the proportionality coefficient. The M and N indices are

not involved in ⋄-product. They are used just to contract two Weyl tensors in the same way in both

expressions. So we can omit them and treat the Weyl tensors as having effectively two indices less

each.

As a warm up exercise let us find the proportionality coefficient for the case when ⋄ is represented

by the p contraction only in some power α. Let us also introduce ǩ = k−1, ň = n−1 and m̌ = m−1.

In this terms 2α = ň+ m̌− ǩ.

CMN ;B(k−1),D(k−1)(ξ{n}pαC{m};
MN )B(k−1),D(k−1) →

CB(k−1),D(k−1)(ξ{n}pαC{m})B(k−1),D(k−1) =

= 2αCA(ǩ),B(ǩ)ξ
CD,...,CD;A(ň−α),B(ň−α)CCD,...,CD

;A(m̌−α),B(m̌−α) =

= 2αCA(m̌−α)U(ň−α),B(m̌−α)V (ň−α)ξAB,...,AB
;U(ň−α),V (ň−α)CA(m̌),B(m̌) =

= (α+ 1)CA(m̌−α)U(ň−α),B(m̌−α)V (ň−α)ξA(α),B(α)
;U(ň−α),V (ň−α)CA(m̌),B(m̌) =

=
2ň−α+1(α+ 1)

(ň− α+ 1)
CA(m̌−α)U(ň−α),B(m̌−α)V (ň−α)ξA(α),B(α)

;UV,...,UVCA(m̌),B(m̌) =

=
2ň−α+1(α+ 1)

(ň− α+ 1)
CUV,...,UV ;A(m̌−α),B(m̌−α)ξA(α),B(α)

;UV,...,UVCA(m̌),B(m̌) =

=
α+ 1

ň− α+ 1
(C{k}pň−αξ{n})B(m−1),D(m−1)C

B(m−1),D(m−1) →

α+ 1

α′ + 1
CMN ;B(m−1),D(m−1)(C{k};

MNpα
′

ξ{n})B(m−1),D(m−1),

where α′ = ň− α.

Analogously one can show that

CMN ;B(k−1),D(k−1)(ξ{n}pαsβC{m};
MN )B(k−1),D(k−1) =

α+ β + 1

α′ + β + 1
CMN ;B(m−1),D(m−1)(C{k};

MNpα
′

sβξ{n})B(m−1),D(m−1), (8.11)

where ǩ = ň+ m̌− 2α − β and α′ = ň− α− β. To show this, let us note that sβ is

ξsβC = ξ(Y )

(
∂2

∂Y A
1 ∂Z2A

−
∂2

∂Y A
2 ∂Z1A

)β

C(Z) =

ξ(Y )

β
∑

i=0

(−)iβ!

i!(β − i)!

(
∂2

∂Y A
1 ∂Z2A

)β−i(
∂2

∂Y A
2 ∂Z1A

)i

C(Z). (8.12)
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Each term of the expansion (8.12) has non-zero projection to the space of tensors with a sym-

metry encoded by the rectangular Young diagram Yr as well as other projections encoded by non-

recatangular Young diagrams Ynr. Since in (8.11) ξsβC appears only contracted with other tensor

valued in Yr, each term of the expansion (8.12) contributes only with its Yr-shaped part. This allows

us to keep track of only the first term in (8.12), while the others give some fixed proportional contri-

butions. The following computation relates the first term of the left hand side of (8.11) and the last

term of the right hand side of (8.11)

CMN ;B(k−1),D(k−1)(ξ{n}pαsβC{m};
MN )B(k−1),D(k−1)

∣
∣
∣
1st

→

2αCA(ň+m̌−2α−β),B(ň+m̌−2α−β)ξ
CD...CD;A(ň−α−β)M(β),B(ň−α)CCD...CD;

A(m̌−α),B(m̌−α−β)
M(β) =

2αCA(ň+m̌−2α−2β)K(β),B(ň+m̌−2α−2β)L(β)×

ξCD...CD;A(ň−α−β)M(β),B(ň−α−β)L(β)CCD...CD;
A(m̌−α−β)K(β),B(m̌−α−β)

M(β) =

(α+ 1)CA(m̌−α−β)U(ň−α−β)K(β),B(m̌−α−β)V (ň−α−β)L(β)×

ξA(α),B(α);
U(ň−α−β)M(β),V (ň−α−β)L(β)CA(m̌−β)K(β),B(m̌−β)

M(β) =

(α+ 1)CA(m̌−α−β)U(ň−α−β)K(β),B(m̌−α−β)V (ň−α−β)L(β)×

(β + 1)(ň − α− β + 1)

(ň− α+ 1)
ξA(α),B(α);

M(β)L(β);U(ň−α−β),V (ň−α−β)CA(m̌−β)K(β),B(m̌−β)
M(β) =

(−1)α(α+ 1)
(β + 1)(ň− α− β + 1)

(ň− α+ 1)
CA(m̌−α−β)U(ň−α−β)K(β),B(m̌−α−β)V (ň−α−β)L(β)×

ξB(α),A(α);
M(β)L(β);U(ň−α−β),V (ň−α−β)CA(m̌−β)K(β),B(m̌−β)

M(β) =

(−1)α(α+ 1)
(β + 1)(ň − α− β + 1)

(ň− α+ 1)

α+ β + 1

(α + 1)(β + 1)
CA(m̌−α−β)U(ň−α−β)K(β),B(m̌−α−β)V (ň−α−β)L(β)×

ξB(α)
M(β),

A(α)
L(β);U(ň−α−β),V (ň−α−β)CA(m̌−β)K(β),B(m̌−β)

M(β) =

(−1)α
(ň− α− β + 1)(α+ β + 1)

(ň− α+ 1)

2ň−α−β

(ň − α− β + 1)
CUV ...UV ;A(m̌−α−β)K(β),B(m̌−α−β)L(β)×

ξB(α)
M(β),

A(α)
L(β);UV ...UVCA(m̌−β)K(β),B(m̌−β)

M(β) =

(−1)α(−1)α+β2ň−α−βα+ β + 1

ň− α+ 1
CUV ...UV ;A(m̌−α−β)K(β),B(m̌−α−β)L(β)×

ξA(α)
L(β),

B(α)
M(β);UV ...UVCA(m̌−β)K(β),B(m̌−β)

M(β) =

α+ β + 1

α′ + β + 1
CMN ;B(m−1),D(m−1)(C{k};

MNpα
′

sβξ{n})B(m−1),D(m−1)

∣
∣
∣
(β+1)th

.
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