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In this short note we answer a long standing question about the asymptotic safety scenario for
quantum gravity. The term asymptotic safety refers to the conjecture that (i) the quantum field
theory of gravity admits a non-trivial ultraviolet fixed point, and that (ii) this has only a finite
number of relevant perturbations, i.e. a finite number of UV-stable directions (or in other words,
a finite number of free parameters to be fixed experimentally). Within the f(R) approximation of
the functional renormalization group equation of gravity, we show that assuming the first half of
the conjecture to be true, the remaining half follows from general arguments, that is, we show that
assuming the existence of a non-trivial fixed point, the fact that the number of relevant directions
is finite is a general consequence of the structure of the equations.

The main problem with perturbative non-
renormalizability of gravity is notoriously the pro-
liferation of couplings to be determined by experiments.
From a renormalization group point of view, this is
understood as the fact that Newton’s constant is techni-
cally an irrelevant coupling (i.e. it is on a UV-unstable
trajectory) for the free (Gaussian) fixed point of Ein-
stein’s theory, and if we want to keep it finite in the
continuum limit, we have to deal also with the infinitely
many other irrelevant couplings. One solution to this
problem was suggested long ago by Weinberg [1, 2],
who dubbed it asymptotic safety: our near-Gaussian
unstable trajectory could be the stable trajectory of a
new non-Gaussian fixed point (NGFP). In order to be
effective, such scenario requires that (i) there exists a
NGFP, and that (ii) the number of parameters needed
to uniquely determine one such trajectory among all the
possible ones be finite. We associate such parameters
to relevant directions, i.e. to a basis of independent
trajectories spanning the UV-stable surface of the
NGFP. If the dimension of the UV-stable surface was
infinite, we would of course be confronted again with
a problem similar to the one we started from. On the
other hand, if it was finite, we would have the possibility
of constructing a nonperturbatively renormalizable
quantum field theory of gravity.

An important amount of evidence has been collected
in recent years in favor of the asymptotic safety scenario,
mainly by studying truncations of a functional renormal-
ization group equation (FRGE) [3, 4]. The adopted strat-
egy (avoiding a perturbative expansion in the couplings)
is to truncate the infinite-dimensional theory space of
all possible effective actions to a finite-dimensional sub-
space, to look for fixed points and their relevant direc-
tions, and eventually, after subsequently increasing the
truncation, and repeating the procedure, to look for ev-
idence of convergence. Such program has been carried
out to a certain extent, in particular with truncations

of the effective Lagrangian to a polynomial in the Ricci
scalar R, up to order R8 [5–7], and more recently up to
order R34 [8], resulting in a fixed point with only three
relevant directions. However, lacking a more general un-
derstanding of such empirical observations, it has up to
now remained open the question if at some higher order
of the truncation new relevant directions would appear.
Indeed, although we do not know of fixed points with
infinitely many relevant directions, we also lack a simple
proof for their finiteness in the non-Gaussian case, ex-
cept possibly when the NGFP in some way branches out
of a Gaussian one, for example in an ǫ-expansion in 2+ ǫ
spacetime dimensions. It is the purpose of this paper to
address this point, and to show, within the context of
an f(R) approximation, that a proof can be given for
the finiteness of the UV-stable surface of gravity in four
dimensions.
In order to be able to make general statements about

higher orders in a truncation to polynomials in R, it is es-
sential to make one step further, and study a truncation
of the theory space to an infinite dimensional subspace,
described by a generic f(R) Lagrangian, an approxima-
tion that was suggested in [9] as an analogue of the local
potential approximation in scalar field theory (see [10–
13]). The program of investigating the asymptotic safety
scenario in such an approximation is still at the begin-
ning, however it has already showed its power when it
comes to disposing of spurious fixed points and in the
understanding of the general characteristics of the fixed-
point theory [9, 14, 15]. Here, we will see that in addition
it allows us to answer the question about the number of
relevant directions in quite some generality.
The general FRGE reads (here Γk is the effective action

at scale k, and t = ln(k/Λ), with Λ an initial scale)

d

dt
Γk =

1

2
STr

[

(

Γ
(2)
k +Rk

)

−1 d

dt
Rk

]

. (1)

For its derivation, meaning and usage, we refer to the
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general reviews [10–13, 16] Here we emphasize only some
aspects which are important for our work. Rk is an IR
cutoff operator defining the coarse graining scheme. The
FRGE clearly depends on the choice of such scheme, how-
ever a number of universal properties of the flow should
be independent of it, in particular the critical exponents,
and hence the number of relevant directions at a fixed
point. Unfortunately, approximations spoil universality
to some extent, and one has to be careful in analyzing
different schemes in order to pinpoint eventual artifacts
of particular schemes. Scheme dependence can also be
used to our advantage, optimizing the convergence of ap-
proximations to the exact results [17]. In any case, a
good cutoff should ensure that Γ(2) + Rk be invertible.
More precisely, being the second variation of a Legendre
transform, it should be positive (remember that Γk on
its own is not a Legendre transform, thus it needs not be
convex), and have a gap at finite k [17].
Our approximation consists in projecting the FRGE

for gravity on a maximally symmetric background, in
particular on a four-dimensional sphere. As a result, any
action terms depending on the Weyl tensor, on the trace-
less Ricci tensor, or on derivatives of the Ricci scalar,
vanish identically, and we will only be able to study the
running of an f(R) theory. We will not make any fur-
ther approximation, and we will not truncate the La-
grangian to a polynomial in R. Our effective action is
Γk =

∫

d4x
√
gfk(R) plus gauge-fixing and ghosts [9].

For technical convenience, in gravity the common cut-
off choice is Rk = Γ(2)(Pk) − Γ(2)(∆), where Pk ≡
∆ + k2 r(∆/k2), ∆ is a Laplace-type operator appear-
ing in the second variation of the action (at least when
gauge-fixing, field decompositions and background choice
allow us to reduce all the differential operators to Laplace
type), and r(z) is a cutoff profile function. Such choice
brings many advantages in the evaluation of the func-
tional traces, however it also leads to a number of compli-
cations from the point of view of the resulting differential
equation for f(R). In order to avoid such complications,
we will differ here from previous works on the f(R) ap-
proximation in the choice of cutoff scheme, by choosing a

cutoff independent of f(R). Our choice has a crucial con-
sequence: the resulting fixed-point differential equation
will be of second order (as explained in [9], the equations
derived so far were of third order precisely because of
cutoff choices with an f(R) dependence).

We adopt the same notation as in [9], where the reader
can find all the details omitted here (field components,
functional variations, gauge-fixing, etc.), only differing
for the choice of absorbing Newton’s constant inside
f(R), and for the cutoff. Defining the operators ∆0 ≡
−∇2 − R/3, ∆1 ≡ −∇2 − R/4, and ∆2 ≡ −∇2 + R/6,
for the scalar, vector and tensor modes, respectively, the
fixed-point FRGE in the f(R) approximation reads

384π2

R̃2

(

4f̃k(R̃)− 2R̃f̃ ′

k(R̃)
)

= T2 + T1+ T np
0 + T h̄

0 , (2)

where f̃k(R̃) = k−4fk(k
2R̃) is dimensionless, and we

have subdivided the rhs into the contributions of the
transverse traceless tensor modes (we define E(R) =
2f(R)−Rf ′(R), which is zero on shell)

T2 = Tr

[

12 d
dtRT

k (∆2 + α2R)

−f ′(R)∆2 − 6E(R) + 24RT
k (∆2 + α2R)

]

,

(3)
the transverse vector modes

T1 = −1

2
Tr

[

d
dtRV

k (∆1 + α1R)

∆1 +RV
k (∆1 + α1R)

]

, (4)

the non-physical scalar modes (by which we mean all the
scalars but the gauge-invariant trace mode h̄)

T np
0 =

1

2
Tr

[

d
dtR

S1

k (∆0 + α0R)

∆0 +
R
3 +RS1

k (∆0 + α0R)

]

− Tr

[

2 d
dtR

S2

k (∆0 + α0R)

(3∆0 +R)∆0 + 4RS2

k (∆0 + α0R)

]

,

(5)

and finally the contribution of the trace mode h̄

T h̄
0 =Tr

[

8 d
dtRh̄

k(∆0 + α0R)

9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16Rh̄

k(∆0 + α0R)

]

. (6)

Note that the traces are dimensionless despite being writ-
ten in terms of dimensionful variables. A crucial obser-
vation is that we should choose the αs parameters such
that ∆s + αsR > 0 for all the modes, s = 0, 1, 2 (we
remind that on the sphere ∆s ∝ R). In [9] we had cho-
sen αs = 0 in order to avoid certain poles that appeared
in previous equations. However, the appearance of such

poles is associated to the cutoff scheme in which we im-
plement the rule ∆ → Pk(∆) on a Laplace-type operator.
We noticed in [9] that, in order to avoid poles in the rhs
of (1), ∆ had to be chosen to be ∆s for fields of rank
s. In the present work we do not implement such rule,
hence there will be no such type of concern. For tensor
and vector modes it is safe to take α2 = 0 and α1 = 0, as
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the spectra of ∆2 and ∆1 are strictly positive, while we
have to be more careful with the scalar modes: the trace
in the h̄ sector includes a constant mode h̄(0) for which
∆0h̄

(0) = −R
3 h̄

(0), hence we need to take α0 > 1/3.
We now choose the simple cutoff form RX

k (∆s) =
kmX cXr(∆s+αsR

k2 ), whereX labels a rank-s field to which
the cutoff is associated, r(z) is a dimensionless profile
function, identical for all the fields, cX is a (positive) free
parameter, and the power mX is to be chosen so that the
cutoff has the same dimension as the Hessian to which it
is associated. The profile function should satisfy some ba-
sic requirements that make it a good IR cutoff, in partic-
ular limz→0 r(z) > 0 and limz→∞ r(z) = 0, and it should
be non-negative and monotonically decreasing. Common
choices of profile functions are r(z) = z (exp(azb)− 1)−1

(with a > 0, b ≥ 1) [18], or r(z) = (1 − z)θ(1 − z) [17],
but many more are of course possible. We will exclude
power-law profile functions [19], and we will assume that
the approach to zero for z → ∞ is faster than any power
(power-law profile functions could however be used tak-
ing care of choosing a sufficiently high power). Special
care should also be taken for non-analytic cutoffs (e.g.
with step functions), and for simplicity we will assume
strictly positive profile functions.
For our purpose, it will be sufficient to study here only

the large-R̃ properties of the FRGE, for which we will
not need to actually choose a specific cutoff profile and
to perform the traces. In this respect, one should notice
that unlike in other applications of the FRGE, in the case
of gravity there is a field dependence also in the operator
with respect to which modes are being cut off (this aspect
has been highlighted in a simple setting in [20]), in par-
ticular ∆s ∝ R on the sphere, hence the large-field limit
is peculiarly intertwined to the large mode suppression.
In analyzing the asymptotic behavior of the NGFP so-

lution, we will assume that this is power-law. A justifica-
tion both from experience and from physical considera-
tions, as only to such behavior we can associate a familiar
interpretation in terms of couplings [10, 21].
Given such assumption on the asymptotics of the so-

lution, we can study the dominant balancing of terms
in the FRGE in the asymptotic regime. We find that
the lhs of (2), as well the cutoff-independent parts of the
denominators on its rhs, contribute in the large R̃ limit
with a power-law behavior. On the other hand, most
cutoff choices imply a faster fall-off of the rhs at large R̃.
As a consequence, the leading asymptotic behavior of the

solution is dictated only by the lhs, and at leading order
the large-R̃ equation reduces to

384π2

R̃2

(

4f̃k(R̃)− 2R̃f̃ ′

k(R̃)
)

= 0 . (7)

Note that this equation corresponds to the statement
that the action is scale invariant in the classical sense: the
lhs is nothing but −2R̃∂R̃Γk on a sphere, which is propor-
tional to the derivative of the action with respect to the
scale factor. We recover the leading order f̃∗(R̃) ∼ R̃2

of the asymptotic expansion found in [9, 15]. We would
need to study the full equation, not just its asymptotics,
in order to determine whether a global solution with such
asymptotic behavior exists. We leave this problem to fu-
ture work (and refer to preliminary studies in alternative
schemes [9, 15]), and take the existence of such a global
solution as our main assumption here.
Next, we use the asymptotic behavior of the FP solu-

tion in order to study the equation for the linear pertur-
bations in the large-R̃ limit. Linearization in the neigh-
borhood of the fixed point is performed by writing

f̃k(R̃) ∼ f̃∗(R̃) + ǫ ṽ(R̃)e−θt , (8)

and expanding the FRGE to linear order in ǫ. The zeroth
order is identically zero by construction, while the first
order provides the equation for the perturbations, which
takes the form of an eigenvalue equation (λ ≡ 4− θ):

−a2(R̃)v′′(R̃)+a1(R̃)v′(R̃)+a0(R̃)v(R̃) = λ v(R̃) . (9)

In the large-R̃ limit, a0 and a2 go to zero faster than
power-law, while a1 ∼ 2R̃, and as a consequence at lead-
ing order ṽ(R̃) ∼ R̃2−θ/2 for power-law perturbations.
Perturbations with Re(θ) > 0 correspond to relevant

directions, hence we want to prove that there is a finite
number of eigenfunctions with λ < 4. We will actually
show that the eigenvalues λ form a real and discrete spec-
trum, bounded from above, and with a finite number of
eigenfunctions with positive θ. In order to accomplish
that, we need only few more general properties of the
coefficients a0, a1 and a2.
First we note that the coefficients have no singularities,

a direct consequence of the assumption that a global so-
lution f̃∗(R̃) exists, and of the presence of the IR cutoff in
the FRGE. Second, we observe that, due to the positivity
and monotonicity of r(z),

a2 =
3ch̄
8π2

R̃2 Tr

[

∆2
0 (2 r(∆0 + α0R)− (∆0 + α0R) r′(∆0 + α0R))

(9f ′′(R)∆2
0 + 3f ′(R)∆0 + E(R) + 16ch̄r(∆0 + α0R))2

]

> 0 , (10)

hence (9) is a Sturm-Liouville problem, written with the usual sign convention. The boundary conditions on the
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half-line R̃ ∈ [0,+∞) are provided by fixing the arbi-
trary normalization of the eigen-perturbations, i.e. set-
ting v(0) = γv′(0) (and we are free to choose γ = 1),
and by the requirement that the asymptotic behavior be
power-law. The latter is equivalent to requiring square
integrable solutions of (9) with respect to the weight

function w(R̃) = a−1
2 exp(−

∫ R̃ a1

a2

). Together, these two
boundary conditions ensure that the Sturm-Liouville op-
erator is self-adjoint, hence its spectrum is real.

In order to prove the existence of a discrete spec-
trum we can transform (9) to a standard Schrödinger
eigenvalue equation −y′′(x) + V (x)y(x) = λ y(x), by
means of a Liouville transform, and then apply stan-
dard theorems (e.g. [22]). Defining the new variable

x =
∫ R̃

1/
√
a2 (with

∫ +∞

1/
√
a2 = +∞), and substitut-

ing y = a
1/4
2 w1/2v, we find for the potential

V (x) = a0 +
a21
4a2

− a′1
2

+ a′2

(

a1
2a2

+
3a′2
16a2

)

− a′′2
4

. (11)

The potential has no singularities at finite x, as a con-
sequence of (10) and of the absence of singularities in
the original equation. Finally, the asymptotic behavior
of a0, a1 and a2 is such that for x → +∞ the second
term dominates, and V (x) → +∞. These simple ob-
servations imply that the spectrum is discrete, bounded
from below, and the only accumulation point is at infin-
ity [22]. As a consequence, there is a finite number of
eigen-perturbations with θ > 0.

We have reached our goal of showing that, assuming
the existence of a fixed point solution f̃∗(R̃), the num-
ber of relevant directions is finite, thus lending theoreti-
cal understanding to the empirical observation that the
their number does not seem to grow with the order of the
truncation in the polynomial case [5–8]. Importantly, we
found here that the exponents θ are all real, contrary to
what observed in polynomial truncations, but compati-
bly with what observed in [14, 15] and in [23, 24], and
we conclude that complex exponents are probably an ar-
tifact of the truncations.

We close with some general remarks. Studying the
limit R̃ → ∞ of the fixed point solution, as explained in
[9] (see also [13] for a clear explanation of this aspect in
the scalar case), means studying the limit k → 0 at fixed
R. As argued in [9], the asymptotic behavior f̃∗(R̃) ∼ R̃2

of the fixed point solution implies that the full effective
action (obtained for k → 0, i.e. with all the modes inte-
grated out) at the fixed point is the scale invariant theory
defined by Γ∗ = Γ∗

k=0 = A∗
∫

d4x
√
g R2, with the con-

stant A∗ to be determined by the requirement that Γ∗

k

be non singular at all R̃ (or at all k). Note that this
expression is valid only on the sphere, hence it should
be interpreted with care: if we expect the fixed point to
have conformal (or Weyl) invariance, then the only local
Lagrangian satisfying such criterion, and reducing to R2

on the sphere, is given by the Gauss-Bonnet term, cor-
responding to a purely topological theory.1 While this
might stimulate some speculations on the possibility of
a topological fixed point, one should refrain from attach-
ing much interpretation along these lines in our case as in
the f(R) approximation we are of course not seeing other
possible terms like the Weyl-squared one, CµνρσC

µνρσ ,
which we know is non-zero at the NGFP in some trun-
cations [23, 24].

Going back to (8), an infinitesimal ǫ ensures that at
t = 0, i.e. at the initial scale k = Λ, f̃k(R̃) is very close
to the fixed point solution. Integrating towards k = 0,
and discarding deviations from the linearized flow, we
obtain the effective action

Γk →
∫

d4x
√
g{AR2 +

∑

i

ǫi Λ
θiR2−θi/2} . (12)

In order to take Λ → ∞ while keeping the action finite,
in the case of positive θ, we need to take ǫ ∼ (mθ/Λ)

θ, for
some finite mass parameter mθ. For negative θ, the per-
turbations are automatically small in the large-Λ limit,
without any fine tuning, i.e. they are irrelevant. Finally,
for marginal perturbations with θ = 0 one needs to go
beyond the linear expansion. We thus recover a very sim-
ilar picture to the standard perturbative framework, but
with a finite number of free couplings parametrizing the
deviation from a NGFP.
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