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Abstract

The Teichmüller harmonic map flow, introduced in [9], evolves both a map from
a closed Riemann surface to an arbitrary compact Riemannian manifold, and a
constant curvature metric on the domain, in order to reduce its harmonic map
energy as quickly as possible. In this paper, we develop the geometric analysis of
holomorphic quadratic differentials in order to explain what happens in the case that
the domain metric of the flow degenerates at infinite time. We obtain a branched
minimal immersion from the degenerate domain.

1 Introduction

Let M := Mγ be a smooth closed orientable surface of genus γ ≥ 2, let N = (N,G) be
a smooth compact Riemannian manifold of any dimension, and let η > 0 be some fixed
parameter. We consider the flow

∂u

∂t
= τg(u);

∂g

∂t
=

η2

4
Re(Pg(Φ(u, g))), (1.1)

introduced in [9] as the natural gradient flow of the harmonic map energy when both
a map u : M → (N,G) and a hyperbolic metric g on its domain M are allowed to
evolve. Here, τg(u) represents the tension field of u (i.e. tr∇du), Pg represents the L2-
orthogonal projection from the space of quadratic differentials on (M, g) onto the space
of holomorphic quadratic differentials, and Φ(u, g) represents the Hopf differential – see
[9] for further information. The flow decreases the energy according to

dE

dt
= −

ˆ

M

|τg(u)|2 +
(η
4

)2

|Re(Pg(Φ(u, g)))|2. (1.2)

While a solution to (1.1) can be projected down to give a path in Teichmüller space, it is
worth digesting that the flow is not to be considered to be the flow of a map coupled with
a flow in (finite dimensional) Teichmüller space. See [9] for more details of the geometry
behind the equations.

Given any initial data (u0, g0) ∈ H1(M,N)×M−1, with M−1 the set of smooth hyper-
bolic metrics on M , we know [10] that a (weak) solution of (1.1) exists on a maximal
interval [0, T ), smooth except possibly at finitely many times, and that T < ∞ only if
the flow of metrics degenerates in moduli space as t ր T , that is if the length ℓ(g(t)) of
the shortest closed geodesic ℓ(g(t)) → 0 as t ր T .

1

http://arxiv.org/abs/1209.3783v1


In [9] we proved that if such a degeneration does not occur, not even as t → ∞, then the
maps u(t) subconverge (after reparametrisation) to a branched minimal immersion (or a
constant map) with the same action on π1 as the initial map u0.

Here we prove that also in the case that the metric degenerates as t → ∞ (but not before)
we also obtain asymptotic convergence to a minimal object in the following sense

Theorem 1.1. Suppose that (u, g) is a global (weak) solution of (1.1) as described above
for which ℓ(g(t)) → 0 as t → ∞. Then there exist a sequence of times ti → ∞, a number
1 ≤ k ≤ 3(γ − 1) and a hyperbolic punctured surface (Σ, h, c) with 2k punctures (and
possibly disconnected) such that the following holds.

1. The surfaces (M, g(ti), c(ti)) converge to the surface (Σ, h, c) by collapsing k simple
closed geodesics σj

i in the sense of Proposition A.2; in particular there is a sequence

of diffeomorphisms fi : Σ → M \ ∪k
j=1σ

j
i such that

f∗
i g(ti) → h and f∗

i c(ti) → c smoothly locally,

where c(t) denotes the complex structure of (M, g(t)).

2. The maps f∗
i u(ti) := u(ti)◦fi converge to a limit u∞ weakly in H1

loc(Σ) and weakly

in H2
loc(Σ \ S) as well as strongly in W 1,p

loc (Σ \ S), p ∈ [1,∞), away from a finite
set of points S ⊂ Σ at which energy concentrates.

3. The limit u∞ : Σ → N extends to a branched minimal immersion (or constant
map) on each component of the compactification of (Σ, c) obtained by filling in each
of the 2k punctures.

The issue of finite time degeneration of the metric component of solutions to (1.1) as well
as the existence of global (generalised) solutions of (1.1) for arbitrary initial data will be
discussed in future work.

Key for the proof of this result, which is given in Section 3, is a good understanding
of the structure of the space of holomorphic quadratic differentials on a sequence of
degenerating hyperbolic surfaces. This subject has been investigated from many points
of view; here we develop the geometric analysis side of the theory, identifying precisely a
subspace Wi of the space of holomorphic quadratic differentials that persists in this limit,
and obtaining quantitative estimates on those differentials which centre around Lemma
2.4. Conversely, the holomorphic quadratic differentials orthogonal to Wi concentrate
on degenerating collars as i → ∞. This fact will be made more precise in the upcoming
paper [11] where we establish a uniform Poincaré-type estimate for general quadratic
differentials on hyperbolic surfaces of bounded genus.

A starting point to understand the basic theory of degenerating hyperbolic surfaces, and
to digest our notation, is the appendix.

Acknowledgements: This work was partially supported by The Leverhulme Trust.

2 The space of holomorphic quadratic differentials on

degenerating surfaces

In this section we would like to consider the space of holomorphic quadratic differentials
on a closed surface M of genus γ ≥ 2, with respect to a degenerating sequence of complex
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structures and corresponding hyperbolic metrics gi. For each complex structure, we will
be viewing the space H(M, gi) of holomorphic quadratic differentials as a complex vector
space of dimension 3γ − 3, equipped with various Lp norms and the L2 inner product
arising from the standard Hermitian inner product on each fibre computed with respect
to gi.

According to the Deligne-Mumford compactness theorem in the form outlined in Propo-
sition A.2, after passing to a subsequence and pulling back by diffeomorphisms the sur-
faces (M, gi) converge to a limit (Σ, h) that is a hyperbolic punctured surface by pinching
1 ≤ k ≤ 3γ − 3 collars.

On the limit, we will need to consider the space H(Σ, h) of all holomorphic quadratic
differentials that lie in L1(Σ, h). If we extend such a holomorphic quadratic differential
across all the punctures on the limit then the singularity can at worst be a simple pole
(by virtue of it lying in L1), see Lemma A.11. Thus by Riemann-Roch, the (complex)
dimension of H(Σ, h) is 3(γ − 1)− k = dimC(H(M, gi))− k.

One central task in this paper is to isolate a sequence of subspaces Wi ⊂ H(M, gi)
of complex dimension 3(γ − 1) − k that converge in some sense to H(Σ, h) without
loss of any Lp norm. These subspaces can be loosely characterised as consisting of the
holomorphic quadratic differentials that decay rapidly along each degenerating collar –
see in particular Lemma 2.4. Orthogonal to that subspace is a complementary subspace
of holomorphic quadratic differentials that concentrate entirely on degenerating collars
(in terms of L2 norm) and thus have vanishing L1 norm in the limit. The analysis of
these latter subspaces will be refined in forthcoming work [11].

First of all we prove that L2-bounded holomorphic quadratic differentials have a form of
L1 compactness.

Lemma 2.1. Suppose M is a closed surface of genus γ ≥ 2. Suppose gi is a se-
quence of degenerating hyperbolic metrics on M as described in Proposition A.2 and
Θi is a sequence of holomorphic quadratic differentials (with respect to gi) satisfying
‖Θi‖L2(M,gi) = 1. Then after passing to a subsequence, we have

f∗
i Θi → Θ∞,

smoothly locally on Σ, where Θ∞ is a holomorphic quadratic differential on (Σ, h), lying
in H(Σ, h). Moreover, we have

‖Θi‖L1(M,gi) → ‖Θ∞‖L1(Σ,h) (2.1)

as i → ∞, and in particular, if in addition we know that ‖Θi‖L1 ≥ ǫ > 0, then Θ∞ is
not identically zero.

More generally, if Li is a sequence of n-dimensional subspaces of the complex vector
spaces H(M, gi) of holomorphic quadratic differentials (for some n) with the property
that

inf
v∈Li

‖v‖L1(M,gi)

‖v‖L2(M,gi)
≥ ε > 0, (2.2)

then there exists a n-dimensional subspace L∞ of H(Σ, h) such that after passing to
a subsequence, the subspaces Li converge to L∞ in the sense that there exists a basis
Θj

∞ of L∞, and for each i there exists an L2-unitary basis Θj
i of Li such that for each

j ∈ {1, . . . , n}, we have f∗
i Θ

j
i → Θj

∞ smoothly locally on Σ as i → ∞.

Note that although the L1 norm passes to the limit above, we could lose L2 norm along
a collar; the basis Θi

∞ obtained in the limit is thus in general not unitary. Later, once we
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have constructed the subspaces Wi mentioned briefly earlier, we will see that sequences
within Wi will also enjoy convergence of their L2 norms and indeed of all Lp norms,
p ∈ [1,∞], and thus that unitary families of elements in Wi subconverge again to a
unitary family in H(Σ, h).

We remark that as a consequence of the above lemma we could obtain the existence
of subspaces of H(M, gi) of dimension k on which the ratio of the L1 and L2 norms is
decaying to zero as i → ∞. A more refined version of this statement is shown and needed
in [11].

Proof. (Lemma 2.1.) For the first part of the lemma, the smooth local convergence
follows simply from L2-boundedness and holomorphicity of Θi as we now explain. Given
any compact subset K of Σ we can choose δ > 0 small enough such that for every i ∈ N

we have K ⊂ Σδ
i , the δ-thick part of the surfaces (Σ, f∗

i gi). On the δ-thick parts of the
surfaces the Cm norms of holomorphic quadratic differentials are controlled uniformly
by their L1 norm

‖f∗
i Θi‖Cm(K) ≤ ‖f∗

i Θi‖Cm(Σδ
i )

≤ Cδ‖Θi‖L1(M,gi),

by Lemma A.9 in the appendix. Using Arzela-Ascoli and taking a diagonal sequence
we obtain smooth local convergence of a subsequence of f∗

i Θi to a limit Θ∞. Since
also the complex structures of (Σ, f∗

i gi) converge smoothly locally (see Appendix A.1)
to the complex structure c of the limit surface, the limit Θ∞ is a holomorphic quadratic
differential on (Σ, h, c).

Based on the uniform bound on the L2 norms we can now show convergence of L1 norms.
It is a consequence of the Collar Lemma A.4 – see Lemma A.5 – that the area of the
δ-thin part of (M, gi) is less than Cδ for a uniform constant C independent of i and
δ > 0. By Cauchy-Schwarz, we may thus estimate over this δ-thin part

‖Θi‖L1(M\Mδ
i ,gi)

≤ C
√
δ‖Θi‖L2(M,gi) ≤ C

√
δ.

Meanwhile, by Lemma A.7 we have convergence of the norms on the δ-thick parts M δ
i

of (M, gi)
‖Θi‖L1(Mδ

i ,gi)
→ ‖Θ∞‖L1(Σδ,h).

Thus

lim sup
i→∞

‖Θi‖L1(M) = lim sup
i→∞

(‖Θi‖L1(Mδ
i )
+‖Θi‖L1(M\Mδ

i )
) ≤ ‖Θ∞‖L1(Σδ)+C

√
δ → ‖Θ∞‖L1(Σ)

as δ ↓ 0, and

lim inf
i→∞

‖Θi‖L1(M) ≥ lim inf
i→∞

‖Θi‖L1(Mδ
i )

= ‖Θ∞‖L1(Σδ) → ‖Θ∞‖L1(Σ)

as δ ↓ 0, and so we have proved (2.1). Note that a by-product of this is that Θ∞ must
lie in L1, and therefore in H(Σ, h). We have proved the first part of the lemma.

It remains to prove the second part of the lemma. To do this, for each i, pick any unitary
basis Θj

i of Li (j = 1, . . . , n). By assumption (2.2), we have ‖Θj
i‖L1 ≥ ε for all i. By the

first part of the lemma, after passing to a subsequence in i, we may assume that there
exist nonzero limits Θj

∞ ∈ H(Σ, h) of the sequences f∗
i (Θ

j
i ). It remains to show that

these limits span an n-dimensional subspace of H(Σ, h). If that were not the case, then
we could find a unitary vector b ∈ Cn such that

n∑

j=1

bjΘ
j
∞ = 0.

4



But then we could consider the sequence

Θ̃i :=

n∑

j=1

bjΘ
j
i

of unitary vectors in Li, which converges smoothly locally to zero by construction. But
by the first part of the lemma, and by the assumed lower bound on the L1 norm from
(2.2), this must converge to a nonzero limit.

2.1 Analysis of holomorphic quadratic differentials on collar re-

gions

The subspaces Wi ⊂ H(M, gi) alluded to earlier will be defined in terms of the behaviour
of elements along so-called collar regions, and we now discuss the geometry of collars.

Following Lemma A.4, let C(ℓ) be the hyperbolic collar around a simple closed geodesic
of length ℓ, i.e. a region (−X(ℓ), X(ℓ))×S1 parametrised by local conformal coordinates
(s, θ) (or a complex coordinate w = s+ iθ) and equipped with the metric

ρ2(ds2 + dθ2), where ρ =
ℓ

2π cos( ℓs
2π )

.

We can equivalently think of the collar as an annulus DeX\De−X in the complex plane
parametrised by z := ew and equipped with an appropriate metric ρ̃2dzdz̄. A holomor-
phic quadratic differential Φ on the collar is given in these coordinates by Φ = φ(w)dw2 =
φ̃(z)dz2 for holomorphic functions φ(w) = z2φ̃(z) on the cylinder respectively the annu-
lus.

Decomposing φ̃ as a Laurent series

φ̃(z) =

∞∑

n=−∞

b̃nz
n,

converging uniformly away from the boundary of the annulus, the function φ representing
the holomorphic quadratic differential in the cylindrical coordinates can thus be written
as

φ(s, θ) =

∞∑

n=−∞

bne
nw =

∞∑

n=−∞

bne
ns einθ, (2.3)

with bn := b̃n−2 ∈ C.

We will split this function φ, and hence the quadratic differential Φ on the collar, into
its principal part φ0dw

2 := b0(Φ)dw
2 = b̃−2z

−2dz2 and the remaining, collar-decay part
Φ− b0(Φ)dw

2.

Because each of the terms in the sum (2.3) are L2-orthogonal, even when restricted to
circles {s}×S1, the components b0(Φ)dw

2 and Φ−b0(Φ)dw
2 are orthogonal on the collar

with respect to the hyperbolic metric, and even on any sub-collar (s1, s2)× S1 ⊂ C(ℓ).

We control the collar-decay components with the following lemma, which will be proved
at the end of the section.

Lemma 2.2. Holomorphic quadratic differentials with zero principal part decay rapidly
along the collars in the following uniform sense. There exist numbers δ0 > 0 and C < ∞

5



such that any holomorphic quadratic differential Θ on a collar C(ℓ), 0 < ℓ < 2 arsinh(1),
with principal part b0(Θ)dw2 = 0 satisfies

‖Θ‖L∞(δ−thin(C(ℓ))) ≤ C · e−π/δδ−2‖Θ‖L2(δ0−thick(C(ℓ)))

for all numbers 0 < δ ≤ δ0.

Remark 2.3. Given a holomorphic quadratic differential on a hyperbolic surface (M, g)
satisfying the assumptions of the above lemma on such a collar neighbourhood C ⊂
(M, g), it is useful to observe that Lemma 2.2 implies an estimate of the form

‖Θ‖L∞(δ−thin(C)) ≤ C · e−π/δδ−2‖Θ‖L1(M,g),

since the L2 norm over the thick part of the surface is controlled in terms of the L1(M, g)
norm by Lemma A.8.

The proof of this lemma will be given at the end of the section. The quadratic differ-
entials lying in Wi, which we will now define, will be of the type in Lemma 2.2 on each
degenerating collar.

Lemma 2.4. (Introducing Wi.) Given a sequence of hyperbolic surfaces (M, gi) degen-
erating to (Σ, h) by collapsing k collars Cj

i
∼= C(ℓji ) as described in Proposition A.2, we

let
Wi := {Θ ∈ H(M, gi) : b

j
0(Θ)dw2 = 0 for every j ∈ {1 . . . k} } (2.4)

be the subspace of holomorphic quadratic differentials that have vanishing principal part
on every degenerating collar Cj

i , j ∈ {1 . . . k}. Then:

(i) The elements of Wi decay rapidly along the collar regions in the sense that for every
δ > 0 and every i ∈ N

sup
w∈Wi

‖w‖L∞(M\Mδ
i ,gi)

‖w‖L2(M,gi)
≤ C · δ−2e−π/δ (2.5)

for a uniform constant C < ∞ independent of i and δ, where M δ
i = δ-thick(M, gi).

(ii) There exists I0 ∈ N such that for i ≥ I0, Wi is a 3(γ− 1)− k dimensional subspace
of H(M, gi).

(iii) Wi converges to H(Σ, h) in the sense that for every i ≥ I0 there exists an L2-unitary

basis {Θj
i}3γ−3−k

j=1 of Wi that converges

f∗
i Θ

j
i → Θj

∞ ∈ H(Σ, h) as i → ∞

smoothly locally to an L2-unitary basis of H(Σ, h). Furthermore, the convergence
preserves all Lp norms, p ∈ [1,∞] in the sense that if a general sequence of elements
Θi ∈ Wi converges f∗

i Θi → Θ∞ locally, then the limit Θ∞ is in H(Σ, h) and for
each p ∈ [1,∞] we have ‖Θ∞‖Lp(Σ,h) = limi→∞ ‖Θi‖Lp(M,gi) < ∞.

Proof. (Lemma 2.4.) Part (i) of the lemma is an immediate consequence of the definition
of Wi, the key Lemma 2.2 about the behaviour of holomorphic quadratic differentials on
collar regions and the fact that for δ > 0 sufficiently small, the δ-thin part of the surface
(M, gi) is contained in the union of the collar regions Cj

i – see Proposition A.6 in the
appendix.
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Using Part (i), we deduce that for δ > 0 chosen sufficiently small,

‖w‖L2(Mδ
i ,gi)

≥ (1 − Cδ−2e−π/δ)‖w‖L2(M,gi) ≥
1

2
‖w‖L2(M,gi) for all w ∈ Wi, i ∈ N

which together with Lemma A.8 implies a uniform lower bound on the L1 norm of
elements of Wi of

inf
w∈Wi

‖w‖L1(M,gi)

‖w‖L2(M,gi)
≥ 1

2
inf

w∈Wi

‖w‖L1(M,gi)

‖w‖L2(Mδ
i ,gi)

≥ ε > 0 (2.6)

valid for all i ∈ N. We claim that there exists I0 ∈ N such that dim(Wi) = 3(γ − 1)− k
for all i ≥ I0. Note that by definition,

dim(Wi) ≥ dim(H(M, gi))− k = dim(H(Σ, h)) = 3(γ − 1)− k,

so the only alternative to our claim is if, after passing to a subsequence, we have
dim(Wi) = m > dim(H(Σ, h)) for each i. By Lemma 2.1, using (2.6), we conclude
that the spaces Wi subconverge to a subspace of H(Σ, h) of the same dimension m >
dim(H(Σ, h)) in the sense described in that lemma, which is impossible. This proves the
claim, i.e. Part (ii) of the lemma.

Now that we know the dimension of Wi, for i ≥ I0, we can apply Lemma 2.1 again to
obtain, after taking a subsequence, a sequence of unitary bases Θj

i and a limit basis Θj
∞.

To prove Part (iii) of the lemma, even allowing ourselves to take this subsequence, we still
have to show that this limit is unitary, and more generally that all Lp norms (p ∈ [1,∞])
are preserved during local convergence as described in the lemma, which will follow from
the rapid decay of the elements of Wi on collars.

Let Θi be any sequence of elements of Wi that converges smoothly locally f∗
i Θi → Θ∞.

Then Θ∞ is again a holomorphic quadratic differential which, as we shall prove now, has
finite L1 norm and is thus an element of H(Σ, h).

We recall that for any δ > 0 the δ-thick part Σδ
i of (Σ, f∗

i gi) converges as described in
Lemma A.7 to the compact set Σδ and thus that for every p ∈ [1,∞]

‖Θi‖Lp(Mδ
i ,gi)

→ ‖Θ∞‖Lp(Σδ,h),

by the smooth local convergence.

Let now δ0 > 0 be a fixed number as in Lemma 2.2. Since ‖Θ∞‖L2(Σδ0 ,h) is bounded,
we have a uniform bound on ‖Θi‖L2(M

δ0
i ,gi)

so that according to Lemma 2.2 the norms

over the thin part of the surfaces (M, gi)

‖Θi‖Lp(M\Mδ
i ,gi)

≤ C · ‖Θi‖L∞(M\Mδ
i ,gi)

≤ Cδ−2e−π/δ → 0

converge to zero uniformly in i and p ∈ [1,∞] as δ → 0.

Thus the global Lp norms are bounded uniformly and converge

‖Θ∞‖Lp(Σ,h) = sup
δ>0

‖Θ∞‖Lp(Σδ,h) = sup
δ>0

lim
i→∞

‖Θi‖Lp(Mδ
i ,gi)

= lim
i→∞

‖Θi‖Lp(M,gi)

for every p ∈ [1,∞].

The preservation particularly of the L2 norm in the above convergence implies that the
basis {Θj

∞} of H(Σ, h) that is obtained above as a limit of (a subsequence of) unitary
bases {Θj

i} of Wi, is again unitary.
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That would complete the proof of Part (iii) of the lemma, except that we have allowed
ourselves to take a subsequence above. However, it is easy to return to the original
(pre-subsequence) sequence and take an extended sequence of unitary bases {Θj

i}, and
check that after modifying them by a sequence of unitary transformations, they con-
verge to {Θj

∞}: If not, then let us take a subsequence which, however we modify with
a sequence of unitary transformations, stays outside some neighbourhood of {Θj

∞}. Fol-
lowing the argument above, we may pass to a further subsequence to get convergence
to some other unitary limit basis {Θ̃j

∞}, but then by modifying this whole subsequence
by an appropriate fixed unitary transformation, we get convergence to {Θj

∞}, which is a
contradiction.

Remark 2.5. In our considerations above, we have derived properties of elements of Wi

by using the fact that their principal parts on each collar vanish. In practice, this can
be weakened. For example, to have preservation of the L2 norm in Part (iii) above, we
would only need that

bj0(Θi) · (ℓji )−
3

2 → 0 as i → ∞ for each j ∈ {1 . . . k}. (2.7)

This is because we only need that the principal parts of Θi are vanishing in the sense
that the L2 norms of bj0(Θi)dw

2 converge to zero, and if we adopt the normalisation
convention that

∣∣dw2
∣∣ = 2ρ−2, we have, for 0 < δ < arsinh(1) and ℓ ∈ (0, 2δ),

‖dw2‖2L2(δ-thin(C(ℓ))) = 2π

ˆ Xδ

−Xδ

|dw2|2ρ2ds = 8π

ˆ Xδ

−Xδ

ρ−2ds =
C

ℓ2

ˆ Xδ

−Xδ

cos2
(
ℓs

2π

)
ds

= C0ℓ
−3 +O(δ−3)

(2.8)
for a constant C0 > 0 independent of ℓ and δ, and where

Xδ(ℓ) =
π2

ℓ
− 2π

ℓ
arcsin

(
sinh(ℓ/2)

sinh(δ)

)
=

π2

ℓ
− π

δ
+O(1) (2.9)

was defined in Lemma A.5 so that the δ-thin part of a collar C(ℓ) is given by (−Xδ(ℓ), Xδ(ℓ))×
S1.

We finally give the proof of the key Lemma 2.2 on the decay on collars of holomorphic
quadratic differentials with zero principal part.

Proof. (Lemma 2.2.) Let 0 < δ0 < arsinh(1) be a constant to be fixed later on. Given
any number 0 < ℓ < 2 arsinh(1), we consider the corresponding collar region C(ℓ) around
a geodesic of length ℓ as described in the Collar Lemma A.4. We first remark that since
the δ0-thin part of C(ℓ) is empty in the case that ℓ ≥ 2δ0 =: ℓ0, we may restrict our
attention to values 0 < ℓ < ℓ0. We recall that the subcylinder (−Xδ0(ℓ), Xδ0(ℓ)) × S1

describing the δ0-thin part of the collar C(ℓ) = (−X(ℓ), X(ℓ)) × S1 is characterised by
(2.9) and is thus bounded away uniformly from the boundary of C(ℓ), say

X(ℓ)−Xδ0(ℓ) ≥ 1 for all 0 < ℓ < ℓ0,

if δ0 is initially chosen small enough. This is the only constraint we impose on δ0.

Let now Θ be a holomorphic quadratic differential on such a collar C(ℓ), 0 < ℓ ≤ ℓ0,
without loss of generality normalised to satisfy ‖Θ‖L2(δ0−thick(C(ℓ))) = 1, and suppose
that Θ has zero principal part, i.e. that it is given by a converging sum of the form

Θ =
∑

n∈Z\{0}

bne
ns einθdw2.
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Using that all terms in this sum are L2-orthogonal on subcylinders as well as that
∣∣dw2

∣∣ =
2ρ−2 (with our normalisation) we thus obtain

1 = ‖Θ‖2L2(δ0−thick(C(ℓ))) =
∑

n∈Z\{0}

|bn|2 ‖ensdw2‖2L2(δ0−thick(C(ℓ)))

≥ 8π
∑

n∈N

[
|bn|2

ˆ X(ℓ)

X(ℓ)−1

e2nsρ−2(s)ds+ |b−n|2
ˆ −X(ℓ)+1

−X(ℓ)

e−2nsρ−2(s)ds

]

≥ c
∑

n∈Z\{0}

|bn|2 |n|−1
e2|n|X(ℓ)

(2.10)

for a uniform constant c > 0. Here the last inequality follows from the uniform upper
bound ρ(s) ≤ C for the conformal factor on the ends of collars around geodesics of
bounded length.

We conclude in particular that |bn| ≤ C
√

|n|e−|n|X(ℓ) for every n ∈ Z \ {0}, resulting in
a bound of

‖Θ‖L∞(δ-thin(C(ℓ))) ≤ C
∑

n∈Z\{0}

√
ne−|n|X(ℓ) sup

s∈[−Xδ(ℓ),Xδ(ℓ)]

ens
∣∣dw2

∣∣ (s), (2.11)

valid for arbitrary values of 0 < δ ≤ δ0 and with a uniform constant C < ∞. We now
remark that for each ℓ and each n ∈ Z \ {0} the function

s 7→ ens
∣∣dw2

∣∣ (s) = 2ensρ−2(s) =
8π2

ℓ2
· cos2

(
ℓs

2π

)
ens

is monotone on the whole interval (−X(ℓ), X(ℓ)) so the supremum in (2.11) is achieved
at one end of the δ-thin part of the collar. We obtain the desired bound of

‖Θ‖L∞(δ-thin(C(ℓ))) ≤ C
∑

n∈Z\{0}

√
ne−|n|(X(ℓ)−Xδ(ℓ))ρ−2(Xδ(ℓ)) ≤ Ce−

π
δ δ−2.

2.2 Applications of the structure theory for holomorphic quadratic

differentials

As a consequence of the results derived in the previous section we will now obtain a
continuity result for the projection of general quadratic differentials onto the subspaces
Wi ⊂ H(M, gi) of holomorphic quadratic differentials described in Lemma 2.4. In a
sense to be made precise, the projections onto Wi will converge to the projection onto
the entire space H(Σ, h) of integrable holomorphic quadratic differentials on the limit.

Before stating this result let us first recall that the space of holomorphic quadratic dif-
ferentials on a compact surface (M, g) is finite dimensional and that all its elements are

bounded. Thus the L2(M, g)-orthogonal projection Pg = P
H(M,g)
g onto H(M, g) satis-

fies an estimate of the form ‖Pg(Ψ)‖L2(M,g) ≤ C‖Ψ‖L1(M,g), where Ψ is any quadratic
differential with finite L2 norm, and can thus be extended continuously to a projection
from the space of all quadratic differentials with finite L1 norm to H(M, g), which we
still denote by Pg.

9



Similarly, by virtue of the L∞ bounds on integrable holomorphic quadratic differentials

given in Lemma A.11, we can extend the L2(Σ, h)-orthogonal projection P
H(Σ,h)
h to the

space of all quadratic differentials on the limit surface that have finite L1 norm.

We furthermore remark that given a sequence Ψi of quadratic differentials on degen-
erating surfaces we can think of the sequence f∗

i Ψi either as a sequence of quadratic
differentials with respect to the varying metrics f∗

i gi or as a general sequence of (com-
plex) tensors on the fixed Riemannian surface (Σ, h), thus allowing us to talk about
convergence of these tensors say in L1

loc(Σ, h). Furthermore, any tensor Ψ∞ obtained
as a limit of a sequence of quadratic differentials f∗

i Ψi → Ψ∞ in L1
loc(Σ, h) is again a

quadratic differential now with respect to (Σ, h) owing to the smooth local convergence
of the complex structures (as in Section A.1). If the norms ‖Ψi‖L1(M,gi) are bounded
and thus also ‖Ψ∞‖L1(Σ,h) < ∞, the projection of the limit Ψ∞ to the space H(Σ, h) is
well defined, as remarked above, and we can discuss the continuity of the projections in
the following sense.

Theorem 2.6. Let (M, gi) be a sequence of degenerating hyperbolic surfaces converging
to a hyperbolic punctured surface (Σ, h) by collapsing k collars as described in Proposition
A.2 and let Wi ⊂ H(M, gi) be the 3(γ − 1)− k dimensional subspace defined in Lemma
2.4 that consists of elements of H(M, gi) decaying rapidly on the degenerating collars.

(i) Suppose we have a sequence of quadratic differentials Ψi on (M, gi) satisfying a
uniform bound ‖Ψi‖L1(M,gi) ≤ C which converges

f∗
i Ψi → Ψ∞ in L1

loc(Σ, h).

Suppose further that we have a sequence of holomorphic quadratic differentials Θi ∈
Wi such that

f∗
i Θi → Θ∞

smoothly locally. Then
ˆ

M

〈Ψi,Θi〉dµgi →
ˆ

Σ

〈Ψ∞,Θ∞〉dµh. (2.12)

(ii) The L2(M, gi)-orthogonal projection PWi
gi onto Wi converges to the L2(Σ, h)-orthogonal

projection P
H(Σ,h)
h onto the space of integrable holomorphic quadratic differentials

H(Σ, h) on the limit surface in the following sense:

For any sequence Ψi of quadratic differentials on (M, gi) with uniformly bounded
L1 norms that converges f∗

i Ψi → Ψ∞ locally in L1(Σ, h) the projections converge

f∗
i (P

Wi
gi (Ψi)) → P

H(Σ,h)
h (Ψ∞) smoothly locally

while preserving any Lp norm

lim
i→∞

‖PWi
gi (Ψi)‖Lp(M,gi) = ‖PH(Σ,h)

h (Ψ∞)‖Lp(Σ,h), 1 ≤ p ≤ ∞.

The first part of the lemma will be used in the proof of the second part, which in turn is
required in the proof of the main Theorem 1.1.

Proof of Theorem 2.6. Let Ψi and Θi be as in Theorem 2.6 (i) and recall that by the
remarks made earlier in this section all objects in the theorem are well defined. Given any
δ > 0, we now use that the δ-thick part Σδ

i of (Σ, f∗
i gi) converges as described in Lemma

A.7 to the (compact) δ-thick part Σδ of the limit surface. Combined with the smooth

10



local convergence of the metrics and the local L1(Σ, h) convergence of 〈Ψi,Θi〉 ◦ fi =
〈f∗

i Ψi, f
∗
i Θi〉 → 〈Ψ∞,Θ∞〉 we thus find that

ˆ

Mδ
i

〈Ψi,Θi〉dµgi =

ˆ

Σδ
i

〈f∗
i Ψi, f

∗
i Θi〉dµf∗

i
gi →

ˆ

Σδ

〈Ψ∞,Θ∞〉dµh (2.13)

for every δ > 0 – see also Lemma A.7 in the appendix.

We obtain the first claim of the theorem passing to the limit δ → 0 since the integrals in
the above formula converge uniformly to the corresponding integrals over the full surface
as δ → 0 thanks to the estimate

∣∣∣∣∣

ˆ

M\Mδ
i

〈Ψi,Θi〉dµgi

∣∣∣∣∣ ≤ ‖Ψi‖L1 · ‖Θi‖L∞(M\Mδ
i )

≤ C · δ−2e−π/δ

resulting from Lemma 2.4.

For the proof of the second statement we let {Θj
∞} be any unitary basis of H(Σ, h)

and, using Lemma 2.4, choose for each Wi a unitary basis {Θj
i} such that f∗

i Θ
j
i → Θj

∞

smoothly locally for every j ∈ {1, . . .3(γ − 1)− k} as i → ∞. Then given any sequence
of quadratic differentials Ψi as in (ii), and abbreviating 〈〈Ψ,Θ〉〉(M,g) =

´

M
〈Ψ,Θ〉dµg,

we find

f∗
i (P

Wi
gi (Ψi)) =f∗

i




3(γ−1)−k∑

j=1

〈〈Ψi,Θ
j
i 〉〉(M,gi) ·Θj

i


 =

3(γ−1)−k∑

j=1

〈〈Ψi,Θ
j
i 〉〉(M,gi) · f∗

i Θ
j
i

→
3(γ−1)−k∑

j=1

〈〈Ψ∞,Θj
∞〉〉(Σ,h) ·Θj

∞ = P
H(Σ,h)
h (Ψ∞),

smoothly locally, using the first part of the lemma. The final claim in (ii) follows from
Lemma 2.4 (iii).

3 Asymptotic convergence in the general degenerate

case

Now we have developed enough theory for quadratic differentials in order to prove our
main theorem.

Proof. (Theorem 1.1.) Let (u, g) be a global solution of (1.1) as in Theorem 1.1. Recall
that (u, g) is smooth away from finitely many times and that the energy decays according
to

dE

dt
= −

ˆ

M

|τg(u)|2 +
(η
4

)2

|Re(Pg(Φ(u, g)))|2 (3.1)

on any interval on which the solution is smooth. We can thus choose a sequence ti → ∞
such that

‖τg(u)(ti)‖L2(M,g(ti)) → 0 and ‖Pg(Φ(u, g))(ti)‖L2(M,g(ti)) → 0 as i → ∞.

Passing to a further subsequence we obtain that the surfaces (M, g(ti)) degenerate to a
hyperbolic punctured surface as described in Proposition A.2 (modulo diffeomorphisms
fi).

11



Since we are dealing with a gradient flow for energy, the energies of ui := u(ti) ◦ fi
computed with respect to the varying metrics Gi := f∗

i g(ti) are uniformly bounded, and
indeed E(ui, Gi) ≤ E(u0, g0). Since the metrics Gi → h converge locally uniformly, we
also have a uniform upper bound for the energies of ui given by

lim sup
i→∞

E(ui, (K,h)) ≤ E(u0, g0),

valid for every compact subset K ⊂⊂ Σ.

Passing to a subsequence we may thus assume that ui converges weakly in H1
loc(Σ, h) to

a limit map u∞ with finite energy, and we claim that u∞ is both harmonic as well as
weakly conformal.

The proof that u∞ is harmonic is very similar to the non-degenerate case [9]. We let
ε0 = ε0(N) > 0 be such that the basic ε-regularity estimate

ˆ

Dr

∣∣∇2u
∣∣2 ≤ C

r2
E(u;D2r) + C‖τ(u)‖2L2(D2r)

(3.2)

is valid for all maps into N with energy less than ε0 on the Euclidean disc (cf. Lemma
3.3 of [9]) and consider the finite set of concentration points

S := {p ∈ Σ : lim sup
i→∞

E(ui, (U, h)) > ε0 for every neighbourhood U of p}.

As in the non-degenerate case, from (3.2) and the convergence of metrics we obtain
uniform H2 bounds for ui on compact subsets of Σ \ S which allow us to extract a
subsequence that converges weakly inH2

loc(Σ\S) and strongly in W 1,p
loc (Σ\S), 1 ≤ p < ∞,

to a limit which must of course agree with u∞ where it is defined. Since we chose the
sequence of times ti in such a way that

‖τGi
(ui)‖L2(Σ,Gi) → 0

the limit u∞ must be harmonic, initially on Σ \S but then, by the removable singularity
theorem [12] and the finiteness of the energy, on all of Σ, and indeed on the compactifi-
cation Σ obtained from (Σ, c) by filling in each of the 2k punctures. Note in particular,
that u∞ is smooth throughout Σ, as is its extension to Σ.

We conclude in particular that the Hopf-differential Φ(u∞, h) is holomorphic. Further-
more, its L1 norm is bounded by the total energy of u∞ on (Σ, h) and is thus finite,
which means that Φ(u∞, h) ∈ H(Σ, h). In order to prove that u∞ is (weakly) conformal

(i.e. that Φ(u∞, h) ≡ 0) it is thus enough to show that the projection P
H(Σ,h)
h (Φ(u∞, h))

vanishes.

But we know that ‖Φ(u(ti), g(ti))‖L1(M,g(ti)) is bounded and that also the L1 norm of
its antiholomorphic derivative ‖∂̄Φ(u(ti), g(ti))‖L1(M,g(ti)) is bounded.

Locally, we can thus apply the argument of the non-degenerate case: the Compactness
Lemma 2.3 of [9] combined with the convergence of complex structures (and thus the
convergence of isometric coordinate charts as defined in the proof of Lemma A.9) implies
that Φ(ui, Gi) converges to a limit Ψ∞ which we know is again a quadratic differential
on (Σ, h). Indeed, due to the strong H1 convergence of ui on the complement of S, the
limit Ψ∞ must agree with the Hopf-differential Φ(u∞, h) of the limiting map.

Since the projections PWi

g(ti)
onto the subspaces Wi ⊂ H(M, g(ti)) defined in Lemma 2.4

converge to P
H(Σ,h)
h as described in Theorem 2.6 we conclude that

P
H(Σ,h)
h (Φ(u∞, h)) = lim

i→∞
f∗
i

[
PWi

g(ti)
(Φ(u(ti), g(ti)))

]
= 0,
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where the last equality is due to the projection of Φ(u(ti), g(ti)) onto the full space
H(M, g(ti)) converging to zero.

Thus u∞ is a weakly conformal harmonic map on Σ and thus [5], on each of its connected
components, either a branched minimal immersion or constant.

A Degenerating hyperbolic surfaces

In this appendix we collect several important definitions and facts from the theory of
hyperbolic surfaces that have been used throughout the main part of this paper, empha-
sising the geometric analysis aspects that we require.

A.1 Deligne-Mumford compactness theorem

The classical Mumford Compactness Theorem [7, 13] tells us that if we have a sequence
of closed hyperbolic Riemann surfaces (M, gi, ci), and the length ℓ(gi) of the shortest
closed geodesic is bounded uniformly away from zero, then a subsequence converges to
a limiting hyperbolic surface (M, g∞, c∞) of the same topological type, in the sense that
there exists a family of diffeomorphisms fi : M → M such that

f∗
i gi → g∞ and f∗

i ci → c∞ smoothly on M.

Here, the convergence of a sequence of complex structures ci (here f
∗
i ci) to a limit complex

structure c (here c∞) means that around each point in the underlying space (here M)
there exists a neighbourhood U on which there are complex coordinates zi (with respect
to ci) and z (with respect to c) such that zi → z in C∞ on U .

We will primarily be interested in the general case that ℓ(gi) has no uniform positive
lower bound, in which case we will get a more general limit of the following form:

Definition A.1. (Σ, c) is called a Riemann surface of genus γ ∈ N0 and with K ∈ N0

punctures, if Σ = N \ {p1, ..., pK}, where (N , c) is a closed Riemann surface of genus
γ, {p1, ..., pK} ⊂ N and c is the complex structure induced from c. (Σ, c) is said to be
of general type, if 2γ + K > 2. By the uniformization theorem, any Riemann surface
(Σ, c) of general type can be equipped with a complete hyperbolic metric h that is
compatible with the complex structure c. We then call (Σ, h) a hyperbolic punctured
surface. Throughout, we adopt the convention that N and Σ may have more than one
(but finitely many) components.

The Deligne-Mumford Compactness Theorem in the following form explains how degen-
eration can occur in the genus γ ≥ 2 case when ℓ(gi) can decay to zero. Although the area
of each surface is fixed (by Gauss-Bonnet) it can stretch out and become noncompact in
the limit.

Proposition A.2. (Deligne-Mumford compactness [1, 6].) Let (M, gi, ci) be a sequence
of closed hyperbolic Riemann surfaces of genus γ ≥ 2 which degenerate in the sense that
there is no uniform positive lower bound on ℓ(gi). Then, after selection of a subsequence,
(M, gi, ci) converges (in a sense to be clarified) to a hyperbolic punctured Riemann surface
(Σ, h, c), where Σ arises as follows: There exists E = {σj , j = 1, ..., k}, a collection of k

pairwise disjoint, homotopically nontrivial, simple closed curves on M so that if M̃ is the

13



surface obtained from M by pinching all curves σj to points qj, the surface Σ is defined
to be M̃ \ ∪k

j=1q
j.

The convergence above is to be understood as follows: For each i there exists a collection
Ei = {σj

i , j = 1, ..., k} of pairwise disjoint simple closed geodesics on (M, gi, ci) with each

σj
i homotopic to σj , and a continuous map τi : M → M̃ with τi(σ

j
i ) = qj, j ∈ {1, ..., k}

such that:

(i) For each j ∈ {1, ..., k}, the lengths ℓ(σj
i ) =: ℓji → 0 as i → ∞ .

(ii) For each i, τi : M \ ∪k
j=1σ

j
i → Σ is a diffeomorphism and its inverse is denoted by

fi : Σ → M \ ∪k
j=1σ

j
i .

(iii) (fi)
∗gi → h in C∞

loc on Σ.

(iv) (fi)
∗ci → c in C∞

loc on Σ.

By hyperbolic surface theory, the number of simple closed geodesics of length< 2 arsinh(1)
for a closed hyperbolic surface of genus γ ≥ 2 is bounded by 3γ − 3 (cf. [6]). Therefore,
in Proposition A.2, we have 1 ≤ k ≤ 3γ − 3.

More generally, we have:

Proposition A.3. ([6] Lemma 4.1.) Let (Σ, h) be a hyperbolic punctured surface of
genus γ and with K punctures. Then the simple closed geodesics in Σ of lengths smaller
than 2 arsinh(1) are pairwise disjoint. In particular, there are only finitely many of them
and their number is bounded by 3γ − 3 +K.

A.2 Description of the thin parts of the surface: Collars and

Cusps

Let (M, h) be any smooth Riemannian manifold. We denote by inj(p) = inj(M,h)(p) the

injectivity radius of (M, h) at p ∈ M and by Mδ the δ-thick part

Mδ := {p ∈ M : inj(p) ≥ δ}, δ > 0.

The δ-thin part of M, sometimes denoted by δ-thin(M), is then the open set M\Mδ

of points with injectivity radius strictly less than δ.

One fundamental fact of hyperbolic surface theory – see Proposition A.6 below – is that
for any 0 < δ < arsinh(1), the δ-thin part of a hyperbolic surface is given by a finite
union of hyperbolic cylinders of finite length around closed geodesics, and of cylinders of
infinite length that we call standard cusps. The regions near simple closed geodesics are
described by the Collar Lemma:

Lemma A.4. (Keen-Randol Collar Lemma, [8].) Let (M, g) be a closed hyperbolic sur-
face and let σ be a simple closed geodesic of length ℓ. Then there is a neighbourhood U
around σ, a so called collar, which is isometric to the cylinder

C(ℓ) = (−X(ℓ), X(ℓ))× S1

equipped with the hyperbolic metric ρ2(ds2 + dθ2), where

X(ℓ) =
2π

ℓ

(
π

2
− arctan

(
sinh

(
ℓ

2

)))
, ρ =

ℓ

2π cos( ℓs
2π )

.

The geodesic σ corresponds to the circle {0} × S1 ⊂ C(ℓ).

14



Owing to this explicit description of the metric in these collar regions, we can read off
the δ-thin part:

Lemma A.5. ([6, 14].) Let (C(ℓ), ρ2(ds2 + dθ2)), 0 < ℓ ≤ 2 arsinh(1) be a collar region
of a hyperbolic surface (M, g) as described in the Collar Lemma A.4. Then the injectivity
radius of (M, g) at points in the collar is characterised by

sinh(inj(s, θ)) · cos
(
ℓs

2π

)
= sinh

(
ℓ

2

)
.

In particular, given any such ℓ and any 0 < δ < arsinh(1) the δ-thin part of the collar is
given by the subcylinder

C(ℓ, δ) := (−Xδ(ℓ), Xδ(ℓ))× S1 ⊆ C(ℓ), (A.1)

where Xδ(ℓ) =
2π
ℓ

(
π
2 − arcsin

(
sinh( ℓ

2
)

sinh δ

))
for δ ≥ ℓ/2, respectively zero for smaller values

of δ, and its area is bounded by

Area(C(ℓ, δ)) ≤ 2ℓ

sinh( ℓ2 )
· sinh δ ≤ C · δ

for a uniform constant C independent of 0 < ℓ ≤ 2 arsinh(1) and 0 < δ < arsinh(1).

Proof. The formula for the injectivity radius and thus for the δ-thin part of the collar
follows from arguments of hyperbolic geometry, see [6]. The area of C(ℓ, δ) is then given
by

Area(C(ℓ, δ)) =
ˆ

C(ℓ,δ)

ρ2dsdθ =
ℓ2

2π

ˆ Xδ

−Xδ

cos−2

(
ℓs

2π

)
ds

= 2ℓ tan

(
ℓXδ

2π

)
≤ 2

ℓ · sinh(δ)
sinh( ℓ2 )

≤ C · δ
(A.2)

for 0 < δ < arsinh(1) as claimed.

The Collar Lemma also applies to compact subsets of hyperbolic punctured surfaces
(Σ, h) and thus gives that for 0 < δ < arsinh(1) the δ-thin part of (Σ, h) consists of
(a possibly empty set of) collars as well as the δ-thin parts of the surface contained in
neighbourhoods of the punctures. Near a puncture, (Σ, h) has the form of a so-called
standard cusp, leading to the following general description of the thin part of a hyperbolic
punctured surface.

Proposition A.6. ([6] Proposition IV.4.2.) Let (Σ, h) be a hyperbolic punctured surface
with punctures {p1, ..., pK}. Then the arsinh(1)-thin part of (Σ, h) is given as the union
of mutually disjoint sets consisting of

1. the arsinh(1)-thin parts of the collar neighbourhoods around simple closed geodesics
σ of length ℓ = ℓ(σ) < 2arsinh(1), and

2. neighbourhoods U(pj) around each of the punctures, j = 1 . . .K, which are all
isometric to a standard cusp, i.e. to the infinitely long half-cylinder (π,∞) × S1

equipped with the metric 1
s2 (ds

2 + dθ2) or equivalently to the punctured open disc
De−π(0) \ {0} equipped with the metric 1

|z|2·(log(|z|))2 dz
2.

For a degenerating sequence of hyperbolic surfaces, we now conclude:
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Lemma A.7. Suppose (M, gi) converges to a hyperbolic punctured surface (Σ, h) as in
Proposition A.2. Then the following claims are true for any number 0 < δ < arsinh(1):

1. The δ-thick parts Σδ
i of the surfaces (Σ, f∗

i gi) converge to the compact set Σδ, the
δ-thick part of the limit surface, both in the sense of Hausdorff distance on (Σ, h) as
well as in the sense that the measure of the symmetric difference Σδ

i∆Σδ converges
to zero. (In particular, all the sets are contained in a uniform compact set.)

2. Given any sequence of functions ϕi : Σ → R with ‖ϕi‖L1(Σ,f∗

i gi)
bounded and

converging
ϕi → ϕ in L1

loc(Σ, h),

the corresponding integrals over the δ-thick parts of the surfaces converge

ˆ

Σδ
i

ϕidµf∗

i gi →
ˆ

Σδ

ϕdµh.

Proof. Let 0 < δ < arsinh(1) be fixed. We first recall that the limiting surface can be
decomposed into a compact set K0 as well as the neighbourhoods U(pj), j ∈ {1 . . . 2k} of
the punctures which are isometric to the cylinders (π,∞)×S1 equipped with the metric
s−2(ds2 + dθ2). Since the δ-thick part of such a cusp is also compact, the whole δ-thick
part Σδ of the limiting surface (Σ, h) is compact and thus the metrics f∗

i gi converge
smoothly on Σδ. In particular, given any ε > 0 and δ > 0 we find that

sup
z∈Σδ

∣∣∣injf∗

i gi
(z)− injh(z)

∣∣∣ < ε (A.3)

for i sufficiently large, say i ≥ i0(ε, δ), so we conclude that Σδ ⊂ Σδ−ε
i .

By the same argument, for K any fixed compact subset of Σ, we conclude that the points
in K \Σδ are eventually in the δ + ε thin part of the degenerating surfaces (Σ, f∗

i gi). In
order to obtain the inclusion

Σδ+ε
i ⊂ Σδ (A.4)

for i sufficiently large, we thus need to prove that there is a uniform compact subset
K(δ + ε) of Σ which contains the δ̃ = δ + ε thick parts of the degenerating surfaces
(Σ, f∗

i gi) for all i sufficiently large. Using the decomposition of Σ into a compact set K0

and the neighbourhoods of the punctures U(pj) it is enough to establish this claim for
points contained in U(pj), j ∈ {1 . . . 2k} and we analyse the δ̃-thin parts

Uj
i (δ̃) := δ̃-thin(U(pj), f∗

i gi) = {p ∈ U(pj) : injf∗

i gi
(p) < δ̃}, 0 < δ̃ < arsinh(1)

of these cylindrical neighbourhoods of the punctures.

We recall that the maps τi : M → M̃ described in Proposition A.2 are continuous and
map σj

i to the point qj in M̃ , which in turn corresponds to a pair of punctures in Σ.

Thus for i sufficiently large, Uj
i (δ̃) must be (topologically) a cylinder which contains in

particular all points close to the puncture, i.e. using the description of U(pj) in Propo-
sition A.6, in particular all points with large (a priori depending on i) s-coordinate.

But on the other hand, by what we already proved the compact cylinder {p ∈ U(pj) :
injh(p) ∈ [δ̃/4, δ̃/2]} is eventually contained in Uj

i (δ̃) so for i sufficiently large the whole

set U(pj) \ Σδ̃/2 is contained in Uj
i (δ̃). Equivalently we obtain that δ̃-thick(U(pj)) =
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U(pj) \ Uj
i (δ̃) is contained in Σδ̃/2, for i large, and thus that the sets Σδ̃

i are contained in
a uniform compact subset of (Σ, h).

All in all we thus conclude that for any δ > 0, any ε > 0 and for i large enough

Σδ+ε
i ⊂ Σδ ⊂ Σδ−ε

i . (A.5)

The set Σδ−ε \ Σδ+ε, 0 < δ + ε < arsinh(1), is now given by a union of subcylinders
[Xδ−ε, Xδ+ε]×S1 of collar respectively puncture regions that are explicitly described by
Lemma A.4 and Proposition A.6 and it is easy to see that the distance between the two
boundary curves of each such cylinder converges to zero as ε → 0. Combined with (A.5)
this in particular implies the convergence of the sets Σδ

i to Σδ as described in the first
statement of the lemma.

To obtain the second claim of Lemma A.7 we now exploit that local convergence of
functions and metrics implies uniform convergence on the compact set Σδ/2, δ > 0,
which contains Σδ

i for i sufficiently large. Combining the convergence of the integrals on
the fixed set Σδ

ˆ

Σδ

ϕidµf∗

i
gi →

ˆ

Σδ

ϕdµh

with the fact that the symmetric difference Σδ∆Σδ
i is contained in the compact set Σδ/2

for i large and that its measure converges to zero implies that

lim sup
i→∞

ˆ

Σδ∆Σδ
i

|ϕi| dµf∗

i gi ≤ lim sup
i→∞

ˆ

Σδ∆Σδ
i

|ϕ| dµh = 0,

so that we obtain the second claim of the lemma.

A.3 Estimates for holomorphic quadratic differentials on hyper-

bolic surfaces

We finally collect a few useful properties of holomorphic quadratic differentials. We first
remark that the Lp norms over the thick part of the surface are controlled by the L1

norm

Lemma A.8. For any δ > 0 and any closed surface M there exists a constant C < ∞
depending only on δ and the genus of M such that for every hyperbolic metric g on M

‖Θ‖Lp(Mδ,g) ≤ C · ‖Θ‖L1(M,g), for all 1 ≤ p ≤ ∞, Θ ∈ H(M, g),

where M δ := δ-thick(M, g).

Furthermore we clarify how holomorphicity leads to derivative estimates in terms of the
L1 norm, in the presence of degeneration.

Lemma A.9. Let (M, gi) be any sequence of hyperbolic surfaces that converges to a (pos-
sibly punctured) limiting surface (Σ, h) as described in Proposition A.2. Then holomor-
phic quadratic differentials are uniformly controlled on the thick part of the surfaces in the
following sense: For any δ > 0 and any m ∈ N0, there exists a uniform (i-independent)
constant C < ∞ such that for all holomorphic quadratic differentials Θi ∈ H(M, gi)

‖f∗
i Θi‖Cm(Σδ

i )
≤ C · ‖Θi‖L1(M,gi), i ∈ N.
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The same bound is valid also on the limiting surface

‖Θ∞‖Cm(Σδ) ≤ C · ‖Θ∞‖L1(Σ,h)

for all Θ∞ ∈ H(Σ, h).

Here and in the following we compute the Cm norm with respect to a fixed set of coor-
dinate charts of Σ.

Remark A.10. Thanks to the rapid decay on collars of elements ofWi as well as the con-
vergence of these spaces to H(Σ, h) as discussed in Theorem 2.6, under the assumptions
of the previous lemma we could also obtain an estimate of the form

‖Θ‖Lp(Σ,h) ≤ C · ‖Θ‖L1(Σ,h), for all 1 ≤ p ≤ ∞, Θ ∈ H(Σ, h), (A.6)

giving a bound on the global Lp norm of elements of H(Σ, h). Here the constant C < ∞
depends on (Σ, h).

We first give a very short proof of Lemma A.8.

Proof. (Lemma A.8.) Let (M, g) be a hyperbolic surface, let Θ ∈ H(M, g) and let δ > 0.
We first remark that with the area of (M, g) determined by its genus, it is sufficient to
bound the L∞ norm of Θ. Given any point z0 ∈ M δ we choose a coordinate chart

φ : Bg(z0, δ) → (BgH (0, δ), gH)

which is an isometry from the δ-ball around z0 in (M, g) to the ball of radius δ in the
Poincaré hyperbolic disc. In this coordinate chart Θ is given as θdz2 for a holomorphic
function θ : BgH (0, δ) → C. Standard estimates from complex analysis imply that the
L1 norm of the function θ bounds its L∞ norm on a slightly smaller ball, so that

‖Θ‖L∞(Bg(z0,δ/2),g) ≤ ‖θ‖L∞(BgH
(0,δ/2)) · ‖dz2‖L∞(BgH

(0,δ/2),gH)

≤ Cδ‖θ‖L1(BgH
(0,δ)) ≤ Cδ‖Θ‖L1(Bg(z0,δ),g)

for a constant Cδ depending only on δ.

Proof. (Lemma A.9.) For the given δ > 0, choose a finite cover of Σδ consisting of balls
Bh(z

j , δ/4) ⊂ (Σ, h) with centres zj ∈ Σδ. Then for i large enough, say i ≥ i0, also the
δ-thick set Σδ

i of (Σ, f∗
i gi) is covered by these balls and we may furthermore assume that

injf∗

i gi
(zj) ≥ δ

2 for each j.

Since the complex structures converge, there is a sequence of atlases which consist of
coordinate charts that can be viewed as isometries

φj
i : Bf∗

i gi
(zj , δ/2) → (BgH (0, δ/2), gH)

from the balls Bf∗

i gi
(zj , δ/2) of radius δ/2 in (Σ, f∗

i gi) to the fixed ball BgH (0, δ/2) of

radius δ/2 in the Poincaré hyperbolic disc and such that the maps φj
i converge smoothly

locally to an isometry φj
∞ from Bh(z

j , δ/2) ⊂ (Σ, h) to (BgH (0, δ/2), gH).

Working on the fixed domain BgH (0, δ/2), standard complex analysis gives uniform Cm

bounds of

‖θji ‖Cm(BgH
(0,δ/4)) ≤ Cδ · ‖θji ‖L1(BgH

(0,δ/2)) ≤ Cδ‖Θi‖L1(M,gi)
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for the holomorphic functions θji that represent f∗
i Θi with respect to the coordinate

charts φj
i .

Combined with the convergence of the charts φj
i , these estimates translate to uniform

Cm bounds on f∗
i Θi

‖f∗
i Θi‖Cm(Σδ

i )
≤ C · sup

j
‖θji ‖Cm(BgH

(0,δ/4)) ≤ Cδ‖Θi‖L1(M,gi)

with respect to the (fixed) isometric coordinate charts φj
∞ of (Σ, h).

The estimate for holomorphic quadratic differentials on the limiting surface are an im-
mediate consequence of the Cm estimates for holomorphic functions since we can work
directly with respect to the complex coordinate charts φj

∞ of (Σ, h) from above.

We finally remark that the space H(Σ, h) of holomorphic quadratic differentials with
finite L1 norm can be equivalently characterised as follows.

Lemma A.11. Let (Σ, h, c) be a hyperbolic punctured surface. Then for any holomorphic
quadratic differential Φ on (Σ, h) the following statements are equivalent:

(i) Φ ∈ H(Σ, h), that is ‖Φ‖L1(Σ,h) is finite.

(ii) Φ is bounded (with respect to the hyperbolic metric h).

(iii) At each of the punctures of (Σ, c) the differential Φ has at worst a simple pole.

The last statement implies in particular that an element of H(Σ, h) cannot have an
essential singularity at a puncture, so we could equivalently say that elements of H(Σ, h)
are meromorphic with poles of order no more than 1.

Proof. Let Φ be any holomorphic quadratic differential on (Σ, h). We remark that accord-
ing to Lemma A.9 it is enough to consider Φ on neighbourhoods U(pj) of the punctures as
described in Proposition A.6, that is on punctured discs D̂ equipped with the hyperbolic
metric (|z| · log |z|)−2 |dz|2.

We remark that a holomorphic function on a punctured disc D̂ with finite L1 norm can
neither have a pole of order more than one, nor an essential singularity. One way of
seeing that is to appeal to the subharmonicity of the absolute value of the holomorphic
function, applying it on discs of radius |z| around z.

Thus ‖Φ‖L1(U(pj),h) = 2
´

D̂
|φ| dxdy is finite on each of the puncture regions U(pj) if and

only if (iii) holds and we conclude that (i) and (iii) are equivalent.

Finally, we recall that on such a neighbourhood U(pj),

|Φ| (z) = |φ|
∣∣dz2

∣∣ = 2 |φ| |z|2 (log |z|)2,

with our normalisation, and thus that a holomorphic quadratic differential with a simple
pole is bounded (with respect to h) so that (iii) implies (ii) which trivially implies (i).

With H(Σ, h) characterised as the space of meromorphic quadratic differentials (with
poles of order no more than 1) its dimension is now described by the Riemann-Roch
Theorem
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Lemma A.12. [4] Let (Σ, h) be a complete (not necessarily connected) hyperbolic surface
with K ∈ N0 punctures. Then the dimension of the space of integrable holomorphic
quadratic differentials is

dimCH(Σ, h) =
∑

i

3(γi − 1) +K,

where γi is the genus of the i-th connected component of the compactification Σ of Σ
obtained by filling in the punctures.

Remark A.13. For a degenerating sequence of hyperbolic surfaces the (complex) dimen-
sion of the spaces H thus reduces in the limit i → ∞ by exactly the number of collapsing
collars. Indeed, collapsing a closed, non-homotopically trivial curve σ on a connected
surface Σ to a point and removing this point increases the number of punctures by two.
If σ is a separating curve, this furthermore splits the surface Σ into two parts of genus
γ1 + γ2 = γ. If σ is not separating, then the resulting surface will have genus γ̃ = γ − 1.
In both cases the dimension of the space of integrable holomorphic quadratic differentials
decreases by exactly one and the claim follows repeating the argument for all collapsing
geodesics and connected components.

References

[1] P. Deligne and D. Mumford: The irreducibility of the space of curves of given genus.
Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75–109.

[2] W. Ding, J. Li and Q. Liu, Evolution of minimal torus in Riemannian manifolds.
Invent. Math. 165 (2006) 225–242.

[3] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds. Amer.
J. Math. 86 (1964) 109–160.

[4] F. P. Gardiner: Teichmüller theory and quadratic differentials. Pure and Applied
Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York, 1987. xviii+236 pp.

[5] R. D. Gulliver, R. Osserman and H. L. Roydon, A theory of branched immersions
of surfaces. Amer. J. Math. 95 (1973) 750–812.

[6] C. Hummel: Gromov’s compactness theorem for pseudo-holomorphic curves.
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