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Piotr Bizoń1, 2 and Helmut Friedrich2

1Institute of Physics, Jagiellonian University, Kraków, Poland

2Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Golm, Germany

(Dated: December 5, 2012)

We consider a massless scalar field propagating on the exterior of the extreme

Reissner-Nordström black hole. Using a discrete conformal symmetry of this space-

time, we draw a one-to-one relationship between the behavior of the field near the

future horizon and near future null infinity. In particular, we show that the poly-

nomial growth of the second and higher transversal derivatives along the horizon,

recently found by Aretakis, reflects well known facts about the retarded time asymp-

totics at null infinity.

Recently, Aretakis studied a massless scalar field on the exterior of the extreme Reissner-

Nordström black hole and proved that second and higher transversal derivatives of the field

grow polynomially along the horizon, provided that a certain conserved quantity on the

horizon is nonzero [1, 2]. This fact was interpreted as indicating an instability of the extreme

Reissner-Nordström black hole. The aim of this note is to point out that an important

observation by Aretakis on the behaviour of scalar fields on the horizon is a reflection of well

known results about the asymptotic behaviour of scalar fields near null infinity. Moreover,

we show that if Aretakis’ conserved quantity vanishes, then the second transversal derivative

at the horizon is bounded but, generically, the third and higher ones grow.

The exterior (or domain of outer communication) of the extreme Reissner-Nordström

black hole is the globally hyperbolic space-time with manifold M = {−∞ < t < ∞, 0 <

r <∞}× S2 and metric

g = −A−2 dt2 + A2 (dr2 + r2 dω2), A = 1 +
m

r
, (1)

where m is a positive constant and dω2 is the round metric on the unit two-sphere. The

metric g is the unique spherically symmetric solution of the Einstein-Maxwell equations with

mass m and charge q = ±m. The Maxwell field is given by F = q/(r+m)2 dt∧dr. Note that
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we are using the isotropic radial coordinate r which is related to the areal radial coordinate

R by r = R−m.

Key to our discussion is the fact that the metric g admits a discrete conformal symme-

try [8], namely, the spatial inversion ι : (t, r) → (t,m2/r) of M onto itself (suppressing the

angular coordinates, they are unaffected by our considerations), which satisfies

ι∗g = Ω2 g with Ω =
m

r
.

To see the action of this symmetry on M, it will be convenient to introduce the retarded

and advanced time coordinates u = t− r∗, v = t + r∗ with r∗ = r + 2m log(r/m)−m2/r.

They satisfy du = dt − A2 dr, dv = dt + A2 dr and u ◦ ι = v. In the coordinates (v, r) the

metric takes the form

g = gv ≡ −A−2 dv2 + 2 dv dr + (r A)2 dω2 = −
r2

(m+ r)2
dv2 + 2 dv dr + (m+ r)2 dω2,

which shows that the metric extends as a real analytic metric gv (in fact as a solution to

the Einstein-Maxwell equations) onto the extension MH+ = {−∞ < v < ∞, −m < r <

∞} × S2 of M. The null hypersurface H+ = {−∞ < v < ∞, r = 0} × S2 represents the

future event horizon for (M, g). In the coordinates (u, r) the metric takes the form

g = gu ≡ −A−2 du2 − 2 du dr + (r A)2 dω2.

Expressed in source coordinates (u, r) and target coordinates (v, r) the inversion takes the

form ι : (u, r) → (u,m2/r) and the relation above reads

ι∗gv = Ω2 gu. (2)

In the coordinates (u, ρ ≡ m2/r) the metric ĝu ≡ Ω2 gu and the conformal factor Ω take the

form

ĝu = −A(ρ)−2 du2 + 2 du dρ+ (ρA(ρ))2 dω2, Ω = ρ/m,

which shows that ĝu and Ω extend as real analytic fields (solution to the conformal Einstein-

Maxwell equations) onto the extension MJ+ = {−∞ < u <∞, −m < ρ <∞}×S2 of M.

Because ĝu and gv are related on M by a diffeomorphism, the metric ĝu has vanishing Ricci

scalar as well. The null hypersurface J + = {−∞ < u < ∞, ρ = 0} × S2 on which Ω = 0,

dΩ 6= 0 represents future null infinity for (M, g).
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In terms of source coordinates (u, ρ) and target coordinates (v, r) the inversion takes on

M the form ι : (u, ρ) → (v = u, r = ρ). It follows that ι extends to a real analytic isometry

ι′ : (MJ+, ĝu) → (MH+ , gv) which maps J + onto H+ and M onto itself.

As a consequence, ‘conformally well behaved’ fields on the extreme Reissner-Nordström

background can hardly distinguish between J + and H+. This is quite clear for Maxwell or

Yang-Mills fields. They are governed by equations which, in four dimensions, only depend

on the conformal structure. We discuss here the slightly more subtle case of scalar fields

satisfying the massless wave equation.

On a four dimensional space-time (N , h) with vanishing Ricci-scalar (the situation con-

sidered here) the wave operator �h ≡ ∇µ∇µ is identical with the conformally covariant

wave operator Lh = �h − 1/6Rh, which satisfies for any conformal factor ϑ > 0 and any

scalar field f

Lϑ2 h(ϑ
−1 f) = ϑ−3 Lh(f).

If φ : (N ′, h′) → (N , h) is a space-time diffeomorphism with inverse ψ, it holds

Lh′(f ◦ φ) = Lψ∗h′(f) ◦ φ.

Applying this in the situation described by (2) gives for f ∈ C2(M)

Lgu(f̃) = Ω3 · Lgv(f) ◦ ι with f̃ = Ω · f ◦ ι. (3)

Thus, if f(v, r) solves the wave equation near H+, where r → 0, the function f̃(u, r) =

m
r
f(u, m

2

r
) satisfies that equation near J +, where r → ∞. It follows that any general prop-

erty of solutions to the wave equation onM near null infinity translates into a corresponding

general property of solutions to the wave equation on M near the horizon and vice versa.

A Taylor series expansion of f(v, r) in terms of r near H+ immediately translates into a

Bondi-type expansion of m
r
f(u, m

2

r
) near null infinity.

This relationship is more direct in the case of the isometry ι′ where

Lĝu (f ◦ ι′) = Lgv(f) ◦ ι
′ for f ∈ C2(MH+). (4)

This formula says that if f(v, r) solves the wave equation for the ‘physical’ metric gv near the

horizon, where r = 0, then f(u, ρ) solves the wave equation for the conformally rescaled and

extended metric near J + where ρ = 0. The wave operator �ĝu is identical with the operator
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�gv after replacing the coordinates u and ρ by v and r. Any u-independent quantity on

H+ derived from a solution to �gvf = 0 near H+ corresponds to a v-independent quantity

on J + derived from a solution to �ĝuf = 0 near J +. Any statement about the decay of

solutions toward the future on null infinity translates into a statement about the decay on

the horizon.

These observations apply in a non-trivial way to the work of Aretakis [1, 2] and Dain and

Dotti [10]. We remark first on the smoothness of the solution. If the solution f develops in

time from Cauchy data on the Cauchy hypersurface S = {t = 0} of (M, g), its smoothness

at H+ and J + depends very much on how the data are prescribed on S near i0, where

r → ∞, and near i∗, where r → 0. To avoid subtleties, Dain and Dotti prescribe data of

compact support on S. This ensures that the solution f extends smoothly to H+ and J +.

Aretakis prescribes instead data on a space-like hypersurface S ′ which approaches i0 at one

end and intersects H+ as a smooth space-like hypersurface at the other end. The data are

required to be smooth up to H+ ∩ S ′ so that the solution f extends smoothly to H+.

An important step in Aretakis’ work [2] is the observation that with any solution to the

wave equation can be associated an infinite sequence of quantities which are conserved along

the null generators of H+. It is the purpose of this note to point out that this confirms a

result which has been known for a long time.

In fact, ι′−1(S ′) being a hypersurface which behaves like a hyperboloidal hypersurface

near J +, the pull-back f ◦ ι′ is smooth on J + and the analysis of the early studies of the

asymptotic structure of field at null infinity applies. After Newman and Penrose discovered

the existence of non-trivial conservation laws on J + for asymptotically flat solutions to

Einstein’s field equations ([11], [17], [18]) various attempts were made to understand the

origin and the significance of these quantities ([13], [14], [19]). In this context it was observed

for the first time that an infinite number of conserved quantities can be defined at J +

for linear massless fields on asymptotically flat backgrounds (provided the solutions are

sufficiently smooth on J +).

Let us illustrate the above general considerations and some of its consequences by the

simple example of spherically symmetric evolution. In this case the wave equation Lgu f̃ = 0

reads (for convenience we set m = 1)

−2∂ruf̃ −
2

1 + r
∂uf̃ +

1

(1 + r)2
∂r(r

2∂rf̃) = 0 . (5)
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For solutions that are smooth at J + we write the Bondi-type expansion in powers of 1/r

f̃(u, r) =
c0(u)

r
+
c1(u)

r2
+
c2(u)

r3
+ . . . . (6)

Plugging this expansion into (5) and collecting terms with the same power of 1/r one gets

an infinite hierarchy of linear ordinary differential equations with constant coefficients of the

form

ċn =
n−1
∑

i=0

(αiċi + βici) , (7)

which can be integrated one by one if one knows the ‘radiation field’ c0(u). The first three

equations read:

ċ0 + ċ1 = 0, (8)

2ċ2 + ċ1 − ċ0 + c1 = 0, (9)

3ċ3 + ċ2 − ċ1 + ċ0 − 2c1 + 3c2 = 0 . (10)

Equation (8) is the conservation law for the Newman-Penrose constant P = c0 + c1 (note

that in the standard expansion in inverse powers of the areal radial coordinate R = r+1, the

Newman-Penrose constant is the coefficient of the 1/R2 term [14]). A precise relationship

between the asymptotic decay of c0(u) for u→ ∞ and the fall-off of initial data near i0 is a

difficult problem on its own which fortunately need not concern us here because it does not

affect our argument. Let us distinguish the two cases P 6= 0 and P = 0. In the first case

it suffices to know that c0 → 0 as u → ∞ (in fact, it is known that c0(u) tends to zero as

1/u or faster [15]). Then c1(u) → P (because c0 + c1 = P ) and the successive integration of

Eqs.(9) and (10) gives1

c1(u) ∼ P
(9)
=⇒ c2(u) ∼ −

1

2
Pu

(10)
=⇒ c3(u) ∼

1

4
Pu2 . (11)

In the case of P = 0, to begin with, we need to know more about the decay of c0(u).

For the purpose of the argument, let us assume the worst possible scenario, that is the

fastest possible decay one can have for generic solutions, namely c0(u) ∼ a/u2, where a

is a constant depending on the initial data [5, 9, 15]. Then c1(u) ∼ −a/u2 (because by

assumption c0(u) + c1(u) = 0) and the successive integration of Eqs.(9) and (10) gives

c1(u) ∼ −
a

u2
(9)
=⇒ c2(u) ∼ C −

a

2u

(10)
=⇒ c3(u) ∼ −Cu+

a

2
ln u , (12)

1 By f(u) ∼ g(u) we mean asymptotic equivalence for u → ∞.
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where C is an integration constant depending on the initial data2.

In both cases, P = 0 and P 6= 0, continued integration of the system (7) for n > 3 yields

faster and faster growing coefficients cn(u). We wish to stress that this behaviour of the

coefficients cn(u) is an inherent property of the Bondi-type expansion in any asymptotically

flat spacetime, in particular the Minkowski spacetime. It basically follows from the fact

that along a null outgoing cone (u = const) the field decays as 1/v = 1/(u+ 2r) which for

large r generates the geometric series of powers of u/2r. This reflects the fact that the decay

of solutions towards i+ is not uniform because it is slower along J + than along timelike

directions.

It follows from the above discussion of conformal symmetry of the problem that if f̃(u, r) is

a solution of Eq.(5), then f(v, r) = r−1f̃(u, 1/r) is a solution of the wave equation Lgvf = 0,

which reads

2∂rvf +
2

1 + r
∂vf +

1

(1 + r)2
∂r(r

2∂rf) = 0 . (13)

Correspondingly, the Bondi-type expansion (6) near J + translates into the Taylor series

expansion near H+

f(v, r) = c0(v) + c1(v) r + c2(v) r
2 + ... (14)

Thus, in spherical symmetry the conserved quantity found by Aretakis H0 = ∂rf(v, 0) +

f(v, 0) is nothing else but the Newman-Penrose constant P . In the case of nonzero H0, his

argument that ∂rrf(v, 0) ∼ −H0v is exactly the same as the one given in (11) for c2(u). In

the case of H0 = 0 (not considered by Aretakis), we see from (12) that the second derivative

is bounded (this was also observed in [10] for compactly supported data) but the third

one generically diverges. It is straightforward to generalize the above analysis to all ℓ > 0

multipoles in the spherical harmonic decomposition of the scalar field and show that the

Newman-Penrose constants Pℓ and Aretakis’ constants Hℓ are the same entities.

Let us remark that the tails of linear fields propagating on the extreme Reissner-

Nordström background were first studied in the physics literature by Bičák [4], who noticed

that the scattering potential has the same fall-off near the horizon and near the spatial

infinity. More recently, the problem was revisited by Blaksley and Burko [7], who gave a

heuristic argument and numerical evidence that the decay rates of the tails along J + and

2 For non-trivial non-generic solutions with c0(u) = o(u−2) the coefficient c3(u) may be bounded but it is

clear that the increase of cn(u) for some n > 3 is inevitable.
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H+ are the same (in stark contrast to non-extreme black holes for which the tails along the

horizon decay as fast as in the timelike directions [9, 16]).

We conclude this note by pointing out some consequences and a natural question related

to the existence of the conformal symmetry. Obviously, relations between the behaviour

of solutions near the horizon and the behaviour of solutions near null infinity as those

outlined above for linear massless fields can also be established for other equations which

admit a suitable transformation law under conformal rescalings. Thus, all known results on

solutions of these equations near/on null infinity translate to statements on solutions near/on

the horizon. In particular, the analysis presented above can be generalized to nonlinear

conformally invariant fields propagating on the extreme Reissner-Nordström background,

for instance a Yang-Mills field [6]. For such fields in general there do not exist any conserved

quantities on H+ or J + [12], nonetheless one can infer the polynomial (or logarithmic)

growth in time of higher transversal derivatives by integrating a nonlinear dynamical system

analogous to (7). Finally, in an analysis which requires a deeper understanding of the

structure of the horizon, it may prove useful to observe that the background itself admits

conserved quantities on the horizon which correspond to the Newman-Penrose conserved

quantities at null infinity.

There arises the natural question as to whether a relationship between J + and H+ as

described here is only an idiosyncrasy of the extreme Reissner-Nordström solution in four

dimensions or a more general property of extreme black hole solutions. As has already been

pointed out by Couch and Torrence [8], for the extreme Kerr-Newman family satisfyingm2 =

a2+q2 with nonzero specific angular momentum a there does not exist a conformal symmetry

of the same simplicity as ι. We found, however, that an axially symmetric massless scalar

field propagating on the extreme Kerr-Newman background does have such a symmetry.

To show this, let us express the extreme Kerr-Newman metric gKN in terms of ‘isotropic’

Boyer-Lindquist coordinates (t, r, ϑ, ϕ) (in which the radial coordinate r is related to the

usual radial coordinate R by r = R−m so that the horizon is located at r = 0)

gKN = −
ρ2r2

B
dt2 +

B sin2 ϑ

ρ2
(dϕ− ωdt)2 +

ρ2

r2
dr2 + ρ2 dϑ2 , (15)

where

ρ2 = (r +m)2 + a2 cos2 ϑ, B = [(r +m)2 + a2]2 − a2r2 sin2 ϑ, ω =
m2 + a2 + 2mr

B
a .
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For a = 0 the metric (15) reduces to (1). The massless wave equation �gKN
f = 0 for an

axially symmetric field f(t, r, ϑ) takes the form

−

[

((r +m)2 + a2)2

r2
− a2 sin2 ϑ

]

∂ttf + ∂r(r
2 ∂rf) +

1

sinϑ
∂ϑ(sinϑ ∂ϑf) = 0. (16)

A direct calculation shows that this equation is invariant under the spatial inversion r →
m2 + a2

r
, that is if f(t, r, ϑ) is a solution, so is

1

r
f

(

t,
m2 + a2

r
, ϑ

)

. Thus, the one-to-one

relationship between the behaviour of the scalar field near J + and near H+ described above

for the extreme Reissner-Nordström background, can be repeated verbatim for the entire

extreme Kerr-Newman family in the case of axially symmetric fields. As a consequence, the

growth of higher transversal derivatives along H+ follows from the known decay properties

of axisymmetric fields on J +, confirming the analysis of Aretakis [3].
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[6] P. Bizoń, M. Kahl, M. Maliborski, Yang-Mills field on the extremal Reissner-Nordström back-

ground, in preparation

[7] C.J. Blaksley, L.M. Burko, The late-time tails in the Reissner-Nordström spacetime revisited,

Phys. Rev. D76, 104035 (2007)

[8] W.E. Couch, R.J. Torrence, Conformal invariance under spatial inversion of extreme Reissner-

Nordström black holes, Gen. Relativity Gravitation 16, 789 (1984)



9

[9] M. Dafermos, I. Rodnianski, A proof of Prices law for the collapse of a self-gravitating scalar

field, Invent. Math. 162, 381457 (2005)

[10] S. Dain, G. Dotti, The wave equation on the extreme Reissner-Nordström black hole,

arXiv:1209.0213

[11] A. R. Exton, E. T. Newman and R. Penrose, Conserved Quantities in the Einstein-Maxwell-

Theory, J. Math. Phys. 10, 1566 - 1570 (1969).

[12] R. Farkas, L. B. Szabados, On quasi-local charges and Newman–Penrose type quantities in

Yang–Mills theories, Class. Quantum Grav. 24, 145013 (2011)

[13] J. N. Goldberg, Invariant Transformations and Newman-Penrose Constants, J. Math. Phys.

8, 2161 - 2166, (1967).

[14] J. N. Goldberg, Green’s Theorem and Invariant Transformations, J. Math. Phys. 9, 674 - 679,

(1968).
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