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ABSTRACT

Physical properties of the quantum gravitational vacuum state are explored by solving a lattice

version of the Wheeler-DeWitt equation. The constraint of diffeomorphism invariance is strong

enough to uniquely determine the structure of the vacuum wave functional in the limit of infinitely

fine triangulations of the three-sphere. In the large fluctuation regime the nature of the wave

function solution is such that a physically acceptable ground state emerges, with a finite non-

perturbative correlation length naturally cutting off any infrared divergences. The location of

the critical point in Newton’s constant Gc, separating the weak from the strong coupling phase,

is obtained, and it is inferred from the structure of the wave functional that fluctuations in the
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curvatures become unbounded at this point. Investigations of the vacuum wave functional further

indicate that for weak enough coupling, G < Gc, a pathological ground state with no continuum

limit appears, where configurations with small curvature have vanishingly small probability. One is

then lead to the conclusion that the weak coupling, perturbative ground state of quantum gravity

is non-perturbatively unstable, and that gravitational screening cannot be physically realized in

the lattice theory. The results we find are in general agreement with the Euclidean lattice gravity

results, and lend further support to the claim that the Lorentzian and Euclidean lattice formulations

for gravity describe the same underlying non-perturbative physics.



1 Introduction

We have argued in previous work that the correct identification of the true ground state for quantum

gravitation necessarily requires the introduction of a consistent nonperturbative cutoff, followed by

the construction of the continuum limit in accordance with the methods of the renormalization

group. To this day the only known way to introduce such a non-perturbative cutoff reliably in

quantum field theory is via the lattice formulation. A wealth of results have been obtained over

the years using the Euclidean lattice formulation, which allows the identification of the physical

ground state and the accurate calculations of gravitational scaling dimensions, relevant for the scale

dependence of Newton’s constant in the universal scaling limit.

In this work we will focus instead on the Hamiltonian approach to gravity, which assumes from

the beginning a metric with Lorentzian signature. In order to obtain useful insights regarding

the non-perturbative ground state, a Hamiltonian lattice formulation was written down based on

the Wheeler-DeWitt equation, where the quantum gravity Hamiltonian is expressed in the metric-

space representation. In [1, 2] a general discrete Wheeler-DeWitt equation was given for pure

gravity, based on the simplicial lattice formulation of gravity developed by Regge and Wheeler.

Here, we extend the work initiated in [1, 2] to the physical case of 3 + 1 dimensions, and show

how nonperturbative vacuum solutions to the lattice Wheeler-DeWitt equations can be obtained

for arbitrary values of Newton’s constant G. The procedure we follow is similar to what was

done earlier in 2 + 1 dimensions. We solve the lattice equations exactly for several finite regular

triangulations of the three-sphere, and then extend the result to an arbitrarily large number of

tetrahedra. For large enough volumes the exact lattice wave functional is expected to depend

on geometric quantities only, such as the total volumes and the total integrated curvature. The

regularity condition on the solutions of the wave equation at small volumes is then shown to play

an essential role in constraining the form of the vacuum wave functional. A key ingredient in

the derivation of the results is the local diffeomorphism invariance of the Regge-Wheeler lattice

formulation.

From the structure of the resulting wave function a number of suggestive physical results can

be obtained, the first one of which is that the non-perturbative correlation length is found to be

finite for sufficiently large G. At the critical point G = Gc, which we determine exactly from the

structure of the wave function, fluctuations in the curvature become unbounded, thus signaling a

divergence in the non-perturbative gravitational correlation length. Such a result can be viewed
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as consistent with the existence of a non-trivial ultraviolet fixed point (or a phase transition in

statistical field theory language) in G. The behavior of the theory in the vicinity of such a fixed

point is then expected to determine, through standard renormalization group arguments, the scale

dependence of the gravitational coupling in the vicinity of the ultraviolet fixed point.

A short outline of the paper is as follows. In Sec. 2, as a general background to the rest of

the paper, we briefly describe the formalism of canonical gravity. The continuum Wheeler-DeWitt

equation and its invariance properties are introduced as well at this stage. Then we briefly outline

the properties of the lattice Wheeler-DeWitt equation derived in our previous work, and later Sec. 3

makes more explicit various quantities appearing in it. This section also emphasizes the important

role of continuous lattice diffeomorphism invariance in the Regge framework, as it applies to the

present case of 3 + 1-dimensional gravity. Sec. 4 focuses on the scaling properties of the lattice

equations and various sensible choices for the lattice coupling constants, with the aim of giving

eventually a more transparent form to the wave function results. Sec. 5 gives an outline of the

general method of solution for the lattice equations, which are later discussed in some detail for

a number of regular triangulations of the three-sphere. Then a general form of the wave function

is given that covers all the previous discrete cases, and subsequently allows a study of the infinite

volume limit. Sec. 6 discusses the issue of how to define an average volume and thus an average

lattice spacing, an essential ingredient in the interpretation of the results given later. Sec. 7

discusses modifications of the wave function solution obtained when the explicit curvature term in

the Wheeler-DeWitt equation is added. Later a partial differential equation for the wave function

is derived in the curvature and volume variables. General properties of the solution to this equation

are discussed in Sec. 8. Sec. 9 contains a brief summary of the results obtained so far.

2 Continuum and Discrete Wheeler-DeWitt Equation

Since this paper involves the canonical quantization of gravity we begin here with a very brief

summary of the classical canonical formalism [3] as derived by Arnowitt, Deser and Misner [4].

While many of the results presented in this section are rather well known, it will be useful, in view

of later applications, to recall the main results and formulas and provide suitable references for

expressions used later in the paper. Here xi (i = 1, 2, 3) will be coordinates on a three-dimensional

manifold, and indices will be raised and lowered with gij(x) (i, j = 1, 2, 3), the three-metric on the

4



given spacelike hypersurface. As usual gij denotes the inverse of the matrix gij . Our conventions

are such that the space-time metric has signature −+++, that 4R is non-negative in a space-time

containing normal matter, and that 3R is positive in a 3-space of positive curvature.

A transition from the classical to the quantum description of gravity is obtained by promoting

the metric gij , the conjugate momenta πij, the Hamiltonian density H and the momentum density

Hi to quantum operators, with ĝij and π̂
ij satisfying canonical commutation relations. In particular,

the classical constraints now select a physical vacuum state |Ψ〉, such that in the source-free case

Ĥ |Ψ〉 = 0 Ĥi |Ψ〉 = 0 , (1)

and in the presence of sources more generally

T̂ |Ψ〉 = 0 T̂i |Ψ〉 = 0 , (2)

where T̂ and T̂i now include matter contributions that should be added to Ĥ and Ĥi. As in ordinary

nonrelativistic quantum mechanics, one can choose different representations for the canonically

conjugate operators ĝij and π̂ij . In the functional metric representation one sets

ĝij(x) → gij(x) π̂ij(x) → −i~ · 16πG · δ

δgij(x)
. (3)

In this picture quantum states become wave functionals of the three-metric gij(x),

|Ψ〉 → Ψ [gij(x)] . (4)

The two quantum-constraint equations in Eq. (2) then become the Wheeler-DeWitt equation [5, 6]

{

− 16πG ·Gij,kl
δ2

δgij δgkl
− 1

16πG

√
g
(

3R − 2λ
)

+ Ĥφ

}

Ψ[gij(x)] = 0 , (5)

and the momentum constraint listed below. In Eq. (5) Gij,kl is the inverse of the DeWitt superme-

tric, given by

Gij,kl = 1
2 g

−1/2 (gikgjl + gilgjk − gijgkl) . (6)

The three-dimensional version of the DeWitt supermetric itself, Gij,kl(x) is given by

Gij,kl = 1
2

√
g
(

gikgjl + gilgjk − 2 gijgkl
)

. (7)

In the metric representation the diffeomorphism (or momentum) constraint reads

{

2 i gij ∇k
δ

δgjk
+ Ĥφ

i

}

Ψ[gij(x)] = 0 , (8)

5



where Ĥφ and Ĥφ
i are possible matter contributions. In the following, we shall set both of these to

zero as we will focus here almost exclusively on the pure gravitational case. Then the last contraint

represents the necessary and sufficient condition that the wave functional ψ[g] be an invariant under

coordinate transformations [7].

We should also mention here that a number of basic issues need to be addressed before one can

gain a full and consistent understanding of the dynamical content of the theory (see, for example,

[9, 10, 12, 13, 14] as a small set of representative references). These include possible problems of

operator ordering, and the specification of a suitable Hilbert space, which entails at some point a

choice for the norm of wave functionals, for example in the Schrödinger form

‖Ψ‖2 =

∫

dµ[g] Ψ∗[gij ] Ψ[gij] , (9)

where dµ[g] is the appropriate (DeWitt) functional measure over the three-metric gij . In this work

we will attempt to address those issues as they appear within the relevant calculations.

The starting point for the following discussion will be the Wheeler-DeWitt equation for pure

gravity in the absence of matter, Eq. (5),

{

− (16πG)2Gij,kl(x)
δ2

δgij(x) δgkl(x)
−
√

g(x)
(

3R(x) − 2λ
)

}

Ψ[gij(x)] = 0 , (10)

and the diffeomorphism constraint of Eq. (8),

{

2 i gij(x)∇k(x)
δ

δgjk(x)

}

Ψ[gij(x)] = 0 . (11)

Both of these equations express a constraint on the state |Ψ〉 at every x, each of the form Ĥ(x) |Ψ〉 =
0 and Ĥi (x)|Ψ〉 = 0. It is then natural to view Eq. (10) as made up of three terms, the first one

identified as a kinetic term for the metric degrees of freedom, the second one involving −√g 3R and

thus seen as a potential energy contribution (of either sign, due to the nature of the 3-curvature

3R), and finally the cosmological constant term proportional to +λ
√
g acting as a mass-like term.

The kinetic term can be regarded as containing a Laplace-Beltrami-type operator acting on the

6-dimensional Riemannian manifold of positive definite metrics gij , with Gij,kl acting as its con-

travariant metric [7]. It was further shown in the quoted reference that the manifold in question has

hyperbolic signature −+++++, with pure dilations of gij corresponding to timelike displacements

within this manifold of metrics.

Next we turn to the lattice theory. Here we will follow the procedure outlined in [1] and

discretize the continuum Wheeler-DeWitt equation directly, a procedure that makes sense in the

lattice formulation, as these equations are still formulated in terms of geometric objects, for which
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the Regge theory is very well suited. On a simplicial lattice [16, 17, 18, 19, 20, 21, 22] (see for

example [23], and references therein, for a more complete discussion of the Regge-Wheeler lattice

formulation for gravity) one knows that deformations of the squared edge lengths are linearly related

to deformations of the induced metric. In a given simplex σ, take coordinates based at a vertex 0,

with axes along the edges from 0. The other vertices are each at unit coordinate distance from 0

(see Figure 1 as an example of this labeling for a tetrahedron). In terms of these coordinates, the

metric within a simplex is given by

gij(σ) = 1
2

(

l20i + l20j − l2ij
)

. (12)

Note that in the following discussion only edges and volumes along the spatial direction are in-

volved. Then by a straightforward exercise of varying the squared volume of a given simplex σ in

d dimensions to quadratic order in the metric (in the continuum), or in the squared edge lengths

belonging to that simplex (on the lattice), one is led to the key identification [24, 25]

Gij(l2) = − d!
∑

σ

1

V (σ)

∂2 V 2(σ)

∂l2i ∂l
2
j

, (13)

where the quantity Gij(l2) is seen to be local, given that the sum over σ only extends over those

simplices which contain either the i or the j edge. In the formulation of [1] it will be adequate to

limit the sum in Eq. (13) to a single tetrahedron, and define the quantity Gij for that tetrahedron.

Then, in schematic terms, the lattice Wheeler-DeWitt equation for pure gravity will have the form
{

− (16πG)2 Gij(l
2)

∂2

∂l2i ∂l
2
j

−
√

g(l2)
[

(l2) − 2λ
]

}

Ψ[ l2 ] = 0 , (14)

with Gij(l
2) the inverse of the matrix Gij(l2) given above. The range of the summation over i and

j and the appropriate expression for the scalar curvature, in this equation, are discussed below and

made explicit in Eq. (15).

It is clear that Eqs. (5) or (14) express a constraint equation at each “point” in space. Indeed,

the first term in Eq. (14) contains derivatives with respect to edges i and j connected by a matrix

element Gij which is nonzero only if i and j are close to each other, essentially nearest neighbor. One

would therefore expect that the first term could be represented by just a sum of edge contributions,

all from within one (d − 1)-simplex σ (a tetrahedron in three dimensions). The second term

containing 3R(l2) in Eq. (14) is also local in the edge lengths: it only involves a handful of edge

lengths, which enter into the definition of areas, volumes and angles around the point x. The latter

is therefore described, through the deficit angle δh, by a sum over contributions over all (d − 3)-

dimensional hinges (edges in 3+1 dimensions) h attached to the simplex σ. This then leads in three
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dimensions to a more explicit form of Eq. (14)







− (16πG)2
∑

i,j⊂σ

Gij (σ)
∂2

∂l2i ∂l
2
j

− 2nσh
∑

h⊂σ

lh δh + 2λ Vσ







Ψ[ l2 ] = 0 . (15)

Here δh is the deficit angle at the hinge (edge) h, lh the corresponding edge length, and Vσ =
√

g(σ)

the volume of the simplex (tetrahedron in three spatial dimensions) labeled by σ. Gij (σ) is obtained

either from Eq. (13) or from the lattice transcription of Eq. (6)

Gij,kl(σ) = 1
2 g

−1/2(σ) [ gik(σ)gjl(σ) + gil(σ)gjk(σ)− gij(σ)gkl(σ) ] , (16)

with the induced metric gij(σ) within a simplex σ given in Eq. (12). The combinatorial factor nσh

ensures the correct normalization for the curvature term, since the latter has to give the lattice

version of
∫ √

g 3R = 2
∑

h δhlh (in three spatial dimensions) when summed over all simplices σ. The

inverse of nσh counts, therefore, the number of times the same hinge appears in various neighboring

simplices and consequently depends on the specific choice of underlying lattice structure. The lattice

Wheeler-DeWitt equation given in Eq. (15) was the main result of a previous paper [1] and was

studied extensively in 2 + 1 dimensions in previous work [2].

3 Explicit Setup for the Lattice Wheeler-DeWitt Equation

In the following we will now focus on a lattice made up of a large number of tetrahedra, with

squared edge lengths considered as the fundamental degrees of freedom. For ease of notation, we

define l201 = a, l212 = b, l202 = c, l203 = d, l213 = e, l223 = f . For the tetrahedron labeled as in Figure 1,

we have

g11 = a , g22 = c , g33 = d , (17)

g12 =
1

2
(a + c − b) , g13 =

1

2
(a + d − e) , g23 =

1

2
(c + d − f) , (18)

and its volume V is given by

V 2 =
1

144
[ af(−a− f + b+ c+ d+ e) + bd(−b− d+ a+ c+ e+ f) +

+ ce(−c− e+ a+ b+ d+ f) − abc − ade − bef − cdf ] . (19)
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The matrix Gij is then given by

Gij = − 1

24V

















−2f e+ f − b b+ f − e d+ f − c c+ f − d p
e+ f − b −2e b+ e− f d+ e− a q a+ e− d
b+ f − e b+ e− f −2b r b+ c− a a+ b− c
d+ f − c d+ e− a r −2d c+ d− f a+ d− e
c+ f − d q b+ c− a c+ d− f −2c a+ c− b

p a+ e− d a+ b− c a+ d− e a+ c− b −2a

















, (20)

where the three quantities p, q and r are defined as

p = −2a− 2f + b+ c+ d+ e, q = −2c− 2e+ a+ b+ d+ f, r = −2b− 2d+ a+ c+ e+ f . (21)

To obtain Gij one can then either invert the above expression, or evaluate

Gij,kl =
1

2
√
g
(gik gjl + gil gjk − gij gkl), (22)

and later replace derivatives with respect to the metric by derivatives with respect to the squared

edge lengths, as in ∂
∂ g11

= ∂
∂ a + ∂

∂ b + ∂
∂ e etc. One finds [1] that the matrix representing the

coefficients of the derivatives with respect to the squared edge lengths is the same as the inverse of

Gij , a result that provides a nontrivial confirmation of the correctness of the Lund-Regge result of

Eq. (13). Then in 3 + 1 dimensions, the discrete Wheeler-DeWitt equation is

{

− (16πG)2 Gij
∂2

∂si∂sj
− 2nσh

∑

h

√
sh δh + 2λV

}

Ψ[ s ] = 0 , (23)

where the sum is over hinges (edges) h in the tetrahedron. Note the mild nonlocality of the equation

in that the curvature term, through the deficit angles, involves edge lengths from neighboring

tetrahedra. In the continuum, the derivatives also give some mild nonlocality. Figure 2 gives a

pictorial representation of lattices that can be used for numerical studies of quantum gravity in

3+1 dimensions.

In the following we will be concerned at some point with various discrete, but generally regular,

triangulations of the three-sphere [26, 27]. These were already studied in some detail within the

framework of the Regge theory in [20], where in particular the 5-cell α4, the 16-cell β4 and the

600-cell regular polytopes (as well as a few others) were considered in some detail. For a very early

application of these regular triangulations to general relativity see [28].

We shall not dwell here on a well-known key aspect of the Regge-Wheeler theory, which is the

presence of a continuous, local lattice diffeomorphism invariance, whose main aspects in regards to

its relevance for the 3 + 1 formulation of gravity were already addressed in some detail in various

works, both in the framework of the lattice weak field expansion [16, 1], and beyond it [22, 29].
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l13

Figure 1: A tetrahedron with labels.

Figure 2: A small section of a suitable spatial lattice for quantum gravity in 3 + 1 dimensions.
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Here we will limit ourselves to some brief remarks on how this local invariance manifests itself in the

3+1 formulation, and, in particular, in the case of the discrete triangulations of the sphere studied

later on in this paper. In general, lattice diffeomorphisms in the Regge-Wheeler theory correspond

to local deformations of the edge lengths about a vertex, which leave the local geometry physically

unchanged, the latter being described by the values of local lattice operators corresponding to local

volumes and curvatures [16, 22, 29]. The case of flat space (curvature locally equal to zero) or

near-flat space (curvature locally small) is obviously the simplest to analyze [29]: by moving the

location of the vertices around on a smooth manifold one can find different assignments of edge

lengths representing locally the same flat, or near-flat, geometry. Then it is easy to show that

one obtains a d ·N0-parameter family of local transformations for the edge lengths, as expected for

lattice diffeomorphisms. For the present case, the relevant lattice diffeomorphisms are the ones that

apply to the three-dimensional, spatial theory. The reader is referred to [30] and, more recently,

[1] for their explicit form within the framework of the lattice weak field expansion.

With these observations in mind, we can now turn to a discussion of the solution method for the

lattice Wheeler-DeWitt equation in 3+1 dimensions. One item that needs to be brought up at this

point is the proper normalization of various terms (kinetic, cosmological and curvature) appearing

in the lattice equation of Eqs. (15) and (23). For the lattice gravity action in d dimensions one has

generally the following correspondence

∫

ddx
√
g ←→

∑

σ

Vσ , (24)

where Vσ is the volume of a simplex; in three dimensions it is simply the volume of a tetrahedron.

The curvature term involves deficit angles in the discrete case,

1
2

∫

ddx
√
g R ←→

∑

h

Vh δh , (25)

where δh is the deficit angle at the hinge h, and Vh the associated “volume of a hinge” [15]. In four

dimensions the latter is the area of a triangle (usually denoted by Vh), whereas in three dimensions

it is simply given by the length lh of the edge labeled by h. In this work we will focus almost

exclusively on the case of 3 + 1 dimensions; consequently the relevant formulas will be Eqs. (24)

and (25) for dimension d = 3.

The continuum Wheeler-DeWitt equation is local, as can be seen from Eq. (10). One can

integrate the Wheeler-DeWitt operator over all space and obtain

{

− (16π G)2
∫

d3x∆(g) + 2λ

∫

d3x
√
g −

∫

d3x
√
g R

}

Ψ = 0 , (26)

11



with the super-Laplacian on metrics defined as

∆(g) ≡ Gij,kl(x)
δ2

δgij(x) δgkl(x)
. (27)

In the discrete case one has one local Wheeler-DeWitt equation for each tetrahedron [see Eqs. (14)

and (15)], which therefore takes the form
{

− (16π G)2 ∆(l2)− κ
∑

h⊂σ

δh lh + 2λVσ

}

Ψ = 0 , (28)

where∆(l2) is the lattice version of the super-Laplacian, and we have set for convenience κ = 2nσ h.

As we shall see below, for a regular lattice of fixed coordination number, κ is a constant and does

not depend on the location on the lattice. In the above expression ∆(l2) is a discretized form of

the covariant super-Laplacian, acting locally on the space of s = l2 variables,

∆(l2) ≡ Gij
∂2

∂si∂sj
, (29)

with the matrix Gij given explicitly in Eq. (20). Note that the curvature term involves six deficit

angles δh, associated with the six edges of a tetrahedron. Now, Eq. (23) applies to a single given

tetrahedron (labeled here by σ), with one equation to be satisfied at each tetrahedron on the lattice.

But one can also construct the total Hamiltonian by simply summing over all tetrahedra, which

leads to
{

− (16π G)2
∑

σ

∆(l2) + 2λ
∑

σ

Vσ − κ
∑

σ

∑

h⊂σ

lh δh

}

Ψ = 0 . (30)

Summing over all tetrahedra (σ) is different from summing over all hinges (h), and the above

equation is equivalent to
{

− (16π G)2
∑

σ

∆(l2) + 2λ
∑

σ

Vσ − κ q
∑

h

lh δh

}

Ψ = 0 , (31)

where q here is the lattice coordination number. The latter is determined by how the lattice is put

together (which vertices are neighbors to each other, or, equivalently, by the so-called incidence

matrix). Here, q is the number of neighboring simplexes that share a given hinge (edge). For a

flat triangular lattice in 2d q = 6, whereas for the regular triangulations of S3 we will be consid-

ering below one has q = 3, 4, 5; for more general, irregular triangulations q might change locally

throughout the lattice. For proper normalization in Eq. (30) one requires the three-dimensional

version of Eqs. (24) and (25), which fixes the overall normalization of the curvature term

κ ≡ 2nσ h =
2

q
, (32)

thus determining the relative weight of the local volume and curvature terms.
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4 Choice of Coupling Constants

We will find it convenient, in analogy to what is commonly done in the Euclidean lattice theory

of gravity, to factor out an overall irrelevant length scale from the problem, and set the (unscaled)

cosmological constant equal to one [20]. Indeed, recall that the Euclidean path integral statistical

weight always contains a factor P (V ) ∝ exp(−λ0V ), where V =
∫ √

g is the total volume on the

lattice, and λ0 is the unscaled cosmological constant. A simple global rescaling of the metric (or

edge lengths) then allows one to entirely reabsorb this λ0 into the local volume term. The choice

λ0 = 1 then trivially fixes this overall scale once and for all. Since λ0 = 2λ/16πG, one then has

λ = 8πG in this system of units. In the following we will also find it convenient to introduce a

scaled coupling λ̃ defined as

λ̃ ≡ λ

2

(

1

16πG

)2

. (33)

Then for λ0 = 1 (in units of the UV cutoff or, equivalently, in units of the fundamental lattice

spacing) one has λ̃ = 1/64πG.

Two further notational simplifications will be useful in the following. The first one is introduced

in order to avoid lots of factors of 16π in many of the formulas. So from now on we shall write G

as a shorthand for 16π G,

16π G −→ G . (34)

In this new notation one has λ = G/2 and λ̃ = 1/4G. The above notational choices then lead to a

more streamlined representation of the Wheeler-DeWitt equation, namely

{

−∆ +
1

G

√
g − 1

G2

√
g 3R

}

Ψ = 0 . (35)

Note that we have arranged things so that now the kinetic term (the term involving the Laplacian)

has a unit coefficient. Then in the extreme strong coupling limit (G→∞) the kinetic term is the

dominant one, followed by the volume (cosmological constant) term (using the facts about λ̃ given

above) and, finally, by the curvature term. Consequently, at least in a first approximation, the

curvature R term can be neglected compared to the other two terms, in this limit.

A second notational choice will later be dictated by the structure of the wave function solutions,

which often involve numerous factors of
√
G. It will therefore be useful to define a new coupling g

as

g ≡
√
G , (36)
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so that λ̃ = 4/g2 (the latter g should not be confused with the square root of the determinant of

the metric).

5 Outline of the General Method of Solution

The previous discussion shows that in the strong coupling limit (large G) one can, at least in

a first approximation, neglect the curvature term, which will then be included at a later stage.

This simplifies the problem considerably, as it is the curvature term that introduces complicated

interactions between neighboring simplices.

Here the general procedure for finding a solution will be rather similar to what was done in 2+1

dimensions, as the formal issues in obtaining a solution are not dramatically different. First an

exact solution is found for equilateral edge lengths s. Later this solution is extended to determine

whether it is consistent to higher order in the weak field expansion, where one writes for the squared

edge lengths the expansion

l2ij = s (1 + ǫ hij) , (37)

with ǫ a small expansion parameter. The resulting solution for the wave function can then be

obtained as a suitable power series in the h variables, combined with the standard Frobenius

method, appropriate for the study of quantum mechanical wave equations for suitably well-behaved

potentials. In this method one first determines the correct asymptotic behavior of the solution for

small and large arguments, and later constructs a full solution by writing the remainder as a power

series or polynomial in the relevant variable. While this last method is rather time consuming, we

have found nevertheless that in some cases (such as the single triangle in 2+ 1 dimensions and the

single tetrahedron in 3+1 dimensions, described in [1] and also below), one is lucky enough to find

immediately an exact solution, without having to rely in any way on the weak field expansion.

More importantly, in [2] it was found that already in 2 + 1 dimensions this rather laborious

weak field expansion of the solution is not really necessary, for the following reason. Diffeomorphism

invariance (on the lattice and in the continuum) of the theory severely restricts the form of the

Wheeler-DeWitt wave function to a function of invariants only, such as total three-volumes and

curvatures, or powers thereof. In other words, the wave function is found to be a function of

invariants such as
∫

ddx
√
g or

∫

ddx
√
g Rn etc. (these will be listed in more detail below for the

specific case of 3 + 1 dimensions, where one has d = 3 in the above expressions).

14



For concreteness and computational expedience, in the following we will look at a variety of

three-dimensional simplicial lattices, including regular triangulations of the three-sphere S3 con-

structed as convex 4-polytopes, the latter describing closed and connected figures composed of lower

dimensional simplices. Here these will include the 5-cell 4-simplex or hypertetrahedron (Schläfli

symbol {3, 3, 3}) with 5 vertices, 10 edges and 5 tetrahedra; the 16-cell hyperoctahedron (Schläfli

symbol {3, 3, 4}) with 8 vertices, 24 edges and 16 tetrahedra; and the 600-cell hypericosahedron

(Schläfli symbol {3, 3, 5}) with 120 vertices, 720 edges and 600 tetrahedra [26, 27]. Note that the Eu-

ler characteristic for all 4-polytopes that are topological 3-spheres is zero, χ = N0−N1+N2−N3 = 0,

where Nd is the number of simplices of dimension d. We also note here that there are no known reg-

ular equilateral triangulations of the flat 3-torus in three dimensions, although very useful slightly

irregular (but periodic) triangulations are easily constructed by subdividing cubes on a square

lattice into tetrahedra [30].

In the following we will also recognize that there are natural sets of variables for displaying the

results. One of them is the scaled total volume x, defined as

x ≡ 4
√
2λ

q G

∑

σ

Vσ =
4
√
2λ

q G
Vtot . (38)

Later on we will be interested in making contact with continuum manifolds, by taking the infinite

volume (or thermodynamic) limit, defined in the usual way as

Nσ → ∞ ,

Vtot → ∞ ,

Vtot
Nσ

→ const. , (39)

with Nσ ≡ N3 here the total number of tetrahedra. It should be clear that this last ratio can be

used to define a fundamental lattice spacing a0, for example via Vtot/Nσ ≡ Vσ = a30/6
√
2.

The full solution of the quantum mechanical problem will, in general, require that the wave

functions be properly normalized, as in Eq. (9). This will introduce at some stage wave function

normalization factors N , which will later be fixed by the standard rules of quantum mechanics.

If the wave function were to depend on the total volume Vtot only (which is the case in 2 + 1

dimensions, but not in 3 + 1), then the relevant requirement would simply be

‖Ψ‖2 ≡
∫

dµ[g] · |Ψ[gij ] |2 =
∫ ∞

0
dVtot · V m

tot · |Ψ(Vtot) |2 = 1 , (40)

where dµ[g] is the appropriate functional measure over the three-metric gij , and m a positive real

number representing the correct entropy weighting. But, not unexpectedly, in 3 + 1 dimensions
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the total curvature also plays a role, so the above can only be regarded as roughly correct in the

strong coupling limit (large G), where the curvature contribution to the Wheeler-DeWitt equation

can safely be neglected. As in nonrelativistic quantum mechanics, the normalization condition in

Eqs. (9) and (40) plays a crucial role in selecting out of the two solutions the one that is regular,

and therefore satisfies the required wave function normalizability condition.

To proceed further, it will be necessary to discuss each lattice separately in some detail. For

each lattice geometry, we will break down the presentation into two separate discussions. The first

part will deal with the case of no explicit curvature term in the Wheeler-DeWitt equation. Each

regular triangulation of the three-sphere will be first analyzed separately, and subjected to the

required regularity conditions. Here a solution is first obtained in the equilateral case, and later

promoted on the basis of lattice diffeomorphism invariance to the case of arbitrary edge lengths,

as was done in [2]. Later a single general solution will be written down, involving the parameter

q, which covers all previous triangulation cases, and thereby allows a first study of the infinite

volume limit. The second part deals with the extension of the previous solutions to the case when

the curvature term in the Wheeler-DeWitt equation is included. This case is more challenging to

treat analytically, and the only results we have obtained so far deal with the large volume limit, for

which the solution is nevertheless expected to be exact (as was the case in 2 + 1 dimensions [2]).

5.1 Nature of Solutions in 3+1 Dimensions

In this work we will be concerned with the solution of the Wheeler-DeWitt equation for discrete

triangulations of the three-sphere S3. In general, for an arbitrary triangulation of a smooth closed

manifold in three dimensions, one can write down the Euler equation

N0 −N1 +N2 −N3 = 0 (41)

and the Dehn-Sommerville relation

N2 = 2N3 . (42)

The latter follows from the fact that each triangle is shared by two tetrahedra and each tetrahedron

has four triangles, thus 2N2 = 4N3. In addition, for the regular triangulations of the three-sphere

we will be considering here, one has the additional identity

N1 =
6

q
N3 , (43)
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where q is the local coordination number, defined as the number of tetrahedra meeting at an edge.

For the three regular triangulations of the three-sphere we will look at one has q = 3, 4, 5. The

above relations then allow us to relate the number of sites (N0) to the number of tetrahedra (N3),

N0 = N3

(

6

q
− 1

)

. (44)

It will also turn out to be convenient to collect here a number of useful definitions, results and

identities that apply to the regular triangulations of the three-sphere, valid strictly when all edge

lengths take on the same identical value l =
√
s. For the total volume

Vtot ≡
∑

σ

Vσ ←→
∫

d3x
√
g (45)

one has

Vtot = N3 Vσ =
s3/2

6
√
2
N3 , (46)

whereas the total curvature

Rtot ≡ 2
∑

h

δh lh ←→
∫

d3x
√
g R (47)

is given by

Rtot =
12
√
s

q

[

2π − q cos−1
(

1
3

)]

N3 . (48)

The latter relationship can be inverted to give the parameter q as a function of the curvature

q = q0



1− Rtot

Rtot +
24π

√
s

q0
N3



 , (49)

and its inverse as

q−1 = q−1
0 +

Rtot

24π
√
s N3

, (50)

so that this last quantity is just linear in Rtot. A very special value for q corresponds to the choice

q = q0 for which Rtot = 0. For this case one has

q0 ≡
2π

cos−1(13)
= 5.1043 . (51)

Then, summarizing all the previous discussions, the discretized Wheeler-DeWitt equation one wants

to solve here is






−G2
∑

i,j⊂σ

Gij (σ)
∂2

∂l2i ∂l
2
j

− κ
∑

h⊂σ

lh δh + 2λ Vσ







ψ[ l2 ] = 0 , (52)

with parameter κ given by

κ =
2

q
. (53)

If the reader is not interested in the details of the solution for each individual lattice, then (s)he

can skip the following sections and move on directly to Sec. (5.6).
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5.2 1-Cell Complex (Single Tetrahedron)

As a first case we consider here the quantum-mechanical problem of a single tetrahedron. One

has N0 = 4, N1 = 6, N2 = 4, N3 = 1 and q = 1 [note that these do not satisfy the Euler and

Dehn-Sommerville relations; only the relation between N1 , N3, and q, Eq. (44), is satisfied for a

single tetrahedron]. The single tetrahedron problem is relevant for the strong coupling (large G)

limit. In this limit one can neglect the curvature term, which couples different tetrahedra to each

other, and one is left with the local degrees of freedom, involving a single tetrahedron.

The Wheeler-DeWitt equation for a single tetrahedron with a constant curvature density term

R reads
{

− (16πG)2 Gij
∂2

∂si∂sj
+ (2λ−R)V

}

Ψ[ s ] = 0 , (54)

where now the squared edge lengths s1 . . . s6 are all part of the same tetrahedron, and Gij is given

by a rather complicated, but explicit, 6× 6 matrix given earlier.

As in the 2+1 case previously discussed in [2], here too it is found that, when acting on functions

of the tetrahedron volume, the Laplacian term still returns some other function of the volume only,

which makes it possible to readily obtain a full solution for the wave function. In terms of the

volume of the tetrahedron Vσ one has the equivalent equation for Ψ[s] = Ψ(Vσ) (note that we have

now replaced for notational convenience 16πG→ G)

ψ′ ′ (Vσ) +
7

Vσ
ψ′ (Vσ) +

32λ

G2
ψ (Vσ) = 0 , (55)

with primes indicating derivatives with respect to Vσ. From now on we will set the constant

curvature density R=0. If one introduces the dimensionless (scaled volume) variable

x ≡ 4
√
2λ

G
Vtot , (56)

where Vtot ≡ Vσ is the volume of the tetrahedron, then the differential equation for a single tetra-

hedron becomes simply

ψ′ ′ (x) +
7

x
ψ′ (x) + ψ (x) = 0 . (57)

Solutions to Eqs. (55) or (57) are Bessel functions Jm or Ym with m = 3,

ψR(Vtot) = const. J3

(

4
√
2λ

G
Vtot

)

/V 3
tot , (58)

or

ψS(Vtot) = const. Y3

(

4
√
2λ

G
Vtot

)

/V 3
tot . (59)
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Only Jm(x) is regular as x→ 0, Jm(x) ∼ Γ(m+1)−1(x/2)m. In terms of the variable x the regular

solution is therefore

ψ (Vtot) ∝
J3 (x)

x3
∝

J3

(

4
√
2λ

G Vtot

)

V 3
tot

, (60)

and the only physically acceptable wave function is

Ψ(a, b, . . . f) = Ψ(Vtot) = N
J3

(

4
√
2λ

G Vtot

)

V 3
tot

, (61)

with normalization constant

N =
45
√
77π

1024 23/4

(

G√
λ

)5/2

. (62)

The latter is obtained from the wave function normalization requirement

∫ ∞

0
dVtot |Ψ(Vtot) |2 = 1 . (63)

Note that the solution given in Eq. (60) is exact, and a function of the volume of the tetrahedron

only; its only dependence on the values of the edge lengths of the tetrahedron [or, equivalently, on

the metric, see Eq. (12)] is through the total volume.

One can compute the average volume of the single tetrahedron, and it is given by

〈 Vtot 〉 ≡
∫ ∞

0
dVtot · Vtot · |Ψ(Vtot) |2 =

31185π G

262144
√
2λ

= 0.2643
G√
λ
. (64)

This last result allows us to define an average lattice spacing, by comparing it to the value for an

equilateral tetrahedron for which Vtot = (1/6
√
2) a30. One obtains

a0 = 1.3089

(

G√
λ

)1/3

. (65)

In terms of the parameter λ̃ defined in Eq. (33) one has
√
λ/G =

√

2 λ̃. With the notation of

Eq. (36) one has as well G/
√
λ =
√
2G =

√
2 g. Then for a single tetrahedron one has 〈 Vtot 〉 ≡

〈 Vσ 〉 = 0.3738 g.

The single tetrahedron problem is clearly quite relevant for the limit of strong gravitational

coupling, 1/G→ 0. In this limit lattice quantum gravity has a finite correlation length, comparable

to one lattice spacing,

ξ ∼ a0 . (66)

This last result is seen here simply as a reflection of the fact that for large G the edge lengths, and

therefore the metric, fluctuate more or less independently in different spatial regions, due to the

absence of the curvature term in the Wheeler-DeWitt equation. This is of course true also in the
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Euclidean lattice theory, in the same limit [20]. It is the inclusion of the curvature term that later

leads to a coupling between fluctuations in different spatial regions, an essential ingredient of the

full theory.

5.3 5-cell Complex (Configuration of 5 Tetrahedra)

The first regular triangulation of S3 we will consider is the 5-cell complex, sometimes referred to as

the hypertetrahedron. Here one has N0 = 5, N1 = 10, N2 = 10, N3 = 5 and q = 3, since there are

three tetrahedra meeting on each edge. Then for the parameter κ appearing in Eq. (52) one has

κ =
2

3
. (67)

First we will consider the case of no curvature term in the lattice Wheeler-DeWitt equation of

Eq. (52). The curvature term will be re-introduced at a later stage [see Sec. (7)], as its presence

considerably complicates the solution of the lattice equations.

Solving the lattice equations directly (by brute force, one might say) in terms of the edge length

variables is a rather difficult task, since many edge lengths are involved, increasingly more so for

finer triangulations. Nevertheless it can be done, to some extent, in 2 + 1 dimensions [2], and

possibly even in 3 + 1 dimensions, analytically for some special cases, or numerically for more

general cases. To obtain a full solution to the lattice equations we rely here instead on a simpler

procedure, already employed successfully (and checked explicitly) in 2 + 1 dimensions. First, an

exact wave function solution to the lattice Wheeler-DeWitt equations is obtained for the equilateral

case, where all edges in the simplicial complex are assumed to have the same length. Then, in the

next step, the diffeomorphism invariance of the simplicial lattice theory is used to promote the

previously obtained expression for the wave function to its unique general coordinate invariant

form, involving various geometric volume and curvature terms. It is a non-trivial consequence of

the invariance properties of the theory that such an invariant expression can be obtained, without

any further ambiguity. In a number of instances such a procedure can be checked explicitly and

systematically within the framework of the weak field expansion, and used to show that the form of

the relevant wave function solution is indeed, as expected, strongly constrained by diffeomorphism

invariance [2].

In the case of the 5-cell complex, and for now without an explicit curvature term in the Wheeler-

DeWitt equation, one obtains the following differential equation

ψ′ ′ (Vtot) +
95

9Vtot
ψ′ (Vtot) +

32λ

9G2
ψ (Vtot) = 0 (68)

20



for a wave function that, for now, depends only on the total volume, ψ = ψ (Vtot). To obtain this

result, it is assumed at first that the simplicial complex is built out of equilateral tetrahedra; in

accordance with the previous discussion, this constraint will be removed below. In terms of the

dimensionless variable x defined as

x ≡ 4
√
2λ

3G
Vtot (69)

one has the equivalent form for Eq. (68)

ψ′ ′ (x) +
95

9x
ψ′ (x) + ψ (x) = 0 . (70)

This last equation can then be solved immediately, and the solution is

ψ (Vtot) ∝
J 43

9
(x)

x
43
9

∝
J 43

9

(

4
√
2λ

3G Vtot

)

V
43
9

tot

, (71)

up to an overall wave function normalization constant. As in the previously discussed tetrahedron

case, and also as in 2 + 1 dimensions, one discards the Bessel function of the second kind (Y )

solution, since it is singular at the origin.

5.4 16-cell Complex (Configuration of 16 Tetrahedra)

The next regular triangulation of S3 we will consider is the 16-cell complex, sometimes referred to

as the hyperoctahedron. One has in this case N0 = 8, N1 = 24, N2 = 32, N3 = 16 and q = 4, since

there are four tetrahedra meeting on each edge. For the parameter κ in Eq. (52) one has

κ =
2

4
. (72)

In the case of the 16-cell complex (again for now without an explicit curvature term in the Wheeler-

DeWitt equation) one obtains the following differential equation

ψ′ ′ (Vtot) +
47

2Vtot
ψ′ (Vtot) +

2λ

G2
ψ (Vtot) = 0 (73)

for a wave function that depends only on the total volume, ψ = ψ (Vtot). In terms of the variable

x ≡
√
2λ

G
Vtot (74)

one has an equivalent form for Eq. (73)

ψ′ ′ (x) +
47

2x
ψ′ (x) + ψ (x) = 0 . (75)
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The correct wave function solution is now

ψ (Vtot) ∝
J 45

4
(x)

x
45
4

∝
J 45

4

(√
2λ
G Vtot

)

V
45
4

tot

, (76)

up to an overall wave function normalization constant. Again, we discarded the Bessel function of

the second kind (Y ) solution, since it is singular at the origin.

5.5 600-cell Complex (Configuration of 600 Tetrahedra)

The last, and densest, regular triangulation of S3 we will consider here is the 600-cell complex,

often called the hypericosahedron. For this lattice one has N0 = 120, N1 = 720, N2 = 1200,

N3 = 600 and q = 5, since there are now five tetrahedra meeting at each edge. For the parameter

κ in Eq. (52) one has

κ =
2

5
. (77)

For this 600-cell complex (again for now without an explicit curvature term in the Wheeler-DeWitt

equation) one obtains the following differential equation

ψ′ ′ (Vtot) +
672

Vtot
ψ′ (Vtot) +

32λ

25G2
ψ (Vtot) = 0 (78)

for a wave function that depends only on the total volume, ψ = ψ (Vtot). In terms of the variable

x ≡ 4
√
2λ

5G
Vtot (79)

one has an equivalent form for Eq. (78)

ψ′ ′ (x) +
672

x
ψ′ (x) + ψ (x) = 0 . (80)

Then the solution of the Wheeler DeWitt equation without a curvature term is

ψ (Vtot) ∝
J 671

2
(x)

x
671
2

∝
J 671

2

(

4
√
2λ

5G Vtot

)

V
671
2

tot

, (81)

again up to an overall wave function normalization constant. As in previous cases, we discard the

Bessel function of the second kind (Y ) solution, since it is singular at the origin.

5.6 Summary and General Case for Zero Curvature

In this section we summarize and extend the previous results for the wave functions, obtained so

far for the three separate cases of the 5-cell, 16-cell and 600-cell triangulation of the three-sphere

S3. The single tetrahedron case is somewhat special (it cannot contain a curvature term), and will
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be left aside for the moment. Also, all the previous results so far apply to the case of no explicit

curvature term in the Wheeler-DeWitt equation of Eq. (52); the inclusion of the curvature term

will be discussed later. Consequently the following discussion still focuses on the strong coupling

limit, G→∞.

For the following discussion the relevant Wheeler-DeWitt equation is the one in Eq. (52),






−G2
∑

i,j⊂σ

Gij (σ)
∂2

∂l2i ∂l
2
j

− κ
∑

h⊂σ

lh δh + 2λ Vσ







ψ[ l2 ] = 0 , (82)

which depends on the parameter

κ =
2

q
, (83)

where q represents the number of tetrahedra meeting at an edge. The above equation is quite

general and not approximate in any way. Nevertheless it depends on the local lattice coordination

number q (how the edges are connected to each other, or, in other words, on the incidence matrix).

Now, all previous differential equations for the wave function as a function of the total volume

Vtot [Eqs. (68), (73) and (78)] can be summarized as a single equation

ψ′ ′ (Vtot) +
(11 + 9 q)

2 q2
N3

Vtot
ψ′ (Vtot) +

32

q2
λ

G2
ψ (Vtot) = 0 . (84)

Equivalently, in terms of the scaled volume variable defined as

x ≡ 4
√
2λ

q G
Vtot , (85)

one can summarize the results of Eqs. (70), (75) and (80) through the single equation

ψ′ ′ (x) +
(11 + 9 q)

2 q2
N3

x
ψ′ (x) + ψ (x) = 0 . (86)

It will be convenient here to define the (Bessel function) index n as

n ≡ 11 + 9 q

4 q2
N3 −

1

2
, (87)

so that for the 5-cell, 16-cell and 600-cell one has

2n+ 1 =
95

9
(q = 3, N3 = 5) ,

=
47

2
(q = 4, N3 = 16) ,

= 672 (q = 5, N3 = 600) , (88)

respectively, and in the general case

2n+ 1 =
(11 + 9 q)

2 q2
N3 , (89)
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thus reproducing n = 43/9, 45/4 and 671/2, respectively, in the three cases. Then Eq. (86) is just

ψ′ ′ (x) +
2n+ 1

x
ψ′ (x) + ψ (x) = 0 . (90)

Consequently the wave function solutions are

ψ ∝ Jn (x)

xn
∝
Jn

(

4
√
2λ

qG Vtot

)

(

4
√
2λ

q G Vtot

)n , (91)

up to an overall wave function normalization constant, thus summarizing all the results so far for the

individual regular triangulations [Eqs. (71), (76) and (81)]. A more explicit, but less transparent,

form for the wave function solution is

ψ (Vtot) = N · V
1
2
−N3(11+9q)

4 q2

tot · J− 1
2
+

N3(11+9q)

4q q2

(

4
√
2λ

q G
Vtot

)

, (92)

with N an overall wave function normalization constant. Its large volume behavior is completely

determined by the asymptotic expansion of the Bessel J function,

ψ(x) ≃ Jn(x)

xn
∼

x → ∞
x−n

√

2

πx
sin
(

x+
π

4
− nπ

2

)

+ O
(

1

xn+
3
2

)

. (93)

It is also easy to see that the argument of the Bessel function solution J in Eqs. (91) and (92) has

the following expansion for large volumes

x =
4
√
2λ

q0G
Vtot +

a20
36
√
2π

√
2λ

G
Rtot , (94)

with a0 (a30 ≡ 6
√
2V/N3) representing here the average lattice spacing. Thus the second correction

is of order (V/N3)
2/3 Rtot. Note that nothing particularly interesting is happening in the structure

of the wave function so far. Similarly, the index n of the Bessel function solution in Eqs. (91) and

(92) has the following expansion for large volumes and small curvatures,

n =
(11 + 9 q0)

4 q20
N3 −

1

2
+

(22 + 9 q0)

96π q0 a0
Rtot + O

(

R2
)

, (95)

with a0 again defined as above. Note here that the second correction is of order (N3/V )1/3Rtot. It

follows that the asymptotic behavior for the exponent of the fundamental wave function solutions

for large volume and small curvature is given by

± i

[

4
√
2λ

q0G
Vtot +

a20
36
√
2π

√
2λ

G
Rtot + O

(

R2
)

]

−
[

11 + 9 q0
4 q20

N3 +
22 + 9 q0
96π q0 a0

Rtot + O
(

R2
)

]

lnVtot . (96)
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Let us make here some additional comments. One might wonder what concrete lattices corre-

spond to values of n greater that 671/2, which is after all the highest value attained for a regular

triangulation of the three-sphere, namely the 600-cell complex. For each of the three regular tri-

angulations of S3 with N0 sites one has for the number of edges N1 = 6
6−qN0, for the number

of triangles N2 = 2 q
6−qN0 and for the number of tetrahedra N3 = q

6−qN0, where q is the number

of tetrahedra meeting at an edge (the local coordination number). In the three cases examined

previously q was of course an integer between three and five; in two dimensions it is possible to

have one more integer value of q corresponding to the regularly triangulated torus, but this is not

possible here. In any case, one always has for a given triangulation of the three-sphere the Euler

relation N0 −N1 +N2 −N3 = 0. The interpretation of other, even noninteger, values of q is then

clear. Additional triangulations of the three-sphere can be constructed by considering irregular

triangulations, where the parameter q is now seen as an average coordination number. Of course

the simplest example is what could be described as a semiregular lattice, with Na edges with coor-

dination number qa and Nb edges with coordination number qb, such that Na +Nb = N1. Various

irregular and random lattices were considered in detail some time ago in [19], and we refer the

reader to this work for a clear exposition of the properties of these kind of lattices. In the following

we will assume that such constructions are generally possible, so that even non-integer values of q

are meaningful and are worth considering.

6 Average Volume and Average Lattice Spacing

At this stage it will be useful to examine the question of what values are allowed for the average

volume. The latter will be needed later on to give meaning to the notion of an average lattice

spacing. In general the average volume is defined as

〈Vtot〉 ≡
〈Ψ|Vtot|Ψ〉
〈Ψ|Ψ〉 =

∫

dµ[g] · Vtot[gij ] · |Ψ[gij ] |2
∫

dµ[g] · |Ψ[gij ] |2
, (97)

where dµ[g] is the appropriate (DeWitt) functional measure over three-metrics gij .

Now consider the wave function obtained given in Eq. (91), with n defined in Eq. (87). This

wave function is relevant for the strong coupling limit, where the explicit curvature term in the

Wheeler-DeWitt equation can be neglected. In this limit one can then compute the average total

volume

〈Vtot〉 =

∫∞
0 dVtot · Vtot · |ψ (Vtot)|2
∫∞
0 dVtot · |ψ(Vtot)|2

. (98)
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One then obtains immediately for the average volume of a tetrahedron

〈Vσ〉 =
2−

3
2
−2n Γ

(

n− 1
2

)

Γ
(

2n + 1
2

)

Γ (n)3 N3

· q G√
λ
. (99)

If the whole lattice is just a single tetrahedron, then one has n = 3, and therefore

〈Vσ〉 =
31185π G

262144
√
2
√
λ

= 0.2643
G√
λ
, (100)

from which one can define an average lattice spacing a0 via 〈Vσ〉 = a30/6
√
2. For large N3 one has

a30 =
3
√
11 + 9 q

2
√
2π N3

G√
λ
. (101)

But in general one cannot assume a trivial entropy factor from the functional measure, and one

should evaluate instead

〈Vtot〉 =

∫∞
0 dVtot · V m

tot · Vtot · |ψ (Vtot) |2
∫∞
0 dVtot · V m

tot · |ψ(Vtot) |2
, (102)

with some power m = c0N3 and c0 a real positive constant. One then obtains for the average

volume of a single tetrahedron

〈Vσ〉 =
1

N3
〈Vtot〉 =

√

c0 [11 + q0(9− c0 q0)]
G

8
√
2λ

, (103)

which is finite as N3 →∞. Note that in order for the above expression to make sense one requires

c0 < (11+9q0)/q
2
0 ≃ 2.185. If the exponent in the entropy factor is too large, the integrals diverge.

One then finds that the corresponding lattice spacing is given by

a30 =
√

c0 [11 + q0(9− c0 q0)]
3G

4
√
λ
. (104)

The lesson learned from this exercise is that in gravity the lattice spacing a0 (the fundamental

length scale, or the ultraviolet cutoff if one wishes) is itself dynamical, and thus set by the bare

values of G and λ. In a system of units for which λ0 = 1 one then has a0 ∼ g1/3. Either way,

the choice for a0 has no immediate direct physical meaning, and has to be viewed instead in the

context of a subsequent consistent renormalization procedure. In the following it will be safe to

assume, based on the results of Eqs. (65) and (104) that

a30 = f3
G√
λ
, (105)

in units of the UV cutoff, where f is a numerical constant of order one (for concreteness, in the

single tetrahedron case one has f ≈ 1.3089).
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7 Large Volume Solution for Nonzero Curvature

The next task in line is to determine the form of the wave function when the curvature term in the

Wheeler-DeWitt equation of Eq. (52) is not zero. In particular we will be interested in the changes

to the wave function given in in Eqs. (91) and (92), with argument x in Eq. (94) and parameter n

in Eq. (95). We define here the total integrated curvature Rtot as in Eq. (47), which is of course

different from the local curvature appearing in the lattice Wheeler DeWitt equation of Eq. (52),

Rσ ≡
∑

h⊂σ

δh lh . (106)

In order to establish the structure of the solutions for large volumes Vtot we will assume, based in

part on the results of the previous sections, and on the analogous calculation in 2 + 1 dimensions

[2], that the fundamental wave function solutions for large volumes have the form

exp

{

± i
(

α

∫

d3x
√
g + β

∫

d3x
√
g R+ γ

∫

d3x
√
g R2 + δ

∫

d3x
√
g RµνR

µν + · · ·
)}

. (107)

Note here that the structure of the above expression, and the nature of the terms that enter into it,

are basically dictated by the requirement of diffeomorphism invariance as it applies to the argument

of the wave functional. Apart from the cosmological term, allowed terms are all the ones that can

be constructed from the Riemann tensor and its covariant derivatives, for a a fixed topology of 3-

space. Clearly, at large distances (infrared limit) the most important terms will be the Einstein and

cosmological terms, with coefficients β and α, respectively. In three dimensions the Riemann and

Ricci tensor have the same number of algebraically independent components (6), and are related

to each other by

Rµν
λσ = ǫµνκ ǫλσρ

(

Rρ
κ − 1

2 δ
ρ
κ

)

. (108)

The Weyl tensor vanishes identically, and one has

RµνλσR
µνλσ − 4RµνR

µν − 3R2 = 0 CµνλσC
µνλσ = 0 . (109)

As a consequence, there is in fact only one local curvature squared term one can write down in

three spatial dimensions. Nevertheless, higher derivative terms will only become relevant at very

short distances, comparable or smaller than the Planck length
√
G; in the scaling limit it is expectd

that these can be safely neglected.

When expressed in lattice language, the above form translates to an ansatz of the form

exp {± i (c0 Vtot + c1R
m
tot )} , (110)
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with m assumed to be an integer. In addition, from the studies of lattice gravity 2 + 1 dimensions

one expects a lnVtot term as well in the argument of the exponential [2]. This suggests a slightly

more general ansatz ,

exp {± i ( c0 Vtot + c1R
m
tot ) + c2 lnVtot + c3 lnRtot } . (111)

The next step is to insert the above expression into the lattice Wheeler-DeWitt equation Eq. (52)

and determine the values of the five constants c0 . . . c3, m. This can be done consistently just to

leading order in the weak field expansion of Eq. (37), which is entirely adequate here, as it will

provide enough information to uniquely determine the coefficients. Here we will just give the result

of this exercise. For the 5-cell complex (q = 3) one obtains

ψ ∼ exp

{

± i
(

4
√
2
√
λ

3G
Vtot −

√
2

G
√
λ
Rtot

)

− 95

18
lnVtot

}

, (112)

whereas for 16-cell complex (q = 4)one finds

ψ ∼ exp

{

± i
( √

2
√
λ

G
Vtot −

3
√
2

4G
√
λ
Rtot

)

− 47

4
lnVtot

}

, (113)

and finally for 600-cell complex (q = 5)

ψ ∼ exp

{

± i
(

4
√
2
√
λ

5G
Vtot −

3
√
2

5G
√
λ
Rtot

)

− 336 lnVtot

}

. (114)

These expressions allow us again to identify the answer for general q as

ψ ∼ exp

{

± i
(

4
√
2λ

q G
Vtot −

3
√
2

q G
√
λ
Rtot

)

− (11 + 9 q)N3

4 q2
lnVtot

}

. (115)

Note that in deriving the above results we considered the large volume limit V →∞, treating the

number of tetrahedra N3 as a fixed parameter. Then from the previous expression we can now read

off the values for the various coefficients, namely

c0 =
4
√
2λ

q G

c1 = − 3
√
2

q G
√
λ

c2 = − (11 + 9 q)N3

4 q2

c3 = 0 (116)

with the only possible value m = 1.
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In order to make contact with the strong coupling result for the wave function derived in the

previous sections [Eqs. (92), (94), (95) and (96)], one needs to again expand the above answer for

small curvatures. One obtains for the exponent of the wave function the following expression

± i

{

4
√
2λ

q0G
Vtot +

(

a20
36
√
2π

√
2λ

G
− 6

q0G
√
2λ

)

Rtot + O
(

R2
)

}

−
{

11 + 9 q0
4 q20

N3 +
22 + 9 q0
96π q0 a0

Rtot + O
(

R2
)

}

lnVtot , (117)

with a0 again representing the average lattice spacing, a30 ≡ 6
√
2V/N3. This finally determines

uniquely the coefficients α and β appearing in Eq. (107),

α =
4

q0
·
√
2λ

G

β =
a20

36
√
2π
·
√
2λ

G
− 6

q0
· 1

G
√
2λ

. (118)

The most important result so far is the appearance of two contributions of opposite sign in β,

signaling the appearance of a critical value for G where β vanishes.

This critical point is located at λc = 108
√
2π/q0 a

2
0 or, in a system of units where λ = G/2

[see Sec. (4)],

Gc =
216
√
2π

q0
· 1
a20

. (119)

But since the average lattice spacing a0 is itself a function of G and λ [see Eqs. (65), (104) and

(105)] one obtains in the same system of units

Gc =
36 23/8 31/4 π3/4

f3/2 q
3/4
0

≃ 28.512 , (120)

using the value of f for the single tetrahedron, or equivalently gc ≃ 5.340, a rather large value.

Nevertheless we should keep in mind that in this paper we are also using a system of units where

we set 16πG → G. So, in a conventional system of units, one has the more reasonable result

Gc ≈ 0.567 in units of the fundamental UV cutoff. Evidence for a phase transition in lattice

gravity in 3 + 1 dimensions was also seen earlier from the application of the variational method,

using Jastrow-Slater correlated product variational wavefunctions [1]. 4 Note that the results of

Eqs. (117) and (118) imply a dependence of the fundamental wave function on the curvature, of

the type

ψ(R) ∼ e± i Rtot/R0 , (121)

4 One can compare the above value for Gc obtained in the Lorentzian 3 + 1 theory with the corresponding value
in the Euclidean four-dimensional theory. There one finds Gc ≈ 0.624 [32]. The two values are not expected to be
the same in the two formulations, due to the different nature of the cutoffs. In particular, in the lattice Hamiltonian
formulation the continuum limit has already been taken in the time direction. Nevertheless, it is encouraging that
they are quite comparable in magnitude.
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with R0 a characteristic scale for the total, integrated curvature. Thus R0 ∼ 1/(g − gc) with Gc,

and therefore gc =
√
Gc, given in Eq. (119). Therefore at the critical point fluctuations in the

curvature become unbounded, just as is the case for the fluctuations in a scalar field when the

renormalized mass approaches zero. 5

At this stage one can start to compare with the results obtained previously without the explicit

curvature term in the Wheeler-DeWitt equation, Eqs. (94) and (95). The main change is that here

one would be led to identify

x =
4
√
2λ

q0G
Vtot +

(

a20
36
√
2π
·
√
2λ

G
− 6

q0
· 1

G
√
2λ

)

Rtot , (122)

so that the Bessel function argument x [see Eq. (94)] now contains a new contribution, of opposite

sign, in the curvature term. Its origin can be traced back to the new curvature contribution c1

in Eq. (116), which in turn arises because of the explicit curvature term now present in the full

Wheeler-DeWitt equation. On the other hand, as is already clear from the result for c2 in Eq. (116),

the index n of the Bessel function solution in Eqs. (91) and (92) is left unchanged,

n =
11 + 9 q0

4 q20
N3 −

1

2
+

22 + 9 q0
96π q0 a0

Rtot + O
(

R2
tot

)

, (123)

with again an average lattice spacing a0 defined as before.

But there is a better way to derive correctly the modified form of the wave function. From

the asymptotic solution for the wave function of Eq. (115) it is possible to first obtain a partial

differential equation for ψ(Rtot, Vtot). The equation reads (in the following we shall write Rtot as R

and Vtot as V to avoid unnecessary clutter)

∂2ψ

∂V 2
+ cV

∂ ψ

∂ V
+ cR

∂ ψ

∂ R
+ cV R

∂2 ψ

∂ V ∂ R
+ cRR

∂2 ψ

∂ R2
+ cλ ψ + ccurv ψ = 0 . (124)

5 It is tempting to try to extract a critical exponent from the result of Eq. (121). In analogy to the wave
functional for a free scalar field with mass m, and thus correlation length ξ = 1/m, one would obtain for the
correlation length exponent ν (with ν defined by ξ ∼ |g − gc|

−ν) from the above wave function the semi-classical

estimate ν = 1
2
. In the 2 + ǫ perturbative expansion for pure gravity one finds in the vicinity of the UV fixed point

ν−1 = (d− 2)+ 3
5
(d− 2)2 +O((d− 2)3) [33, 34, 35]. The above lowest order lattice result would then agree only with

the leading, semi-classical term.
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The coefficients in the above equation are given by

cV =
11 + 9 q

2 q2
· N3

V
=

11 + 9 q0
2 q20

· N3

V
+

22 + 9 q0

48
√
2 31/3 π q0

· N
1/3
3 R

V 4/3
+ O(R2)

cR = −2

9

R

V 2
+

11 + 9 q0
6 q20

· N3R

V 2
+ O(R2)

cV R =
2

3

R

V
+ O(R2)

cRR =
2

9

R2

V 2

cλ =
32λ

q2G2
=

32

G2 q20
+

4
√
2λ

3 31/3 π q0G
· R

N
2/3
3 V 1/3

+ O(R2)

ccurv = − 16

G2 q2
· R
V

= − 16

G2 q20
· R
V

+ O(R2) . (125)

Note that in the small curvature, large volume limit [this is the limit in which, after all, Eq. (115)

was derived] one can safely set the coefficients cR and cRR to zero. It is then easy to check that

the solution in Eq. (115) satisfies Eqs. (124) and (125), up to terms of order 1/V 2. Also note that

here, and in Eqs. (112), (113), (114) and (115), we take the large volume limit V → ∞, treating

the number of tetrahedra N3 as a large, fixed parameter. A differential equation in the variable V

only can be derived as well (with coefficients that are functions of R), but then one finds that the

required coefficients are not real, which makes this approach less appealing.

In the limit R→ 0 Eq. (124) reduces to

∂2ψ

∂V 2
+

11 + 9 q0
2 q20

· N3

V
· ∂ ψ
∂ V

+
32λ

G2 q20
ψ = 0 , (126)

which is essentially Eq. (84) in the same limit, with solution given previously in Eq. (91).

8 Nature of the Wave Function Solution ψ

In this section we discuss some basic physical properties that can be extracted from the wave

function solution ψ(V,R). So far we have not been able to find a general solution to the fundamental

Eq. (124), but one might suspect that the solution is still close to a Bessel or hypergeometric

function, possibly with arguments “shifted” according to Eqs. (122) and (123), as was the case in

2 + 1 dimensions. As a consequence, some physically motivated approximations will be necessary

in the following discussion. Let us discuss here in detail one possible approach. If one sets the

troublesome coefficient cV R = 0 in Eq. (124), and keeps only the leading term in cV , then the

relevant differential equation becomes

∂2ψ

∂V 2
+ cV

∂ ψ

∂ V
+ cλ ψ + ccurv ψ = 0 , (127)
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with coefficients given in Eq. (125), except that from now on only the leading term in cV and cλ

will be retained (otherwise it seems again difficult to find an exact solution). Note that the above

equation still contains an excplicit curvature term proportional to R, from ccurv. Now a complete

solution can be found in terms of the confluent hypergeometric function of the first kind, 1F1(a, b, z)

[36, 37, 38]. Up to an overall wave function normalization constant, it is

ψ(V, R) ≃ e
− 4 i

√

2λ V
q0 G ·

Γ
(

(11+9 q0)N3

4 q20
+ i

√
2R

q0 G
√
λ

)

Γ
(

1− (11+9 q0)N3

4 q20
+ i

√
2R

q0 G
√
λ

)

× 1F1

(

(11 + 9 q0)N3

4 q20
− i
√
2R

q0
√
λG

,
(11 + 9 q0)N3

2 q20
,
8 i
√
2λV

q0G

)

. (128)

Here again q0 is just a number, given previously in Eq. (51), and N3 the total number of tetrahedra

for a given triangulation of the manifold. Note that this last solution still retains three key properies:

it is a function of geometric invariants (V,R) only; it is regular at the origin in the variable V (the

irregular solution is discarded due to the normalizability constraint); and finally it agrees, as it

should, with the zero curvature solution of Eqs. (91) and (92) in the limit R = 0.

The above wave function exhibits some intriguing similarities with the exact wave function

solution found in 2 + 1 dimensions; the difference is that the total curvature R here plays the role

of the Euler characteristic χ there. Let us be more specific, and discuss each argument separately.

For the arguments of the confluent hypergeometric function of the first kind, 1F1(a, b, z), one finds

again b = 2a for R = 0, with both a and b proportional to the total number of lattice sites, as in

2 + 1 dimensions [2]. Specifically, here one has

Re(a) =
11 + 9 q0

4 q20
N3 ≈ 0.5464N3 , (129)

whereas in 2 + 1 dimensions the analogous result is

Re(a) = 1
4 N2 . (130)

The curvature contribution in both cases then appears as an additional contribution to the first

argument (a), and is purely imaginary. Here one has

Im(a) = −
√
2

q0
√
λG

∫

d3x
√
g R , (131)

whereas in 2 + 1 dimensions the corresponding result is

Im(a) = − 1

2
√
2λG

∫

d2x
√
g R . (132)
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Finally, here again the third argument z is purely imaginary and simply proportional to the total

volume. From the above solution

z = i
8
√
2λ

q0G

∫

d3x
√
g , (133)

whereas in 2 + 1 dimensions

z = i
2
√
2λ

G

∫

d2x
√
g . (134)

Nevertheless we find also some important additional differences with the 2+1 result, most notably

the various gamma-function coefficients involving the curvature R, which are entirely absent in the

lower dimensional case, as well as the fact that the critical (UV fixed) point is located at some

finite Gc here [see Eq. (119)], whereas it is exactly at Gc = 0 in 2 + 1 dimensions [2].

Let us now continue here with a discussion of the main properties of the wave function in

Eq. (128). First let us introduce some additional notational simplification. By using the coupling

g [see Sec. (4) and Eq. (36)] one can make the above expression for ψ slightly more transparent

ψ(V, R) ≃ e
− 4 i V

q0 g ·
Γ
(

(11+9 q0)N3

4 q20
+ 2 iR

q0 g3

)

Γ
(

1− (11+9 q0)N3

4 q20
+ 2 i R

q0 g3

)

× 1F1

(

(11 + 9 q0)N3

4 q20
− 2 iR

q0 g3
,
(11 + 9 q0)N3

2 q20
,
8 i V

q0 g

)

. (135)

We remind the reader that, by virtue of Eq. (51), in all the above expressions q0 is just a numerical

constant, q0 ≡ 2π/ cos−1(13) = 5.1043. Note that for weak coupling the curvature terms become

more important due to the 1/g3 coefficient. The resulting probability distribution |ψ(V,R)|2 is

shown, for some illustrative cases, in Figures 3,4 and 5.

One important proviso should be be stated here first. We recall that having obtained an (exact

or approximate) expression for the wave function does not lead immediately to a complete solution

of the problem. This should be evident, for example, from the general expression for the average

of a generic quantum operator O(g)

〈O(g)〉 ≡ 〈Ψ|O|Ψ〉〈Ψ|Ψ〉 =

∫

dµ[g] · O(gij) · |Ψ[gij ] |2
∫

dµ[g] · |Ψ[gij ] |2
, (136)

where dµ[g] is the appropriate (DeWitt) functional measure over the three-metric gij . Because of

the general coordinate invariance of the state functional, the inner products shown above clearly

contain an infinte redundancy due to the geometrical indinstinguishability of 3-metrics which differ

only by a coordinate transformation [7]. Nevertheless this divergence is of no essence here, since it

cancels out between the numerator and the denominator.

33



On the lattice the above average translates into

〈O(l2)〉 ≡ 〈Ψ|O|Ψ〉〈Ψ|Ψ〉 =

∫

dµ[l2] · O(l2) · |Ψ[l2] |2
∫

dµ[l2] · |Ψ[l2] |2 , (137)

where dµ[l2] is the Regge-Wheeler lattice transcription of the DeWitt functional measure [7] in

terms of edge length variables, here denoted collectively by l2. The latter includes an integration

over all squared edge lengths, constrained by the triangle inequalities and their higher dimensional

analogs [30]. Again, because of the continuous local diffeomorphism invariance of the lattice theory,

the individual inner products shown above will contain an infinte redundancy due to the geometrical

indinstinguishability of 3-metrics which differ only by a lattice coordinate transformation. And,

again, this divergence will be of no essence here, as it is expected to cancel between numerator and

denominator [22].

It seems clear then that, in general, the full functional measure cannot be decomposed into a

simple product of integrations over V and R. It follows that the averages listed above are in general

still highly non-trivial to evaluate. In fact, quantum averages can be written again quite generally

in terms of an effective (Euclidean) three-dimensional action

〈Ψ|Õ(g)|Ψ〉 = N
∫

dµ[g] Õ(gij) exp {−Seff [g]} , (138)

with Seff [g] ≡ − ln |Ψ[gij ]|2 and N a normalization constant. The operator Õ(g) itself can be local,

or nonlocal as in the case of correlations such as the gravitational Wilson loop [31]. Note that the

statistical weights have zeros corresponding to the nodes of the wave function Ψ, so that Seff is

infinite there. 6

Nevertheless it will make sense here to consider a semi-classical expansion for the 3 + 1-

dimensional theory, where one simply focuses on the clearly identifiable stationary points (maxima)

of the probability distribution |ψ|, obtained by squaring the solution in Eqs. (128) or (135). In the

following we will therefore focus entirely on the properties of the probability distribution |ψ(V,R)|2

obtained from Eq. (128) or (135). For illustrative purpose, the reader is referred to Figures 3,4 and

5 below.

As discussed previously, the asymptotic expansion for the wave function at large volumes implies

the existence of a phase transition at some G = Gc [see for example Eqs. (118) and (119)]. In

addition, the explicit solution in Eq. (135) allows a more precise non-perturbative characterization

6 In practical terms, the averages in Eqs. (136) and (137) are difficult to evaluate analytically, even once the
complete wave function is known explicitly, due to the non-trivial nature of the gravitational functional measure; in
the most general case these averages will have to be evaluated numerically. The presence of infinitely many zeros in
the statistical weights complicates this issue considerably, from a numerical point of view.
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of the two phases. In view of the non-trivial and generally complex arguments of both the gamma

function and the confluent hypergeometric function, the analytic properties of the wave function,

and therefore of the probability distribution, are quite rich in features, at least for the more general

and physically relevant case of non-zero curvature.

One first notes that for strong enough coupling g the distribution in curvature is fairly flat

around R = 0, giving rise to large fluctuation in the latter (see Figure 3). On the other hand, for

weak enough coupling g the probability distribution in curvature is such that values around R = 0

are almost excluded, since they are associated with a very small probability. Furthermore, unless

the volume V is very small, the probability distribution is also generally markedly larger towards

positive curvatures (see Figure 4).

In order to explore specifically the curvature (R) dependence of the probability distribution, it

would be desirable to factor out or remove the dependence of the wave function ψ(V,R) on the total

volume V . To achieve this, one can employ a mean-field-type prescription, and replace the total

volume V by its average 〈V 〉. After all, the probability distribution in the volume is well behaved

at large G [see Sec. (6)], and does not exhibit any marked change in behavior for intermediate

G [as can be inferred, for example, from the asymptotic form of the wave function in Eq. (115)].

Consequently we will now make the replacement in ψ(V,R)

V −→ 〈 V 〉 ≡ N3 〈 Vσ 〉 = 0.2643
G√
λ

= 0.3738 g , (139)

obtained by inserting the result of Eq. (64). This replacement then makes it possible to plot the

wave function of Eq. (135) squared as a function of the coupling g and the total curvature R only

(in the following we use again N3 = 10 for illustrative purposes); see Figure 5. One then notes

that for strong enough gravitational coupling g =
√
G the probability distribution is again fairly

flat around R = 0, giving rise to large fluctuations in the curvature. On the other hand, for weak

enough coupling g one observes that curvatures close to zero have near vanishing probability. The

distributions shown suggest therefore a clearly pathological ground state for weak enough coupling

g < gc [or G < Gc, see Eq. (119)], with no sensible four-dimensional continuum limit.

At this point some preliminary conclusions, based on the behavior of the wave function discussed

previously in Sec. (7) and the shape shown in Figures 3,4 and 5, are as follows. For large enough

G > Gc, but nevertheless close to the critical point, the flatness in the curvature probability

distribution implies that different curvature scales are all equally important. The corresponding

gravitational correlation length is finite in this region as long as G > Gc, and expected to diverge

at the critical point, thus presumably signaling the presence of a massless excitation at Gc [see

35



the argument after Eq. (121)]. On the other hand for weak enough coupling, G < Gc we observe

that the probability distribution appears to change dramatically. The main evidence for this is the

shape of the approximate wave function given in Eq. (128), which points to a vanishing relative

probability for metric field configurations for which the curvature is small R ≈ 0. This would

suggest that the weak coupling phase, for which G < Gc, has no continuum limit in terms of

manifolds that appear smooth, at least at large scales. The geometric character of the manifold

is then inevitably dominated by non-universal short-distance lattice artifacts; no sensible scaling

limit exists in this phase.

If this is indeed the case, then the results obtained in the present, Lorentzian, 3 + 1 theory

generally agree with what is found in the Euclidean case, where the weak coupling phase was found

to be pathological as well [20, 21] (it bears more resemblance to a branched polymer, and has

thus no sensible interpretation in terms of smooth four-dimensional manifolds). In either case,

the only physically acceptable phase, leading to smooth manifolds at large distances, seems to be

the one with G > Gc. It is a simple consequence of renormalization group arguments that in this

phase the gravitational coupling at large distances can only flow to larger values, implying therefore

gravitational anti-screening as the only physically possible outcome.
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Figure 3: Wave function of Eq. (135) squared, |ψ(V,R)|2, plotted as a function of the total volume
V and the total curvature R, for coupling g =

√
G = 1 and N3 = 10. One notes that for strong

enough coupling g the distribution in curvatures is fairly flat around R = 0, giving rise to large
fluctuations in the curvature. These become more pronounced as one approaches the critical point
at gc.

9 Summary and Conclusions

In this work we have discussed the nature of gravitational wave functions that arise as solutions of

the lattice Wheeler-DeWitt equation for finite simplicial lattices. The main results of the paper were

given in Eqs. (124), (128) and (135). While there are many aspects of this problem that still remain

open and unexplored, we have nevertheless shown that the very structure of the wave function is

such that it allows one to draw a number of useful and perhaps physically relevant conclusions

about ground state properties of pure quantum gravity in 3 + 1 dimensions. These include the

observation that the theory exhibits a phase transition at some critical value of Newton’s constant

Gc [given in Eq. (119)].

The structure of the wave function further suggests that the weak coupling phase, for which the

coupling G < Gc, is pathological and cannot be interpreted in terms of smooth manifolds at any

distance scale. In view of these results it is therefore not entirely surprising that calculations that

rely on the weak field, semiclassical or small G expansion run into serious trouble and uncontrollable

divergences very early on. Such an expansion does not seem to exist if the non-perturbative lattice
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Figure 4: Same wave function of Eq. (135) squared, |ψ(V,R)|2, plotted as a function of the total
volume V and the total curvature R, but now for weaker coupling g =

√
G = 0.5, and still N3 = 10.

For weak enough coupling g the distribution in curvature is such that values around R = 0 are
almost completely excluded, as these are associated with a very small probability. Note that, unless
the total volume V is very small, the probability distribution is markedly larger towards positive
curvatures.
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Figure 5: Curvature distribution in R as a function of the coupling g =
√
G. The strong coupling

relationship between the average volume and the coupling g [Eq. (64)] allows one to plot the wave
function of Eq. (135) squared as a function of the coupling g and the total curvature R only (we
use again here N3 = 10 for illustrative purposes). Then, for strong enough coupling g =

√
G, the

probability distribution |ψ|2 is again fairly flat around R = 0, giving rise to large fluctuations in the
curvature. The latter are interpreted here as signaling the presence of a massless particle. On the
other hand, for weak enough coupling g one notices that curvatures close to R = 0 have essentially
vanishing probability. The distribution shown here points therefore toward a pathological ground
state for weak enough coupling g < gc [given in Eq. (119)], with no sensible continuum limit.
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results presented here are taken seriously. The correct physical vacuum apparently cannot in any

way be obtained as a small perturbation of flat, or near-flat, spacetime. On the other hand the

strong coupling phase does not exhibit any such pathology, and is therefore a good candidate for a

physically acceptable ground state for pure quantum gravity. It is a simple consequence of standard

renormalization group arguments that in this phase Newton’s constant grows with distance, and

thus this phase exhibits gravitational anti-screening.

In the Euclidean lattice theory of gravity in four dimensions it was also found early on [20, 21]

[see [32] for more recent numerical investigations of 4d lattice gravity, including the determination

of the critical point and scaling exponents] that the weak coupling (or gravitational screening) phase

is pathological with no sensible continuum limit, corresponding to a degenerate lower dimensional

branched polymer. The calculations presented here can be regarded, therefore, as consistent with

the conclusions reached earlier from the Euclidean lattice framework. No new surprises have arisen

so far when considering the Lorentzian 3 + 1 theory, using an entirely different set of tools.

It is also worthwhile at this point to compare with other attempts at determining the phase

structure of quantum gravity in four dimensions. Besides the Regge lattice approach, there have

been other attempts at searching for a non-trivial RG UV fixed point in four dimensions using

continuum methods. In one popular field theoretic approach one develops a perturbative diagram-

matic 2+ ǫ continuum expansion using the background field method to two loop order [33, 34, 35].

This then leads to a non-trivial UV fixed point Gc = O(ǫ) close to two dimensions. Two phases

emerge, one implying again gravitational screening, and the other anti-screening. In the truncated

renormalization group calculations for gravity in four dimensions [39, 40], where one retains the

cosmological and Einstein-Hilbert terms, and possibly later some higher derivative terms, one also

finds evidence for a non-trivial UV fixed point scenario. As in the case of gauge theories, both of

these methods are ultimately based on renormalization group flows and the weak field expansion,

and are thefore unable to characterize the non-perturbative features of either one of the two ground

states. Indeed, within the framework of the weak field expansion inherent in these methods, only

the weak coupling phase has a chance to start with. It is nevertheless encouraging that such widely

different methods tend to point in the same direction, namely a non-trivial phase structure for

gravity in four dimensions.

Let us add here a few more comments, aimed at placing the present work in the context of

previous similar calculations for the same theory, namely the treatment of quantum gravity via

the continuum Wheeler-DeWitt equation. A number of attempts have been made over the years

to obtain an estimate for the gravitational wave functional Ψ[g] in the absence of sources. These
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generally have relied on the weak field expansion in the continuum, as originally done in [10, 12].

Thus, for example, one finds in 3 + 1 dimensions

Ψ[hTT ] = N exp

{

−1
4

∫

d3k k hTT
ik (k) hTT∗

ik (k)

}

, (140)

where hTT
ik (k) is the Fourier amplitude of transverse-traceless modes for the linearized gravitational

field in four dimensions. The above wave functional describes a collection of harmonic oscillator

wave functions, one for each of the infinitely many physical modes of the linearized gravitational

field.

The above wave functional describes a collection of harmonic oscillator wave functions, one for

each of the infinitely many physical modes of the linearized gravitational field. As in the case of

the electromagnetic field, the ground state wave functional can be expressed equivalently in terms

of first derivatives of the field potentials (the corresponding B field for gravity), without having to

mention Fourier amplitudes, as

Ψ[hTT ] = N exp

{

− 1

8π2

∫

d3x

∫

d3y
hTT
ik,l(x) h

TT∗
ik,l (y)

|x − y|2

}

. (141)

It is understood that these expressions represent only the leading term in an expansion involving

infinitely many terms in the metric fluctuation hij. In an expansion about flat space, the cosmolog-

ical constant term does not appear either. Since Eq. (140) is just the leading term in the weak field

expansion, no issue of perturbative renormalizability appears to this order. Nevertheless, higher

orders are expected to bring in rather serious ultraviolet divergences which cannot be reabsorbed

into a simple redefinition of the fundamental couplings G and λ. Then the results presented in

this paper [namely Eqs. (124), (128) and (135)] can be viewed therefore as an attempt to extend

non-perturbatively the result of Eq. (140) beyond the inherent limitations of the weak field limit.
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