English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Solvent-Free Catalytic Depolymerization of Cellulose to Water-Soluble Oligosaccharides

MPS-Authors
/persons/resource/persons58815

Meine,  Niklas
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58928

Rinaldi,  Roberto
Research Group Rinaldi, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58985

Schüth,  Ferdi
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Meine, N., Rinaldi, R., & Schüth, F. (2012). Solvent-Free Catalytic Depolymerization of Cellulose to Water-Soluble Oligosaccharides. ChemSusChem, 5(8), 1449-1454. doi:10.1002/cssc.201100770.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000E-768A-3
Abstract
The use of cellulose is hampered by difficulties with breaking up the biopolymer into soluble products. Herein, we show that the impregnation of cellulosic substrates with catalytic amounts of a strong acid (e.g., H2SO4, HCl) is a highly effective strategy for minimizing the contact problem commonly experienced in mechanically assisted, solid-state reactions. Milling the acid-impregnated cellulose fully converts the substrate into water-soluble oligosaccharides within 2 h. In aqueous solution, soluble products are easily hydrolyzed at 130 degrees C in 1 h, leading to 91% conversion of the glucan fraction of a-cellulose into glucose, and 96% of the xylans into xylose. Minor products are glucose dimers (8%), 5-hydroxymethylfurfural (1%) and furfural (4%). Milling practical feedstocks (e.g., wood, sugarcane bagasse, and switchgrass) also results to water-soluble products (oligosaccharides and lignin fragments). The integrated approach (solid-state depolymerization in combination with liquid-phase hydrolysis) could well hold the key to a highly efficient entry process in biorefinery schemes