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Effect of retardation on the dynamics of entanglement between atoms
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The role of retardation in the entanglement dynamics of two distant atoms interacting with a multi-mode field
of a ring cavity is discussed. The retardation is associatedwith a finite time required for light to travel between
the atoms located at a finite distance and between the atoms and the cavity boundaries. We explore features in
the concurrence indicative of retardation and show how these features evolve depending on the initial state of the
system, distance between the atoms and the number of modes towhich the atoms are coupled. In particular, we
consider the short-time and the long time dynamics for both the multi- and sub-wavelength distances between the
atoms. It is found that the retardation effects can qualitatively modify the entanglement dynamics of the atoms
not only at multi- but also at sub-wavelength distances. We follow the temporal evolution of the concurrence
and find that at short times of the evolution the retardation induces periodic sudden changes of entanglement.
To analyze where the entanglement lies in the space spanned by the state vectors of the system, we introduce
the collective Dicke states of the atomic system that explicitly account for the sudden changes as a periodic
excitation of the atomic system to the maximally entangled symmetric state. At long times, the retardation gives
rise to periodic beats in the concurrence that resemble the phenomenon of collapses and revivals in the Jaynes-
Cummings model. In addition, we identify parameter values and initial conditions at which the atoms remain
separable or are entangled without retardation during the entire evolution time, but exhibit the phenomena of
sudden birth and sudden death of entanglement when the retardation is included.

PACS numbers: 42.65.Sf, 42.50.Nm, 42.60.Da, 04.80.Nn

I. INTRODUCTION

Entanglement is one of the most familiar phenomena re-
sulting from the presence of non classical correlations be-
tween quantum systems [1, 2]. A large number of studies have
demonstrated that entanglement can be created in variety of
systems ranging from simple systems such as single photons
or atoms to more complex systems such as spin chains or bi-
ological samples. The presence of an entanglement between
systems has been tested experimentally in various optical ex-
periments. For example, slowly moving atoms can be entan-
gled while passing through a cavity [3], and the entanglement
between the atoms can be detected by probing the atomic state
of the atoms after leaving the cavity [4, 5]. Another common
setup is the entanglement of photons obtained from a down-
conversion process [6]. In this case, the entanglement between
the photons can be verified, e.g., by detecting correlationsbe-
tween their polarizations [7, 8].

Apart from the issue of creating entanglement, also a de-
tailed analysis of the dynamics of an entangled system is
of importance. One motivation for this is the possibility
for transferring entanglement between distant quantum sys-
tems [9]. Such transfers have become especially interesting
since a number of experiments have succeeded in the creation
of quantum gates necessary for the implementation of quan-
tum networks [10]. However, if one examines the dynamics
of an entangled system coupled to a network of quantum sys-
tems, it becomes apparent that the unavoidable coupling of
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the systems to the external environment can lead to the ir-
reversible loss of the transferred entanglement. In this con-
nection, one would expect that the coupling of the systems
to local environments, with a Markovian assumption of the
process, could lead to an exponential decay of the entangle-
ment from its initial value. However, there are some entan-
gled states, particularly those involving at least two excita-
tions, that may decay in an essentially non-exponential man-
ner resulting in the disappearance of the entanglement in a
finite time. This effect, known as sudden death of entangle-
ment (SDE), has been studied in a numerous number of pa-
pers [2, 11–15], and has recently been observed in experi-
ments involving photons [16, 17] and atoms [18]. Further-
more, theoretical treatment of the coupling of sub-systemsto
a common (non-local) environment has predicted that the al-
ready destroyed entanglement could suddenly revive [19–23]
or initially separable systems could become entangled after a
finite time, the phenomenon known as sudden birth of entan-
glement (SBE).

From experimental point of view, in particular the study
of the generation of entanglement in systems confined within
optical or microwave cavities [4, 5, 24–26] is of importance.
Cavities provide a well-defined mode spectrum and a rela-
tively loss-free environment such that the atom-field interac-
tions can have anomalously large coupling strengths, leading
to reversible, non-Markovian type dynamics of the system.
As a consequence, the already dead entanglement can revive
even if in the equivalent free-space situation no revival ispre-
dicted [11, 12, 23, 27–33]. However, calculations based on
deriving the master equation for the reduced density operator
of two atoms, both placed inside a cavity, frequently assume
a large distance between the atoms such that there is no direct
interaction between them. At the same moment the treatments
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assume that each atom influences the other instantaneously.
For this, there is no time delay or equivalently no phase dif-
ference between the oscillating atomic dipole moments result-
ing in an effective coupling between the atoms independent of
their distance. It turns out that these non-retarded modelsto
physical systems are suitable if the atoms interact with a sin-
gle cavity mode. A more interesting parameter regime arises
if the atom couples to a large number of cavity modes. In this
case, retardation effects become important [34–37]. These
effects are associated with a finite time required for light to
travel, e.g., from the atom to the boundary of the cavity and
back to the atom after being reflected from the cavity mirror.
This leads to the interference between instantaneously emit-
ted photon and the retarded waves that are reflected from the
cavity walls.

In an early study Milonni and Knight [34, 35] discussed
the effect of the retardation on the collective behavior of two
atoms. They demonstrated that that retardation effects in the
interaction between two atoms in free space become impor-
tant for distances larger than the half-wavelength of the field.
Recent studies of the interaction of atoms with multi-mode
cavities have predicted strong non-Markovian and retarda-
tion effects in the population dynamics [36, 37]. The multi-
mode cavity field can be treated as a small environment to the
atoms [38]. This leads to a spatial modulation of the field am-
plitude which significantly alters the nature of the interaction
between the atoms and the field.

While most of the studies on SDE and SBE assumed the
Markovian approximation such that a backaction of the envi-
ronment on the atoms is effectively excluded, recently, how-
ever, also the non-Markovian case has received considerable
attention [11, 12, 23, 27–33]. In particular those explicitly tak-
ing into account the distance between the particles are of rel-
evance [39–41]. In these works it was shown that for certain
initial states, the distance between the qubits can qualitatively
change the entanglement dynamics. For example, depending
on the distance, SDE and SBE can occur or not. However,
these works made use of a continuum of environmental modes
by integrating over all wave vectors~k. This raises the ques-
tion about the entanglement dynamics of atoms in multi-mode
cavities with a set of discrete field modes, which are known to
exhibit strong non-Markovian and retardation effects in the
population dynamics [37].

In this paper we investigate the effect of retardation on the
generation and dynamics of entanglement between two two-
level atoms located inside a ring cavity. The model studied
requires that we develop a multi-mode theory of the interac-
tion of the atoms with the cavity field. The goal then is to trace
the time evolution of the concurrence in the case of single or
double excitations present in the system. We show that the
quantum nature of the cavity field crucially affects the gen-
eration of entanglement in the system. In the course of the
calculation we observe that the retardation effects do playa
significant role in the creation of entanglement between the
atoms. Certain transient effects such as abrupt kinks in the
time evolution of the populations and the concurrence occur.
The kinks reflect the effects of multiple photon exchange be-
tween the atoms and appear at intervals corresponding to the

multiplets of time required for the photon to travel between
the atoms or to take the round trip in the cavity. The effect
of the retardation on the phenomena of sudden death, revival
and sudden birth of entanglement is also discussed. In partic-
ular, we identify parameters and initial conditions, in which
the atoms remain separable without retardation throughoutthe
entire evolution time, but exhibit sudden birth and death ofen-
tanglement with retardation, and vice versa. Both, the short-
time and the long time dynamics are analyzed, and we also
study time-averaged concurrences. We also study the distance
dependence on two scales: First, in integer multiples of the
wavelength, corresponding to different positions in a periodic
potential, and second on a sub-wavelength scale.

We begin in Sec.II by introducing the model and derive
the equations of motion for the probability amplitudes in two
cases of single and double excitations present in the system.
These equations are obtained by considering a multi-mode
rather than a single-mode interaction of the atoms with the
cavity field. Then, in Sec.III C we apply the solutions for the
probability amplitudes to the problem of the time evolution
of the populations and the concurrence. Throughout, we as-
sume that the atoms interact with a finite number of the cavity
modes. The numerical results for various special cases of the
time evolution of the concurrence are illustrated in Sec.IV.
We also present there the qualitative discussion of the short
and long time behaviors of the concurrence. Finally, in Sec.V
we summarize our results.

II. THE MODEL

We consider two identical atoms, located inside a ring cav-
ity at fixed positions~x1 and~x2, with distance|~x2 − ~x1| = x.
The atoms are modeled as two-level systems with excited
state|ei〉 and ground state|gi〉 (i ∈ {1, 2}) separated by en-
ergy ~ωa, as shown in Fig.1. The cavity is considered as
a multi-mode cavity with frequency difference between adja-
cent modes (free spectral range) such that multiple modes are
supported within the atomic resonance line width. The consid-
eration of several rather than a single mode in the interaction

|e〉

|g〉

atom

atom

mirror

ωa

x

L − x

FIG. 1. (Color online) Schematic diagram of the system considered.
Two identical two-level atoms are at fixed positions, distant x from
each other, located inside a one-dimensional ring cavity ofthe round
trip pathL. The internal structure of each atom is shown in the right
inset. The atoms are modeled as two-level systems with the excited
|ei〉 and ground|gi〉 states separated by the transition frequencyωa.
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of the atoms with the cavity field will be found crucial for the
occurrence of retardation in the radiative coupling between
the atoms.

A. Hamiltonian of the system

The Hamiltonian of the atoms interacting with the common
electromagnetic field of the ring cavity can be written as [37]

H = Ha +Hf +Haf , (1)

where

Ha =

2
∑

j=1

~ωaS
+
j S

−
j (2)

is the free Hamiltonian of the atoms,

Hf = ~

∑

µ

ωna
†
µaµ (3)

is the free Hamiltonian of the cavity field, and

Haf = − ~D1 · ~E(~x1)− ~D2 · ~E(~x2) (4)

is the interaction between the atoms and the cavity field, writ-
ten in the electric dipole approximation.

In the Hamiltonian (1), the atoms are represented by the
transition dipole moment operators

~Dj = ~djS
+
j + ~d∗jS

−
j , (5)

whereS+
j = |ej〉〈gj | andS−

j = |gj〉〈ej | are respectively
the dipole raising and lowering operators of the atomj, and
~dj = 〈gj| ~Dj |ej〉 is the dipole matrix element of the atomic
transition.

The cavity field is represented by the creationa†µ and an-
nihilationaµ operators in which the subscriptµ indicates the
particular set of the cavity plane-wave modesµ = {~kn, l} of
the wave numberkn = ωn/c, frequencyωn and polarizationl,
to which the atoms are coupled.

The cavity field at position~x can be given in the plane-wave
mode expansion as

~E(~x) = i
∑

µ

Eµ
(

aµe
i~kn·~xêl −H.c.

)

, (6)

where

Eµ =

√

~ωn

2ǫ0L
, (7)

is the electric field amplitude of thenth mode,ωn = 2πnc/L
is in the frequency of the modes set by the periodic boundary
conditions of the ring cavity, and̂el is the unit polarization
vector of the modeµ.

After substituting Eqs. (5) and (6) into Eq. (4), and retain-
ing only the terms which play a dominant role in the rotat-
ing wave approximation, the interaction Hamiltonian takesthe
form

Haf = i~

2
∑

j=1

∑

µ

[

gµ(~xj)aµS
+
j −H.c.

]

, (8)

where

gµ(~xj) =
Eµ
~

(

~dj · êl
)

ei
~kn·~xj (9)

is the position-dependent Rabi frequency which determines
the strength of the coupling of thejth atom with the modeµ
of the cavity field.

Our objective is to find effects of the retardation in the in-
teraction of the atoms with the multi-mode cavity field on the
evolution of the system. We are in particular interested in the
effect of the retardation on the creation of entanglement be-
tween the atoms. Two cases will be studied, with the system
initially (1) in a single excitation state, and (2) in a double ex-
citation state. Before going into detailed calculations, we first
briefly explain how retardation effects are incorporated inour
calculations.

B. Origin of the retardation

The atom-cavity system exhibits retardation effects if its
dynamics is affected by the finite propagation time of the light.
In our model, two effects need to be distinguished [37]. First,
an atom embedded in a larger cavity initially evolves as in free
space, but after a finite time of orderL/c (and integer multi-
ples thereof) reacts to the presence of the cavity with a sudden
kink in the time evolution. Speaking pictorially, this timeis
required for a photon emitted by the atom to cycle through the
cavity and be reabsorbed by the same atom. This gives rise
to retardation effects which occur already for a single atomin
the cavity. The second effect is due to the interaction of two
atoms in the cavity. Here, the retardation occurs because of
the finite time required for a photon to travel between the two
atoms.

In the following, we provide an intuitive picture how the
distance information required for the two different retardation
effects enters our model. This discussion will be made more
precise in Sec.III A , where we identify the origin of the two
types of retardation in the equations of motion governing the
atom-cavity system.

A typical representation of the interaction of an atom with
a cavity field is illustrated in Fig.2. Evaluating the electric
field operator (6) in the Heisenberg picture to include the time
evolution, we find

~E(~x) = i
∑

µ

Eµ
(

aµe
iϕn(~x,t)êl −H.c.

)

. (10)

The time and space dependence enters via the phases
ϕn(~x, t) = ~kn~x− ωnt = ωn(x/c− t) of the different modes.
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FIG. 2. (Color online) Atoms represented by colored blobs inside the
cavity field.x1 denotes the position of atom 1 which is placed at the
first anti node. (a) Single mode of the cavity field with three different
positions for atom 2. (b) Two additional modes shown in blue and
green are taken into account.

In the last step and throughout this section, we assume a one-
dimensional problem, and thus~kn~x = knx for simplicity.

Let us first discuss a simplified model, the interaction of
the atom with a single mode only, say the central cavity mode
µ = 0, as shown in Fig.2(a). Suppose now that atom1 rep-
resented by a red blob is located at positionx1, whereas atom
2, represented by a blue blob can be located at three differ-
ent positionsx2, x2′ andx2′′ . It is easily verified that ifx is
displaced byδx such thatk0 · δx = 2πn, wheren is an in-
teger, then the phase of the single mode remains unchanged,
ϕ0(x, t) = ϕ0(x + δx, t). This implies that the electric field
operator has the same value at positions differing by an inte-
ger multiple of the cavity wavelength. Hence, the interaction
HamiltonianHaf remains the same if the distance between
the two atoms is changed by an integer multiple of the wave-
length. In this sense, the system dynamics is independent of
the distance, and thus the system itself cannot exhibit effects
of retardation if only a single mode is considered.

It should be noted that the interaction Hamiltonian still de-
pends on the relative distance between the atoms. For atomic
separations|x2 − x1| and|x2′ − x1| that are equal to multi-
ple integer of the wavelength,g0(x1) = g0(x2) = g0(x2′),
since at these separations the Rabi frequencies have the same
value. In other words, the atoms are coupled equally to the
field mode. But for separations between the atoms that do
not satisfy the periodicity condition, such as|x2′′ − x1|, the
atoms experience different amplitudes and phases of the field.
As a consequence, the interactionHaf is modified due to to a
change of the Rabi frequency. However, this variation of the
interaction Hamiltonian with the inter atomic distance in the
single mode field has nothing to do with retardation.

Let us now assume that apart from the central mode, there
are additional cavity modes taking part in the interaction with
the atoms, as illustrated in Fig.2(b). Suppose that at pointx1,
all modes have the same phase (ϕn(x1, t) = ϕ0 for all n),
which we for simplicity assume to be zero. Then, the position
x entering the field operator can be interpreted as the distance
δx = x2 − x1 between the two atoms. Due to their differ-
ent wave numberskn, at pointx2, the modes typically have
different phases, i.e.,ϕn(x2, t) 6= ϕm(x2, t) for n 6= m. In

other words, the modes are shifted or “retarded” with respect
to each other. This means that the atom at positionx2 expe-
riences the field emitted by atom 1 into the different cavity
modes with different relative phases, such that the response of
atom 2 in the limit of large mode number averages out. How-
ever, at specific times, all modes can evolve in phase again.
From the definition ofϕn(x, t), it is clear that this happens at
timesx/c, i.e., exactly the times corresponding to the flight
time of light between the two atoms. At this instance in time,
the cavity modes act in phase onto atom 2, such that a sud-
den response is observed. This is the origin for the retardation
effects of the second type.

In contrast, the retardation effects of the first type are em-
bedded in the quantization of the cavity modes frequency
spectrum. The frequency spacings are such that the phases at
times separated by integer multiples ofL/c are different by an
integer multiple of2π, asωnL/c = 2πn. While at most times
the different modes are out of phase because of the different
free evolution frequencies, at times equal to integer multiples
of L/c all modes are in phase again, and a sudden response of
the atom appears. From this interpretation, it is apparent that
this first type of retardation already occurs for a single atom.

A straightforward combination of both arguments also ex-
plains the retardation of the second type at times(L − x)/c.
Furthermore, in the subsequent evolution of the atoms also
combinations of the different retardation time intervals can
occur, as we will see in the numerical analysis.

Thus, retardation effects are expected to play an important
role in the interaction of atoms as soon as multiple modes with
different wave numbers interact with the atoms. This can also
be related to the Fourier relation of position and momentum
space. The small frequency distribution of a single mode gives
rise to a large distribution or uncertainty in the position.In
contrast, a broad frequency distribution or many modes allow
to precisely determine the position.

III. EXCITATION PROBABILITIES AND CONCURRENCE

We are interested in determining the effect of retardation
on the time evolution of the system initially prepared in sepa-
rable states of single and double excitations. In particular, we
shall discuss the subsequent time-dependent behavior of the
excitation probabilities and the concurrence.

The time evolution of the system is governed by the
Schrödinger equation, which in the interaction picture is
given by

i~
∂|ψ(t)〉
∂t

= Haf |ψ(t)〉. (11)

We will consider two particular classes of initial conditions. In
the first, we assume that att = 0 the system was in a single-
excitation state. In the second class, we assume that initially
two excitations were present in the system. In both cases,
the (single or double) excitation is initially either present in
the atoms or in the cavity, or in a superposition of atoms and
cavity.
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A. The case of single excitation

If we take for the initial state of the system a single-
excitation state, then the time-dependent state vector of two
atoms coupled to a multi-mode field can be written as

|ψ(t)〉 = b1(t)|e1g2{0}µ〉+ b2(t)|g1e2{0}µ〉
+
∑

µ

bµ(t)|g1g2{1}µ〉, (12)

where{1}µ denotes the state of the cavity modes with a single
excitation present in the modeµ and zero occupation numbers
for all the remaining modes.

The time evolution of the state vector is determined by the
Schrödinger equation (11) which transforms it into three cou-
pled equations of motion for the probability amplitudes

ḃj(t) =
∑

µ

gµjbµ(t), j ∈ {1, 2}, (13a)

ḃµ(t) =− i∆µbµ(t)−
2

∑

j=1

g∗µjbj(t), (13b)

where∆µ = ωµ − ωa is the detuning of the cavity mode
frequencyωµ from the atomic transition frequencyωa coin-
ciding with the central cavity mode frequency, and we have
simplified the notationgµi ≡ gµ(~xi).

The formal integration of Eq. (13b) gives

bµ(t) = bµ(0)e
−i∆µt −

2
∑

j=1

g∗µj

∫ t

0

dt′bj(t
′)e−i∆µ(t−t′),

(14)

and when this relation is substituted into Eq. (13a), we find

ḃj(t) =
∑

µ

gµjbµ(0)e
−i∆µt

−
2

∑

j′=1

∫ t

0

dt′
∑

µ

gµjg
∗
µj′bj′(t− t′)e−i∆µt

′

. (15)

At this point, the two types of retardation effects are fully
visible also from the analytical expressions. The first type
leading to retardation effects at times equal to integer multi-
ples of the cavity round trip timeL/c can be understood in
terms of the detunings∆µ. Since the detunings∆µ differ by
integer multiples of2πc/L, the phases∆µt will be multiples
of 2π for all modesµ simultaneously at timest equal to inte-
ger multiples ofL/c. Then, the system response will exhibit
sharp peaks due to the constructive interference of all modes.
At other times, the different phase factors of the various modes
do not add up constructively. This discrete response is inde-
pendent of the coupling between the atoms, and could be ob-
served even if only a single atom is present inside the cavity.

The second type of retardation is due to the interaction be-
tween the atoms, i.e., the second part of Eq. (15). The cou-
pling constantsgµjg∗µj′ together with the detuning phase lead
to phase contributionsi[kµ(x1 − x2) − ωµt] = iωµ[(xj −

x′j)/c − t] for the different modes. Again, constructive inter-
ference is obtained, but in this case at a time correspondingto
the flight timex/c between the two atoms. A similar argument
also explains constructive interference at time(L− x)/c.

Subsequent iterations of the two types of retardation lead to
kinks in the system evolution also at times arising from com-
binations of the two effects. Obviously, constructive interfer-
ence can only lead to sharp change in the system response if
many different frequency components contribute, i.e., if the
system couples to many cavity modes. In the extreme case
of free space,L → ∞, and the first type of retardation can-
not occur at a finite time. But the retardation in the coupling
between the two atoms is still present in the free-space limit,
and must be considered, e.g., in calculating the dipole-dipole
coupling between atoms in free space.

B. The case of double excitation

If initially the system was in a double excitation state, then
the state vector can be written as

|ψ̃(t)〉 = b12(t)|e1e2{0}µ〉+
∑

α

bα1(t)|e1g2{1}α〉

+
∑

α

bα2(t)|g1e2{1}α〉+
∑

α

bαα(t)|g1g2{2}α〉

+
∑

α>β

bαβ(t)|g1g2{1}α{1}β〉, (16)

where{2}α denotes the state of the cavity modes with double
excitation of the modeα and zero occupation numbers for all
the remaining modes.

The Schrödinger equation transforms the state vector (16)
into the following set of coupled equations of motion for the
probability amplitudes

ḃ12(t) =

2
∑

j 6=j′=1

∑

α

gαjbαj′ (t),

ḃαj(t) = − i∆αbαj(t)− g∗αj′b12(t) +
√
2gαjbαα(t)

+
∑

β>α

gβjbβα(t)+
∑

β<α

gβjbαβ(t), (j 6= j′ ∈ {1, 2}),

ḃαβ(t) = − i(∆α+∆β)bαβ(t)−
2

∑

j=1

[

g∗αjbβj(t)+g
∗
βjbαj(t)

]

,

ḃαα(t) = − 2i∆αbαα(t)−
√
2

2
∑

j=1

g∗αjbαj(t). (17)

The case of double excitation is described by a complicated
set of equations of motion. It involves probability amplitudes
of the states with the excitation redistributed over two cavity
modes,bαβ(t), as well as states with the excitation occupying
the same modebαα(t).
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C. Concurrence

We are mainly interested in studying the retardation effects
on the entanglement dynamics between the two atoms that are
coupled to the multi mode vacuum field inside the cavity. The
dynamics of the atoms are determined by the reduced density
matrix ρ that is obtained by tracing the density matrix of the
total system over the field degrees of freedom. We then exploit
concurrence introduced by Wootters [42], which is a widely
accepted measure of entanglement between two qubits, and is
defined by

C = max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4}, (18)

whereλi are the eigenvalues (in descending order) of the Her-
mitian matrixR = ρρ̃ in which ρ̃ is given by

ρ̃ = σy ⊗ σyρ
∗σy ⊗ σy. (19)

andσy is a Pauli matrix. The concurrence ranges between 0
and 1. If the two atoms are maximally entangled, the con-
currence evaluates to unity whereas, if they are completely
disentangled,C = 0.

The usual way is to express the concurrence in the ba-
sis of the product states of the two-atom system, i.e.,|1〉 =
|e1e2〉, |2〉 = |e1g2〉, |3〉 = |g1e2〉, |4〉 = |g1g2〉. In this basis,
the concurrence takes the form [27]

C(t) = 2max
{

0, |ρ23(t)| −
√

ρ44(t)ρ11(t),

|ρ14(t)| −
√

ρ22(t)ρ33(t)
}

. (20)

There are two terms contributing to the concurrence, one
resulting from the presence of the one-photon coherence
|ρ23(t)| and the other from the two-photon coherence|ρ14(t)|.
It is interesting that these two contributions complement each
other. In the single excitation case,ρ11 = 0, ρ14 = 0, and
then the expression for the concurrence (denoted in this case
by C) reduces to

C(t) = 2max{0, |ρ23(t)|} = 2max{0, |b∗1(t) b2(t)|}. (21)

It shows that in the single excitation case it is sufficient for
|ρ23(t)| to be different from zero to create entanglement be-
tween the atoms. In this sense, entanglement is equivalent to
atomic coherence in this case.

The situation is quite different when two excitations are
present in the system. But surprisingly, tracing the density
matrix of the system over the field degrees of freedom re-
sults in an expression for the concurrence that does not involve
the two-photon coherenceρ14(t). To see this more explicitly,
we calculate the density matrixρT associated with the two-

excitation state Eq. (16), and find

ρT = |b12(t)|2|e1e2{0}µ〉〈e1e2{0}µ|
+
∑

α

|bα1(t)|2|e1g2{1}α〉〈e1g2{1}α|

+
∑

α

bα1(t)b
∗
α2(t)|e1g2{1}α〉〈g1e2{1}α|

+
∑

α

bα2(t)b
∗
α1(t)|g1e2{1}α〉〈e1g2{1}α|

+
∑

α

|bα2(t)|2|g1e2{1}α〉〈g1e2{1}α|

+
∑

α>β

|bαβ(t)|2|g1g2{1}α{1}β〉〈g1g2{1}α{1}β|

+
∑

α

|bαα(t)|2|g1g2{2}α〉〈g1g2{2}α|+ND, (22)

whereND stands for the sum of all off-diagonal terms in the
field modes which vanish in tracing over the cavity modes.
Then, by taking trace of the density matrixρT over the cavity
modes, we arrive at the following reduced density matrix of
the two atoms

ρ = |b(t)|2|1〉〈1|+
∑

α

|bα1(t)|2 |2〉〈2|+
∑

α

|bα2(t)|2 |3〉〈3|

+
∑

α

bα1(t)b
∗
α2(t) |2〉〈3|+

∑

α

bα2(t)b
∗
α1(t) |3〉〈2|

+





∑

α>β

|bα,β(t)|2 +
∑

α

|bα,α(t)|2


 |4〉〈4|. (23)

It is clear that tracing out the field modes results in the density
matrix withρ14 = 0. In this case, the concurrence denoted by
C takes the form

C(t) = 2max
{

0, |ρ23(t)| −
√

ρ44(t)ρ11(t)
}

, (24)

which in terms of the probability amplitudes can be written as

C(t) = max{0, C1(t)}, (25)

where

C1(t) = 2
∑

α

|b∗α2(t)bα1(t)|

− |b(t)|
√

∑

α>β

|bα,β(t)|2 +
∑

α

|bα,α(t)|2. (26)

Similar to the single excitation case, the concurrence depends
on the coherenceρ23(t). However, in the presence of two
excitations in the system, the condition for a nonzero concur-
rence of|ρ23(t)| 6= 0 is a necessary one, it is not in general
sufficient one, since there is a subtle condition of the coher-
ence to be larger than a threshold value of

√

ρ44(t)ρ11(t).
Thus, the presence of the two excitations in the system intro-
duces a threshold for the coherence above which the entangle-
ment between the atoms could occur. Needless to say, the first
term in Eq. (26), |b∗α2(t)bα1(t)|, must be different from zero



7

and exceed the second term numerically for the concurrence
to be positive.

We should point out here that the involvement of only the
one-photon coherence in the concurrence of the double excita-
tion case is a direct consequence of the quantum nature of the
field. The definite total excitation number entangles the exci-
tation number of the atoms uniquely to the excitation number
of the cavity. If the cavity is projected into particular excita-
tion number channels with classical probabilities not allowing
for quantum superpositions in tracing over the cavity modes,
due to this entanglement, also the atoms are projected into the
corresponding excitation number subspaces. This rules out
coherence or even entanglement between atomic states of dif-
ferent excitation number. This situation was treated by Yonac
et al. [43, 44], who showed that in the case of a two mode
cavity,α ∈ {1, 2}, no coherence and equivalently no entan-
glement can be found in a system determined by the double
excitation state (16).

The coherence could be present if one includes an auxiliary
state|g1g2{0}α{0}β〉, the ground state with no excitation, to
the state (16). Then, the total excitation number would not be
fixed, and there would be no definite entanglement between
the atom and cavity excitation numbers. Alternatively, if the
photon number states in Eq. (22) were replaced by a classi-
cal field amplitude, for example, by a coherent state|α〉, one
could then arrive at the concurrence involving the two-photon
coherenceρ14. Thus, the condition for entanglement based
on ρ14 would become relevant. It is easy to see, replacing in
Eq. (22) the photon number states|{n}µ〉 by the coherent state
|α〉, we obtain a state vector

|ψ̂(t)〉 = b12(t)|e1e2α〉+
∑

α

bα1(t)|e1g2α〉

+
∑

α

bα2(t)|g1e2α〉+
∑

α

bαα(t)|g1g2α〉. (27)

Usingψ̂(t) from Eq. (27), one can calculate the density matrix
ρcl. Now

ρcl14 =〈1|ρcl|4〉
=b∗12(t)bαα(t)〈e1e2α|ψ̂(t)〉〈ψ̂(t)|g1g2α〉
=|b∗12(t)|2|bαα(t)|2. (28)

It is seen that the resulting density matrix element containing
contributions from the two-photon coherences no more van-
ishes. This is consistent with our interpretation, as a coherent
state has a distribution of photon numbers rather than a well-
defined occupation as a Fock state.

IV. RESULTS AND DISCUSSION

Having discussed the general features of the concurrence,
we now turn to analyze the transient behavior of the popula-
tions and concurrence for initial conditions in which the atoms
are prepared in separable single or double excitation states
and for an initial condition in which the atoms are initially
in a partially or a maximally entangled state. We shall allow

for an arbitrary atomic spacing and length of the cavity, but
we limit the discussion to situations in which the central cav-
ity mode is on resonance with the transition frequency of the
atoms, i.e.,ω0 = ωa. Also, since the coupling of the atoms to
the cavity modes decreases with increasing detuning, we take
into account in the numerical calculation a finite number of
cavity modes distributed aboutω0 with a frequency range on
the order of several atomic line widths. The required number
of modes depends on the cavity lengthL, as the distance be-
tween the adjacent cavity modes decreases with increasingL.
Thus, the number of the cavity modes to which the atoms can
be coupled increases with an increasingL.

Equations (21) and (24) for the concurrence are functions
of several parameters: the atomic spacingx, the detuning of
the cavity modes from the atomic transition frequency∆µ, the
number of the cavity modesN to which the atoms are cou-
pled, the coupling strength of the atoms to the cavity modes
gµi, the cavity lengthL, and the timet. For fixedN andL, one
can obtain time evolution of the concurrence by monitoring
the populations of the atomic states and coherence between
the atoms as a function oft. Alternatively, one can monitor
the time evolution of the populations of the collective states
of the two-atom system. In the following, we give illustrative
figures of both on a short time and a long time behavior of the
concurrence.

A. Effects of retardation on the population dynamics

Before discussing the effects of retardation on the transient
properties of the concurrence, it is important to understand the
transient behavior of the populations of the single-excitation
case. Transient excitation probabilities are first studiedfor
arbitrary initial conditions for the atomic and the collective
states of the system. The effects of retardation on the popu-
lation dynamics were studied by Goldstein and Meystre [37].
However, these calculations were not specifically orientedto-
wards studying the transient properties of the collective states
of the system which, as we shall see below, are very useful for
the interpretation of the entanglement dynamics of the atoms.

To calculate the population dynamics, we solve numeri-
cally the set of coupled equations for the probability ampli-
tudes, Eqs. (13a)-(13b), assuming that the atoms were pre-
pared at timet = 0 in a product state

|ψ(0)〉 = |e1〉 ⊗ |g2〉 ⊗ |{0}µ〉 ≡ |e1g2{0}µ〉, (29)

where|{0}µ〉 denotes the product state vector of the cavity
modes with zero occupation numbers for all the modesµ.
The initial condition (29) corresponds tob1(0) = 1 and
b2(0) = bµ(0) = 0. We then compute the time evolution of
the excitation probabilities|b1(t)|2 and|b2(t)|2 of the atoms.

Figure3 shows the time evolution of|b1(t)|2 and|b2(t)|2
for two different atomic spacings. The frame (a) illustrates the
case when the atoms are very close to each other, with spacing
x ≈ 0. We see that the initially excited atom decays almost
exponentially in time, corresponding to the free space regime
defined in [37]. A part of the excitation is transferred directly
to the second atom. There is no delay in the excitation of the
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FIG. 3. (Color online) The time variation of the probabilities|b1(t)|2
(solid green line) and|b2(t)|2 (dashed blue line) forL = 3.48 ×
103λa, N = 99, ωa = 1.11 × 104Ω0, whereΩ0 is the vacuum
Rabi frequency of the central resonant mode, and atomic spacings:
(a)x = 0 and (b)x = 999λa. The sudden jumps of the probabilities
due to retardation are marked by red circles. The first atom islocated
atx1 = 1λa. Note that in the case (b), the atom“2” starts to become
excited after a finite time,t = x/c, that is due to the retardation.

second atom, as the atomic spacing is negligibly small. A no-
table feature of the temporal evolution is that at the particular
times that correspond tonL/c, wheren is an integer, a sudden
change (jump) in the probabilities occurs. These are just the
times when the radiation field emitted into the cavity modes
returns to the atoms. It is interesting that the returning radia-
tion does not simultaneously excite both atoms, as one could
expect. It rather stimulates a sudden transfer of the population
from atom1 to atom2.

The sudden jumps continue in time. However, the peri-
odic maxima of the populations are reduced in magnitude ast
increases. This result is consistent with energy-time uncer-
tainty arguments and is readily understood if it is recalled
that the excitation wave packet spreads during the evolution,
that the excitation becomes less localized as time progresses.
An alternative explanation is that there are more and more
possible evolution pathways for the excitation to open up as
time progresses that are possibly delayed with respect to each
other, e.g., due to temporary re-absorptions by the atoms,
and then interfere resulting in increased distortions of|b1(t)|2
and|b2(t)|2.

Frame (b) of Fig.3 illustrates the time evolution of the
probabilities for a large atomic spacing,x = 999λa. There are
now two pathways for the excitation to be transferred between

the atoms,x andL − x. At very early times,t ≪ L/c, the
initially excited atom1 decays with the rate equal to the free
space decay rate. The atom2 remains in its ground state in-
dicating that initially the excitation is exclusively transferred
to the cavity, which essentially appears as open space. The
atom2 remains in its ground state until the timet = x/c,
at which the population of the atom2 abruptly starts to build
up. This is the time required for the excitation emitted by the
atom1 to reach the atom2 through the shorter pathwayx.
The population of the atom2 changes abruptly again at time
t = (L − x)/c. Note that the abrupt buildup of the excitation
of the atom2 is not accompanied by an abrupt de-excitation
of the atom1. There are no sudden changes of the population
of the atom1 until the timet = L/c. This is the time the exci-
tation returns for the first time to the atom1. In fact, neither of
the sudden changes of the population of one of the atoms are
accompanied by sudden changes of the other. This feature is
linked to the fact that the atoms are at different positions and
we have takenx < L/2.

Of particular interest is the situation when the two atoms
are separated by a distance equal to half of the cavity length.
While the sudden kinks in the time evolution of the probabil-
ity |b1(t)|2 are still observed at integer multiples of timeL/c,
the number of kinks in evolution of|b2(t)|2 reduce to one half
as the two paths available for radiation to travel from atom
1 to atom2 are now of equal length. Therefore, in the time
behavior of|b2(t)|2, kinks are witnessed only at odd integer
multiples ofL/(2c). Another interesting observation is that
there are no sudden jumps of the populations at times2nx/c
and2n(L − x)/c, wheren is an integer, indicating that the
excitation wave packets do not appear to reverse their propa-
gation directions during the interaction with the other atom.

A physical understanding of these behaviors can be ob-
tained if we consider the atomic dynamics in terms of the col-
lective Dicke states of the two-atom system

|g〉 = |g1〉 ⊗ |g2〉,

|s〉 = 1√
2
(|e1〉 ⊗ |g2〉+ |g1〉 ⊗ |e2〉) ,

|a〉 = 1√
2
(|e1〉 ⊗ |g2〉 − |g1〉 ⊗ |e2〉) . (30)

The advantage of expressing the system in terms of the Dicke
state basis is that we can immediately see in which collective
state the excitation evolves in time.

Using Eqs. (12) and (30), we find that the excitation prob-
abilities of the collective symmetric|s〉 and the antisymmet-
ric |a〉 states are

|bs(t)|2 =
1

2

(

|b1(t)|2 + |b2(t)|2 + 2Re [b1(t)b
∗
2(t)]

)

,

|ba(t)|2 =
1

2

(

|b1(t)|2 + |b2(t)|2 − 2Re [b1(t)b
∗
2(t)]

)

. (31)

Figure4 shows how the probabilities|bs(t)|2 and|ba(t)|2
evolve in time. Att = 0, the collective states|s〉 and|a〉 are
populated with the same probabilities,|bs(t)|2 = |ba(t)|2 =
1/2. The population of the symmetric state decays exponen-
tially in time whereas the population of the antisymmetric



9

state remains constant in time. In this figure, the two atoms
couple to the cavity modes symmetrically asx = 0. There-
fore, the anti-symmetric excitation state effectively decouples
from the cavity, reminiscent of electromagnetically induced
transparency or decoherence free sub-spaces. A similar effect
can be achieved if the two atoms couple anti-symmetrically
to the cavity, in which case the symmetric excitation state re-
mains constant in time. In contrast, the symmetric state in
Fig. 4 becomes re-excited periodically at the time instants
given bynL/c, wheren is an integer. At these times, the
emitted radiation field returns to the atoms chronologically.
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FIG. 4. (Color online) Variation of the excitation probabilities
|bs(t)|2 (solid green line) and|ba(t)|2 (dashed blue line) with time
for the same parameters as in Fig.3(a).

We see that the simultaneous sudden changes of both prob-
abilities at the particular discrete times can be explainedas
an excitation of the collective atomic system from the ground
state to the symmetric state. In other words, the jumps repre-
sent a collective excitation of the atomic system by the return-
ing radiation field.

It is interesting to note that shortly before the sudden re-
excitation times, the state of the atomic system is

|ψ(t = nL/c)〉 = 1√
2
(|g〉+ |a〉) ,

=
1√
2
|gg〉+ 1

2
(|eg〉 − |ge〉), (32)

which shows that the system is in an equal superposition of
the ground|g〉 and the antisymmetric|a〉 states of the two-
atom system and explains why in Fig.3(a) |b1(nL/c)|2 =
|b2(nL/c)|2 = 1/4.

Figure5 shows the time evolution of the populations of the
symmetric and antisymmetric states for the same situation as
in Fig. 3(b). The initial populations decay exponentially with
the same rates untilt = x/c, at which the sudden jump of the
populations occurs. A notable difference between the time
evolution of |bs(t)|2 and |ba(t)|2, and that of the individual
atoms|b1(t)|2 and|b2(t)|2, shown in Fig.3(b), is the occur-
rence of the sudden jumps at the same discrete times. Notice
that the most dramatic change in the populations occurs at the
time t = L/c, i.e. when the excitation returns to the initially
excited atom1.
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FIG. 5. (Color online) Variation of the probabilities|bs(t)|2 (solid
green line) and|ba(t)|2 (dashed blue line) with time for the same
situation as in Fig.3(b).

B. Effects of retardation on entanglement - single excitation
case

We now turn to the discussion of the effects of retardation
on the entanglement between the atoms. We first focus on
short time behavior of the concurrence with two sets of ini-
tial conditions in which atoms are prepared in the separable
state (29) and the maximally entangled state

|ψ(0)〉 = 1√
2
(|e1〉 ⊗ |g2〉+ |g1〉 ⊗ |e2〉)⊗ |{0}µ〉. (33)

The concurrence in the single excitation case can be deter-
mined from Eq. (21) in which the probability amplitudes are
found solving the set of two coupled equations (15).

We graph the effect of the retardation on the transient
buildup of entanglement between the atoms from the initial
separable state (29) for atomic spacingsx = 0 and x =
999λa, respectively, in Figs.6(a) and6(b). We can see how
the entanglement between the atoms is affected by the retar-
dation and how it could be related to the population of the
collective states. A comparison of Fig.6(a) with Fig.4 shows
that forx = 0 the manner in which the concurrence evolves
in time resembles the evolution of the population of the sym-
metric state. This is readily understood if one writes the con-
currence (21) in the basis of the collective Dicke states to find

C(t) = max

{

0,

√

[ρss(t)− ρaa(t)]
2
+ (2Im [ρas(t)])

2

}

.

(34)
Since ρaa(0) = ρaa(0) = 1/2, and at short times
Im[ρas(t)] ≈ 0, the time evolution of the concurrence de-
pends essentially on the evolution of the populationρss(t). It
is seen thatC(t) > 0 for all times exceptt = 0. It is only
at t = 0 that the atoms are unentangled. The most positive
value of C(t) is achieved whenρss(t) = 0, in which case
C(t) = 1/2, so that we may speak of50% entanglement. The
effect of retardation shows up clearly as the sharp decreaseof
the concurrence from its maximal value of1/2. This is due to
the transfer of the population from the ground state|g〉 to the
symmetric state|s〉.
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FIG. 6. (Color online) Transient buildup of entanglement from the
initial separable state|e1g2{0}µ〉 for atomic spacings: (a)x = 0 and
(b) x = 999λa. The other parameters are the same as in Fig.3. The
red circles mark the positions of the kinks due to retardation.

Figure6(b) shows the time evolution of the concurrence for
a large atomic spacing,x = 999λa. The effect of going to a
nonzero atomic spacing is clearly to decrease the amount of
entanglement and to restrict the time during which it occurs.
We see that the initially unentangled atoms remain separable
until the timet = x/c. The physical reason for the delay in
the creation of entanglement is in the retardation effect. No
entanglement is created between the atoms until the photon
emitted by atom1 reaches atom2. The atoms remain entan-
gled until the timet = L/c at which the excitation returns
to atom1. At this time the concurrence suddenly drops to
zero. The behavior of the concurrence is entirely consistent
with the behavior of the populations of the symmetric and the
antisymmetric states, shown in Fig.5.

Equation (34) predicts that for maximal entanglement be-
tween the atoms we would need to put all of the population in
one of the collective states, either|s〉 or |a〉. Following this ob-
servation, we plot in Fig.7(a) the time evolution of the concur-
rence for the same parameters as in Fig.6(a), but with the new
initial conditionρss(0) = 1, i.e., the atoms are initially pre-
pared in the maximally entangled state|s〉. Sinceρaa(t) = 0
for t ≥ 0, the dynamics of the system reduces to that between
two states only, the symmetric|s〉 and the ground|g〉 states. In
this case the concurrence is simply equal to the population of
the symmetric state,C(t) = ρss(t). For t = 0 the atoms are
maximally entangled due to our choice of the initial state of
the system. Immediately afterwards, the concurrence begins
to decrease because of the spontaneous emission to the cavity

0 1 2 3 4 5
0.0

0.2

0.4

0.6

t Hun its of L� cL

C
H
tL

H aL

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

t Hun its of L� cL

C
H
tL

H bL

FIG. 7. Concurrence as a function of time for the same parameters
as in Fig.3 except that the atoms were initially prepared in the maxi-
mally entangled state|s〉. The atomic spacing is in (a)x = 0, and in
(b) x = 999λa.

modes. As soon as the emitted light returns to the atoms, that
happens periodically at the times equal tonL/c, wheren is
an integer, the atoms thereafter become entangled because the
system returns to the symmetric state. In the timet < L/c,
the concurrence approaches zero. This effect, however, is not
sudden death of entanglement becauseC(t) does not become
exactly zero. We already found previously that the concur-
rence for the case of having only one quantum of energy in
the system cannot suffer the phenomenon of sudden death be-
cause in accordance with Eq. (21), C(t) can either be zero or
positive and hence it cannot disappear. In order to have sudden
death of entanglement, the second part in themax function of
Eq. (21) would have to be negative.

The revival of concurrence at later times can significantly
be enhanced by adjusting the atomic spacing. An example is
shown in Fig.7(b), which is for the same parameters as in
frame (a) except for the distance between the atoms. It can be
seen that at later times, the time evolution of the concurrence
does not split up into multiple peaks as in frame (a). Instead,
single peaks with higher amplitudes are obtained. In frame
(b), the atomic spacing is chosen such that some retardation
revivals coincide with the main concurrence revivals foundin
frame (a). In particular, the spacingx is adjusted such that the
first revival occurs approximately att = (L+ x)/c.
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1. Long-time dynamics

In Figs.6 and7 the concurrence is plotted for short times
of the evolution, up to onlyt = 5L/c. The results showed that
entanglement occurs or is reduced in a periodic fashion, like
the pulse periodic excitation, with the magnitude of the subse-
quent oscillations damped due to the spread of the excitation
wave packet. One could expect that the oscillations should
collapse after a sufficiently long time and never revive. As we
shall see below, this is not the case. Continuing the calcula-
tion to much longer times we find that there is an interesting
recurrence of the oscillations.

FIG. 8. The long-time behavior of the concurrence for the same sit-
uation as in Fig.6(a). Frame (a) shows the concurrenceC(t), while
frame (b) shows the contribution ofIm[ρas(t)] to the concurrence,
as predicted by Eq. (34).

Figure8(a) shows the evolution of the concurrence for the
same situation as in Fig.6(a), but extended to much longer
times. It can be seen that the damping of concurrence ob-
served in the initial time evolution does not continue. Rather,
on a longer time scale, nearly periodic collapse and revival
of the concurrence is observed. Throughout the revivals, the
concurrence becomes as large asC(t) = 0.8.

The presence of the pronounced long time oscillations is
linked not only to the difference between the populations in
the symmetric and anti-symmetric atomic states. Rather, it
is also due to an additional contribution to the concurrence
which comes fromIm[ρas(t)], see Eq. (34). In other words,
the coupling of the atoms to the multi mode cavity field
leads to a nonzero long-time coherence between the collective
states. This is shown in Fig.8(b), where we plotIm[ρas(t)]

for the same parameters as in frame (a). The coherence is ini-
tially zero but beyondt ∼ 10L/c starts to build rapidly with
the fast oscillations accompanied by a slow modulation.

FIG. 9. The Fourier transform ofC(t) shown in Fig.8(a).

The origin of the modulation is in the discrete set of Rabi
frequenciesgµj coupling the atoms to the different modes.
The Rabi oscillations are not perfectly periodic due to unequal
couplings of the atoms to the discrete modes that causes the
imperfection of the modulation. The modulated oscillations
bear an interesting relation to the Jaynes-Cummings model
with a coherent initial state [45]. The graininess of the elec-
tromagnetic field results in a discrete set of the Rabi frequen-
cies of the coupled atom-field system that are not perfectly
periodic but collapse and revive.

To further analyze the origin of this oscillation, we have
calculated the power spectrum of the time signal, which is
shown in Fig.9. It can be seen that in particular for lower
frequencies, the power spectrum decomposes in a set of near-
discrete modes. At larger frequencies, the discrete modes de-
compose into bands of multiple modes, but the discrete spac-
ing is still visible. This suggest an interpretation of the slow
beat-like structure of the long-time dynamics in terms of col-
lapses and revivals, as it is known from the Jaynes-Cummings-
model.

The frequencies appearing in the power spectrum can be
traced back to the effective Rabi frequencies occurring in the
system of two atoms coupled to many cavity modes. To ver-
ify this interpretation, we calculated the time evolution of the
atoms analytically in certain limiting cases. The simplestex-
ample is the Jaynes-Cummings model [45], in which a single
atom interacts with a single mode field. Then, the popula-
tion oscillates at the Rabi frequencyΩ0 of the resonant mode
which results in a single peak at this frequency in the power
spectrum. Similarly, we analyzed the case of two atoms cou-
pling to a single mode, and to two modes. However, in the
general case of two atoms coupling to many modes, the ana-
lytical calculations become cumbersome and the identification
of all the peaks is a complicated task.
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2. Time-averaged concurrence

We have seen that the retardation effects show up clearly as
the sharp kinks in the concurrence. As seen in Fig.8(a), re-
vivals of concurrence appear periodically at long times, with
large maximum values of concurrence. But because of the
presence of fast oscillations, it is not clear whether the en-
hancement of the entanglement could be observed in practice.
Detectors typically respond over a finite time that could be
longer than the oscillation periods of the concurrence. There-
fore, we consider the mean concurrence〈C(t)〉 averaged over
a detection time. As we shall see, the mean concurrence is
instructive because it shows how the detected entanglement
could be sensitive to the separation between the atoms. We
consider both long-range and sub-wavelength separations.
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FIG. 10. The concurrence averaged over time with respect to the
inter atomic separation is shown for the same parameters as in Fig.3.
In frame (a)x varies in large steps, while in frame (b)x varies within
a half of the wavelength.

The mean concurrence〈C(t)〉, averaged over a time inter-
val 0 ≤ t ≤ 800L/c, is shown in Fig.10. Frame (a) illustrates
〈C(t)〉 at large atomic spacings,x≫ λa, with x chosen as in-
teger multiples ofλa. Complementarily, frame (b) shows the
variation of〈C(t)〉 at sub-wavelength spacings withx varying
within a half of the wavelength,x ≤ λa/2. We observe in
both cases that the magnitude of〈C(t)〉 is smaller than1/2
with the maximum〈C(t)〉 = 1/2 for x at (0, L) for large sep-
arations, and at(0, λa/2) for the sub-wavelength separations.
Note that the mean concurrence is symmetric with respect to
the mid point between the maxima. For the case shown in
frame (a) it corresponds tox = L/2, whereas for the case (b)
it corresponds tox = λa/4. The behavior of the mean con-

currence has a simple explanation. For the separations cor-
responding to the maxima of the concurrence, the different
cavity modes couple to the atoms with the same phases re-
sulting in the same values for the concurrence. For other sep-
arations, the atoms experience different phases of the cavity
modes relative to the resonant mode, such that the concurrence
on average decreases. For the case shown in frame (a), near
one-third of the cavity length, the phase difference among dif-
ferent modes starts decreasing. As a consequence, the curve
goes up till the half of the length of the cavity is reached where
a symmetry point exists in the sense that the phases of all the
even modes match and so do the phases of the odd modes but
are completely out of phase from each other.

We may conclude, that the retardation effects make the con-
currence sensitive to the atomic spacing not only at large but
also at sub-wavelength spacings.

C. Effects of retardation on entanglement - double excitation
case

We now turn to the discussion of the effects of retarda-
tion on the entanglement dynamics when two excitations are
present in the system. We show how the well known phe-
nomena resulting from the threshold effects in the concur-
rence (25), such as sudden death, sudden birth and revival of
entanglement, can be related to retardation. We will demon-
strate that retardation can induce, suppress, or strongly mod-
ify these sudden phenomena. To clearly establish the effect
of retardation on the sudden phenomena, we concentrate on
properties of the quantityC1(t), defined in Eq. (26), rather
than onC(t). Simply speaking, the quantityC1(t) can be pos-
itive as well as negative which will allow us to distinguish be-
tween the sudden phenomena and sudden changes in the evo-
lution due to the retardation that could occur in time periods
where the atoms are separable. The concurrenceC(t) = C1(t)
for C1(t) ≥ 0.

We illustrate the role of retardation by examining the time
evolution of the system for two sets of initial states for which
the sudden phenomena are known to not occur in the absence
of retardation. Later, we consider an initial state where even
in the absence of retardation, sudden phenomena are present.

Consider first an initial state

|ψ̃(0)〉 = |e1〉 ⊗ |e2〉 ⊗ |{0}µ〉 ≡ |e1e2{0}µ〉, (35)

in which both atoms are excited and the cavity is empty. Fig-
ure 11(a) shows the time evolution ofC1(t) when the atoms
are coupled to only a single mode(N = 1) of the cavity field.
In this case no retardation is present. We see that indepen-
dent of the distance between the atoms,C1(t) oscillates sinu-
soidally in time and is always negative. This indicates thatno
entanglement is present at any time.

Figure11(b) shows the corresponding behavior ofC1(t) for
a large number of the cavity modes(N = 45) to which the
atoms are coupled. In this case the retardation effects occur.
It is apparent that the evolution ofC1(t) is profoundly affected
by the presence of retardation. The most interesting aspectof
the retardation is the occurrence of the sudden phenomena that
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FIG. 11. (Color online) Time evolution ofC1(t) for the initial state
|ψ̃(0)〉1 = |e1e2{0}µ〉,L = 3.48×103λa andωa = 1.11×104Ω0.
In frame (a)N = 1 and in (b)N = 45. The dotted red, solid green
and dashed blue curves are atomic separationsx = 0, x = L/4 and
x = L/2, respectively.

lead to an entanglement at some discrete periods of time. The
degree of the created entanglement depends on the distance
between the atoms.

We have observed similar behavior also for a num-
ber of other initial states. Examples are|ψ̃(0)〉 =
|{1}0r{1}0l〉 ⊗ |g1g2〉, that is, none of the atoms is in
the excited state and the two photons are in the same
(resonant) mode but propagate in opposite directions, or
|ψ̃(0)〉 = (1/

√
2) (|{0}0r{2}0l〉+ |{2}0r{0}0l〉) ⊗ |g1g2〉,

i.e., the atoms are in the ground state, and two photons prop-
agate in the same direction either to the left or to the right in
the central cavity mode with equal probability. Again, there
is no entanglement if the atoms couple to a single resonant
mode of the cavity electromagnetic field. But entanglement is
suddenly born, it suddenly dies and revives in the presence of
retardation.

Consider now an initial state

|ψ̃(0)〉 = 1√
2
(|{0}0r{1}0l〉+ |{1}0r{0}0l〉)⊗|e1g2〉, (36)

in which atom1 is in excited state, atom2 is in ground state
and the cavity central counter-propagating modesω0r, ω0l are
excited into a coherent superposition of the single-quantum
states.

In Fig. 12(a) we show the time evolution ofC1(t) for the
initial state (36) when the atoms are coupled to the central

counter-propagating modes. It is seen thatC1(t) oscillates si-
nusoidally in time and is non-negative at all times. Once again
we notice that no sudden phenomena occur when the atoms
are coupled to the central counter-propagating modes. How-
ever, contrary to the initial state (35), the atoms are entangled
even when they were initially in a separable state. A naive
interpretation for the occurrence of entanglement is that the
atoms periodically exchange the excitation through the cavity
modes.
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FIG. 12. (Color online) Time evolution ofC1(t) for initial condition
Eq. (36) and the same parameters as in Fig.11. In frame (a)N = 1
and in (b)N = 45. The dotted red, solid green and dashed blue
curves correspond tox = 0, x = L/4 andx = L/2, respectively.

The situation becomes different when the atoms couple
to a large number of cavity modes. In this case, shown
in Fig. 12(b), the retardation effects occur and the behavior
of C1(t) is seen to be qualitatively different from the previous
case. These curves are non-sinusoidal, change sharply in non-
periodic way such thatC1(t) can become negative at some
discrete periods of time. Thus,C1(t) clearly exhibits the phe-
nomena of sudden death, sudden birth and revival. Again, the
degree of concurrence as well as the qualitative dynamics is
affected strongly by the inter atomic separation. For example,
depending on the distance, atomic entanglement immediately
builds up (dC1(0)/dt > 0), or only at a later time via SBE
(dC1(0)/dt < 0). Interestingly, we find in Fig.12(b) that
for negligible separation between the atoms, the concurrence
exhibits no death in the presence of retardation, and even per-
sists without intermediate points of zero entanglement in con-
trast to the non-retarded case. Furthermore, at the separation
x = L/2, the degree of entanglement is more than one order
of magnitude larger than that found in the non-retarded case.
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It is interesting to note that the degree of entanglement
increases with an increasing separation between the atoms.
Again, qualitatively similar behavior is also found for other
initial states, such as(|e1g2{1}0l〉 + |g1e2{1}0r〉)/

√
2, in

which both the atom and the cavity are entangled.
Lastly, we analyze initial states which lead to periodic

death and revival of entanglement even without retardation.
For this, we consider the separable initial state

|ψ̃(0)〉 = |g1〉 ⊗ |g2〉 ⊗ |{2}0r〉 ≡ |g1g2{2}0r〉, (37)

in which both atoms are in the ground state, and two photons
propagate in the same direction in the central cavity mode.
The entanglement dynamics without retardation is shown in
Fig. 13(a). It can be seen that starting from zero concurrence,
entanglement builds up, but then vanishes again. This rebirth
and death then repeats periodically.

The corresponding results with retardation are shown in
Fig. 13(b). In this case, while the exact temporal dynamics
and the magnitude of concurrence is again affected by the
inter-particle separation, the qualitative dynamics manifesting
itself in the periodic death and birth of entanglement is inde-
pendent of the retardation effects.

Qualitatively similar results again are also ob-
served for other initial states, such as|ψ̃(0)〉 =√
p|e1e2{0}µ〉 +

√
1− p|e1g2{1}0l〉, which we ana-

lyzed for p ∈ {1/10, 2/10, 3/10, 4/10}. Also the initial
state|ψ̃(0)〉 = (|e1g2〉 + |g1e2〉)|{1}0l〉/

√
2 with maximum

entanglement between the atoms behaves qualitatively
similar.

We can gain a qualitative understanding of the behav-
ior of C1(t) in the presence of retardation by making use
of Eq. (30) for the collective states of the system and ex-
pressingC1(t) in terms of the probability amplitudesbαs(t)
andbαa(t) as

C1(t) =
∑

α

∣

∣|bαs(t)|2 − |bαa(t)|2 − 2Im [b∗αs(t)bαa(t)]
∣

∣

− |b(t)|
√

∑

α>β

|bα,β(t)|2 +
∑

α

|bα,α(t)|2, (38)

where

bαs(t) =
1√
2
[bα1(t) + bα2(t)] ,

bαa(t) =
1√
2
[bα1(t)− bα2(t)] , (39)

are the probability amplitudes of the states|s〉 ⊗ |{1}α〉 and
|a〉 ⊗ |{1}α〉, respectively.

The first line of the right-hand-side of Eq. (38) is associated
with the one-photon coherence determined by both, unequal
populations of the collective states and the coherence between
them, whereas the second line is attributable to the two-photon
populations of either the atomic system, determined byb(t),
or the cavity modes, determined bybα,β(t) andbα,α(t). Thus,
the mechanism for entanglement with two excitations initially
present in the atomic system is similar to that of the single
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FIG. 13. (Color online) Time evolution ofC1(t) for the initial state
Eq. (37) and the same parameters as in Fig.11. In frame (a)N = 1
and in (b)N = 45. The dotted red, solid green and dashed blue
curves correspond tox = 0, x = L/4 andx = L/2, respectively.

excitation case. Entanglement between the atoms,C1(t) >
0, can be traced back to the single-excitation sub-space, and
in particular imbalances between the symmetric and the anti-
symmetric singly-excited atom states. However, in contrast
to the single excitation case, this asymmetry must exceed the
threshold set by the contribution from the systems with both
excitations either in the atoms or in the cavity.

The entanglement seen in Figs.11(b), 12(b) and 13(b) in-
dicates that the retardation effects lead to a non-zero popu-
lation difference between the symmetric and antisymmetric
states that at some periods of time overcomes the threshold
factor in the expression forC1(t). What this means is that the
time evolution of the atoms is not linked to the total cavity
population. In particular, if one excitation is in the cavity, the
other excitation can be in different atomic states with varying
population imbalance between symmetric and anti-symmetric
states.

1. Long-time and time-averaged dynamics

The above investigations have shown that the presence of
the retardation effects leads to a non-sinusoidal evolution of
the concurrence which results in the phenomena of sudden
death and sudden birth of entanglement. One can notice from
Figs.11(b),12(b) and13(b) that there are finite periods of time
at whichC1(t) is negative. These are dead zones of entangle-
ment or equivalently at that times the atoms are separable. The
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following question then arises: In which states, entangledor
separable, do the atoms spend most of the time? To answer
this question, we first extend the calculations ofC1(t) to long
times and then averageC1(t) over a long evolution time. We
concentrate on the case illustrated in Fig.12(b).
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FIG. 14. (a) The long time behavior ofC1(t) is shown for
L = 3.48 × 103λa, ωa = 1.11 × 104Ω0, N = 45, x = L/2 and
the initial state|ψ̃(0)〉 = (|e1g2{1}0l〉+ |e1g2{1}0r〉)/

√
2. (b) The

concurrence averaged over a long evolution time is shown as afunc-
tion of the atomic spacingx. The distancex varies around half of the
cavity length, over an interval of one half of the cavity wavelength.

The corresponding long-time dynamics ofC1(t) is shown
in Fig. 14(a). It is seen that the time evolution ofC1(t) is
very spiking with the amplitude of the fast oscillations slowly
modulated in time. It can also be noticed that the amplitude
of C1(t) oscillates aroundC1(t) = 0 which suggests that over
a long periodC1(t) might average to zero or negative values.
Therefore, we calculate the mean value ofC1(t) by averaging
over the evolution time0 ≤ t ≤ 2000L/c for different inter
atomic distances around a distance of half the cavity length,
in an interval of half a wavelengthλa. As expected, we find
that depending on the inter-atomic separation the mean value
of C1(t) can be positive or negative. Next, we average the
more important concurrenceC(t) itself in the same way. The
result is shown in Fig.14(b). The first atom is located at
x1 = λa, and the second atom is located close to1740λa such
that they are separated roughly by half of the cavity length.
It is seen that the precise positioning of the atoms within a

wavelength at such large distances plays a vital role in the en-
tanglement between the atoms. The effect of going away from
thex = L/2 position is clearly to decrease the amount of en-
tanglement. But as expected, the concurrence is positive for
all distances even in an average sense, due to the non-negative
nature ofC(t).

V. SUMMARY

We have studied the effects of retardation on the entangle-
ment properties of two atoms located inside a multi-mode ring
cavity. Retardation effects become pronounced if the mode
spacing of the cavity is small enough such that the atoms can
simultaneously couple to many modes of the cavity field. The
Schrödinger equation for the wave function of the system was
solved for different atomic separations and initial conditions
with single and double excitations present in the system. It
was shown that the retardation effects are manifest not only
in the dynamics of the atomic population but also in the dy-
namics of entanglement between the atoms. Characterizing
entanglement between the atoms by the concurrence, we have
found that the retardation leads to abrupt kinks in the concur-
rence at intervals corresponding to the flight time of a photon
between the atoms or to the time corresponding to a round trip
in the cavity.

Furthermore, we demonstrated that the retardation effects
crucially depend on the atom separation both, on the multi-
and sub-wavelength distance scale. We have also distin-
guished significantly different short-time and long-time retar-
dation effects in the evolution of the concurrence. In partic-
ular, at short times the concurrence exhibits periodic sudden
changes from separable to highly entangled states. At long
times, the retardation gives rise to periodic beats in the concur-
rence that resemble the phenomenon of collapses and revivals
in the Jaynes-Cummings model. We finally identified param-
eter values and initial conditions at which retardation qualita-
tively changes the entanglement dynamics. In particular, the
atoms can remain either separable or entangled throughout
the whole time evolution without retardation, whereas they
exhibit the phenomena of sudden birth and sudden death of
entanglement when the retardation is included.
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[22] Z. Ficek and R. Tanaś, Phys. Rev. A77, 054301 (2008).

[23] L. Mazzola, S. Maniscalco, J. Piilo, K.-A. Suominen, and B. M.
Garraway, Phys. Rev. A79, 042302 (2009).

[24] P. R. Berman,Cavity Quantum Electrodynamics (Advances in
Atomic, Molecular and Optical Physics)(Academic Press, New
York, 1994).

[25] B.-G. Englert, M. Loffler, O. Benson, B. Varcoe, M. Weidinger,
and H. Walther, Fortschr. Phys.46, 897 (1998).

[26] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Up-
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