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Abstract

Using (partial) curvature flows and the transitive action of subgroups

of O(d,Z) on the indices {1, . . . , d} of the components of the Yang-Mills

curvature in an orthonormal basis, we obtain a nested system of equa-

tions in successively higher dimensions d, each implying the Yang-Mills

equations on d-dimensional Riemannian manifolds possessing special ge-

ometric structures. This ‘matryoshka’ of self-duality equations contains

the familiar self-duality equations on Riemannian 4-folds as well as their

generalisations on complex Kähler 3-folds and on 7- and 8-dimensional

manifolds with G2 and Spin(7) holonomy. The matryoshka allows en-

largement (‘oxidation’) to a remarkable system in 12 dimensions invari-

ant under Sp(3). There are hints that the underlying geometry is related

to the sextonions, a six-dimensional algebra between the quaternions and

octonions.
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1 Introduction

Many interesting examples of special geometric structures on d-dimensional

Riemannian manifolds (M, g) are provided by certain G-invariant covariantly

constant (parallel) p-forms ϕ ∈ ΛpT ∗M , where G = Hol , the restricted holon-

omy group of M . If p < d, then G is clearly a proper subgroup of SO(d), since

in the generic rotationally invariant case, only the volume form is invariant.

For Riemannian manifolds which are locally neither a product of lower di-

mensional spaces nor a symmetric space, Berger’s list [1] provides the most inter-

esting examples of restricted holonomy groups. These include U(n) ⊂ SO(2n),

which leaves the Kähler two-form ω on a 2n-dimensional Kähler manifold invari-

ant. The SU(n) Calabi-Yau specialisation has, in addition, an invariant complex

n-form, the holomorphic volume form. The group Sp(n) ⊂ SO(4n), d = 4n , of

n×n matrices with quaternion elements satisfying A†A = 1, has three invariant

Kähler two-forms ωα, combinable in a two-form, ω = ω1i + ω2j + ω3k, taking

values in the imaginary quaternions. These characterise hyper-Kähler geometry.

The quaternionic Kähler generalisation has Hol = Sp(n) ·Sp(1) ⊂ SO(4n), with

the three Kähler forms existing only locally. Globally, they define an invariant

parallel four-form
∑

ωα∧ωα. The two exceptional d = 7 and 8 geometries with

Hol = G2 and Spin(7) have, respectively, an invariant three- and four-form. In

all these cases, the geometric information can equally well be encoded uniformly

in an invariant four-form: the two-forms afford squaring and the three-form in

seven dimensions has a Hodge-dual four-form. The Lie group inclusions

Sp(n) ⊂ SU(2n) ⊂ U(2n) ⊂ SO(4n)

imply corresponding inclusions of geometries: hyperkähler manifolds are Calabi-

Yau manifolds, the latter are Kähler, which in turn are orientable. The two

exceptional cases are also part of lower dimensional sets of inclusions:

U(2) ⊂ Sp(2) ⊂ SU(4) ⊂ Spin(7) ⊂ SO(8)

SU(3) ⊂ G2 ⊂ Spin(7) ⊂ SO(8) .

The respective invariant tensors can be obtained by successive reductions of the

4n-dimensional volume form. For instance, the Spin(7) invariant four-form in

eight dimensions contracted with an arbitrary vector yields the G2-invariant

three-form in the orthogonal seven-dimensional space. Similarly, the latter

yields an SU(3)-invariant two-form on projection to the complex three-fold or-

thogonal to an arbitrary vector.
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For Riemannian manifolds (M, g) admitting a G-structure, a principle sub-

bundle of the frame bundle of M , with structure group G ⊂ GL(d,R), the

tangent space at every point admits an isomorphism with Rd. For every point

p ∈ M there exists a choice of local coordinates with p as the origin in which

the Riemannian metric takes the euclidean form d2s = gijdx
idxj =

∑

i dx
idxi

and the special geometric structure ϕ in these coordinates is the constant G-

invariant form

ϕ =
∑

(i1,...,ip)∈I+

dxi1,...,ip . (1)

where dxi1,...,ip := dxi1∧· · ·∧dxip and I
+ is a set of oriented subsets {i1, . . . , ip} ⊂

{1, . . . , d} with ϕi1...ip = 1 . Differential forms like ϕ have been called special

democratic forms [2, 3]. They are ‘special’ in the sense that they have com-

ponents ϕµ1...µp
equal to +1,−1 or 0 in some orthonormal basis, just like the

volume form vold = dx1∧dx2∧· · ·∧dxd =: dx12...d on a Euclidean vector space.

More precisely, a p-form ϕ is called special if it lies in the SO(d,R)-orbit of

ϕ =
∑

1≤µ1<...<µp≤d

ϕµ1...µp
dxµ1...µp (2)

with components ϕµ1...µp
∈ {−1, 0, 1}. There are clearly only a finite number of

orbits of special p-forms parametrised by the components ϕµ1...µp
∈ {−1, 0, 1}

under SO(d,R) or O(d,R). Distinct sets of components may give rise to special

p-forms in the same orbit, because the subgroups SO(d,Z) ⊂ SO(d,R) or

O(d,Z) ⊂ O(d,R) map the special form ϕ in equation (1) into a special form

parametrised by different components. These groups are isomorphic to the

semidirect product of the permutation group Sd acting naturally on d−1 or d

copies of Z2, namely SO(d,Z) ∼= Sd ⋉ Z
d−1
2 or O(d,Z) ∼= Sd ⋉ Zd

2. Thus,

special p-forms which appear to be different may nevertheless be in the same

orbit under SO(d,R) or O(d,R). The orbit of a special p-form may always be

labelled by a choice of a representative (1).

A special p-form ϕ is called democratic if its set of nonzero components

{ϕi1...ip} is symmetric under the transitive action of a subgroup of O(d,Z) on

the indices {1, . . . , d}. The action of an element (σ, η1, . . . , ηd) ∈ Sd ⋉ Zd
2, on

the components of ϕ being given by

ϕi1 ... ip 7→ ηi1 . . . ηip ϕσ(i1) ... σ(ip) , (3)

where η2i = 1 , i = 1, . . . , d. So for a democratic form no choice of indices is

privileged. We refer to [2, 3] for further details. It was shown in [2] that knowl-
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edge of the above symmetry groups allows an enlargement (oxidation) of the

base space; the symmetries may be used to remix the sets of indices {(i1 . . . ip)}

of the nonzero components amongst a larger set of indices {1, . . . , D} , D > d,

thus defining special democratic P -forms in D dimensions from special demo-

cratic p-forms in d dimensions for successively higher P ≥ p and D ≥ d. In this

paper, we consider two such oxidation maps:

a) Oxidation through remixing

This is a map ϕ ∈ Λp
R

d → Λp
R

D ∋ Φ defining a special democratic p-form

Φ in D > d dimensions in terms of the components of a special p-form ϕ in

d-dimensions thus:

ϕ =
∑

(i1,...,ip)∈I+

dxi1,...,ip 7−→ Φ =
∑

σ∈H⊂SD

∑

(i1,...,ip)∈I+

dxσ(i1) ... σ(ip), (4)

where H is some subgroup of the symmetric group SD acting on the D indices.

b) Oxidation through heat flow

Alternatively, for D = d + q the nonzero components of a special democratic

P = p + q-form are given by a map ϕ ∈ ΛpRd → Λp+qRd+q ∋ Φ defined by

ϕ =
∑

(i1,...,ip)∈I+

dxi1,...,ip 7−→ Φ =
∑

σ∈H⊂SD

∑

(i1,...,ip)∈I+

dxσ(i1) ... σ(ip)σ(d+1) ... σ(D).

(5)

Using these mappings, a nested structure of special forms in successively

higher dimensions emerges. This is reminiscent of a matryoshka (matrëxka), a

set of nested Russian dolls, traditionally carved in wood, where the inner surface

of each doll is basically a copy of the outer surface of the previous doll; but the

outer surface can then vary somewhat, depending on the geometry of the bulk.

A remarkable nested stucture of special democratic forms was displayed in

[2], which included a U(3)-invariant 2-form in six dimensions, a G2-invariant

3-form in seven dimensions, and a Spin(7)-invariant 4-form in eight dimensions;

corresponding to the embeddings SU(3) ⊂ G2 ⊂ Spin(7) mentioned above. It

was also shown, that this matryoshka with 3 dolls fits into even larger dolls and

interesting properties of a special democratic 6-form in ten dimensions were

presented.

Motivated by the discussion in [2] of nested special democratic forms, we

shall presently show that there exists a corresponding matryoshka of self-duality
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equations in successively higher dimensions; each implying the Yang-Mills equa-

tions, just as four-dimensional self-duality [4]. Successive sets of equations are

‘oxidised’ to higher dimensions and ‘reduced’ to lower dimensions by enhanc-

ing or restricting the permutation symmetries on the sets of indices of special

geometric tensors. Remarkably, the simplest case of the mapping (5), with

q = D − d = 1 corresponds to equations for (partial) curvature flows for the

vector potentials, hence ‘Oxidation through heat flow’. Solutions of the lower

dimensional equations then provide initial values for the flow into the extra

dimension, the flow to the next doll of the matryoshka. We shall dispay oxida-

tions up to d = 16. The representation theory underlying the twelve dimensional

system seems to be related to a mathematical curiosity, the algebra of the sexto-

nions [5, 6], a six-dimensional algebra between quaternions and octonions. This

algebra gives rise to a new row in Freudenthal’s magic chart, corresponding to

a (non-simple) Lie algebra between e7 and e8, which has been called e7 1

2

[6].

2 Generalised duality for gauge fields in d > 4

Generalisations of the four-dimensional self-duality equations to higher dimen-

sions were introduced some time ago in [4], where it was shown that restrictions

of the Yang-Mills curvature two-form F to an eigenspace of a four-form T , im-

plies the Yang-Mills equations. In a standard orthonormal basis of T ∗M these

take the form,

1

2
gkmglnTijklFmn = λFij , i, j, · · · = 1, . . . , d . (6)

Here Tmnpq is a covariantly constant tensor, gpr the inverse metric tensor and

F = dA+ A ∧ A is the curvature of a connection D = d+ A on a Riemannian

d-fold (M, g) with values in the Lie algebra of a real gauge group contained

in GL(n,R). These partial-flatness conditions on the curvature are first order

equations for the vector potentials A, so they are more amenable to solution

than the second order Yang-Mills equations. Indeed, many special solutions are

known (see e.g. [8, 9, 10]). The usefulness of the linear curvature constraints

(6) follows from the observation [4]:

Theorem 1 For nonzero eigenvalues λ, the conditions (6) imply the Yang-

Mills equations gijDiFjk = 0. Thus, potentials A satisfying these first order

equations automatically satisfy the Yang-Mills equations.
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This result follows in virtue of the Bianchi identities D[iFmn] ≡ 0 . In [4],

constant four-forms T in flat euclidean spaces were considered, but it is clear

that, more generally [11], it suffices for the consistency condition

gkmgln(gip∇pTijkl)Fmn = 0 (7)

to hold, which follows if T is co-closed, gip∇pTijkl = 0. The latter in turn follows

if T is parallel (i.e. covariantly constant) with respect to the Levi-Civita connec-

tion ∇. In dimensions d > 4, the four-form T clearly breaks the d-dimensional

rotational invariance of the Yang-Mills equations. Examples of 4-forms and the

corresponding partial-flatness conditions (6) invariant under various subgroups

of G ⊂ SO(d) were studied in [4] for dimensions 4 < d ≤ 8. In particular, inter-

esting examples invariant under SU(n)⊗U(1))/Z2 and SU(n) G2 and Spin(7),

in dimensions d = 2n, 7, 8 were constructed. The example of Sp(n)⊗ Sp(1)/Z2

was discussed shortly thereafter in [12, 13]. The above groups are precisely the

holonomy groups of Calabi-Yau, quaternionic Kähler and exceptional holonomy

manifolds, so remarkably, the generalisations of self-duality for most of Berger’s

special holonomy manifolds [1] were unwittingly constructed before the subject

acquired widespread differential geometric interest (e.g. [14, 15, 16, 17, ?, 11]).

On all the above manifolds, there exists a ∇-parallel four-form, so the above-

mentioned consistency condition on T is satisfied.

The equations (6) may be expressed in terms of projection operators to the

orthogonal eigenspaces (see e.g. [19])

ΛI
ijF

ij = 0 , I = 1, . . . , d̄λ , (8)

where the number of equations, d̄λ , is the codimension of the eigenspace cor-

responding to eigenvalue λ. Here, the projector Λ is the analogue of the ’t

Hooft tensor in four dimensions and we lower (raise) indices using the (inverse)

Riemannian metric.

In even dimensions, with d = 2n, if the manifoldM admits a complex struc-

ture J , this provides, at any point p inM , a linear map Jp : TpM → TpM under

which the complexification TpM ⊗R C splits into the eigenspaces T
(1,0)
p M and

T
(0,1)
p M , both of which are isomorphic to Cn. This allows the choice of com-

plex coordinates (z1, . . . , zn) and (z1̄, . . . , zn̄). The complex (1,0)- and (0,1)-

forms {dzα} and {dzα}, for α, α = 1, . . . , n, then provide bases for T
(1,0)
p M

and T
(0,1)
p M respectively. Imposing the reality conditions dzα = dzα, we may

recover R2n ≃ Cn. The curvature two-form in this basis has components
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Fαβ, Fαβ , Fαβ = F αβ and the Riemannian metric locally takes the hermitian

form d2s = gαβdz
αdzβ = dzαdzα =

∑

α dz
αdzα and the complex (n, 0) vol-

ume form is given by Ω = dzα1...αn . In the complex setting, the equation

(6) is a G-invariant equation, where the structure group G is a subgroup of

GL(n,C) ⊂ GL(2n,R). For the particularly important λ = −1 case, we shall

use the following complex variant of Theorem 1.

Theorem 2 On a Riemannian complex n-fold (M2n, g), with hermitian metric

g = gαβdz
αdzβ and (4,0)-form Φ, the linear curvature constraints,

Fαβ +
1
2
gγηgδκ Φαβγδ Fηκ = 0 , (9)

gαβFαβ = 0 , (10)

gγηgδκ (gαρ∇ρΦαβγδ) Fηκ = 0 , (11)

imply the Yang-Mills equations gαρDρFαβ = gαρDρFαβ = 0.

Proof: Using (9) we have

gαρDρFαβ = DαFαβ = −1
2
(∇αΦαβγδ) F

γδ − 1
2
Φαβγδ D

αF γδ = 0, (12)

the first term being the left side of (11) and the second vanishes in virtue of

the Bianchi identity DαFγδ + cyclic permutations = 0. Similarly, using the

Bianchi identity between Dρ, Dβ andDa we have, DρFαβ = DβFαρ+DαFαρ . On

contracting with gαρ, the second term on the right yields the complex conjugate

of the left side of (12) and the first term contains the trace of the (1,1)-part of

the curvature, which vanishes by equation (10). �

Already in [4], it was noticed that the lower dimensional cases, including

four-dimensional self-duality, the six-dimensional SU(3)⊗U(1))/Z2-invariant equa-

tions and the seven-dimensional G2-invariant equations, were reductions of the

eight-dimensional Spin(7)-invariant set of equations. In the present paper, we

show that using the results of [2] these equations also admit a systematic ‘oxi-

dation’ to higher dimensions starting from the lower dimensional ones.

We consider two types of oxidation. The first is based on the map (4) and

uses cyclic permutations to remix the index sets appearing in the lower dimen-

sional equations amongst a larger set of indices. The second oxidation method

is based on the heat flow for some appropriate partial curvature. This is related

to the D − d = 1 case of (5). More specifically, if in (d−1)-dimensions, there

exist a special set of d−1 curvature constraints fijkF
jk = 0 , i = 1, . . . , d−1,
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where f is some appropriate tensor, then we can consider the corresponding

partial curvature flow

Ȧi = fijkF
jk , i = 1, . . . , d . (13)

Identifying the parameter or ‘time’ of the flow with a d-th independent variable

xd, the left hand side is the Ad = 0 ‘temporal’ gauge form of the curvature

components Fdi, so that the flow equations (13) are in fact linear curvature

constraints of the form

Fdi = fijkF
jk . (14)

Remarkably, in many interesting cases, these constraints may be reformulated

in the form (6), thus implying the Yang-Mills equations. The idea of choosing

such a temporal gauge to obtain a flow equation is not new. For instance,

both Nahm’s equations for magnetic monopoles [20] and the generalisations

to higher dimensions of Euler’s equations for a spinning top [21], arise from

the imposition of precisely such a gauge choice on equations of the form (6).

The converse idea, that flow equations can be interpreted as gauge covariant

equations one dimension higher by gauge un-fixing the component of the gauge

potential in the direction of the flow, has been used by Tao [22].

As we shall see, the juxtaposition of the two oxidation methods above yields

the advertised matryoshka of self-duality equations, starting from zero curva-

ture in d = 2 and including the familiar 4-dimensional self-duality, as well

as its generalisations to 6,7 and 8 dimensions mentioned above. Remarkably,

the matryoshka affords enlargement to even higher dimensions. We discuss an

interesting 12 dimensional extension and display its oxidation to 14 and 16

dimensions.

3 The matryoshka of self-duality equations

Let us begin in two dimensions with the flatness condition F12 = 0 for the sole

component of the curvature two-form. In the complex setting, the curvature

only has a (1,1)-part, Fzz̄, where we use complex coordinates z = x1+ ix2 , z̄ =

x1 − ix2 . The flatness condition means that the curvature is in the kernel of

the volume form. We therefore have,

ǫijF
ij = 0 ⇔ F12 = 0 ⇔ Fzz̄ = 0 , (15)
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Both real and complex forms of the equations are locally rotationally invariant,

since their respective invariance algebras so(2) and u(1) are isomorphic. The

rich properties of the solutions of these equations on Riemann surfaces have

been investigated by Atiyah and Bott [23].

We oxidise the equation F12 = 0 to a system in three dimensions by acting

on the indices by all permutations generated by the cycle σ = (1 2 3) ∈ S3 , so

as to obtain a system of equations invariant under these permutations:

{F12 = 0} −→ {Fσp(1)σp(2) = 0 ; σ = (1 2 3) , p = 1, 2} (16)

This of course yields flatness in 3 dimensions; the curvature lies in the kernel of

the three-dimensional volume form,

ǫijkF
jk = 0 ⇔ F12 = F23 = F31 = 0 .lad3 (17)

Since this is a set of 3 equations for the three vector potentials Ai , i = 1, 2, 3,

it allows us to write the Yang-Mills curvature flow

∂

∂x4
Ai(x

i, x4) = 1
2
ǫijkF

jk , i = 1, 2, 3 , (18)

with initial (at x4 = 0) flat connection Ai(x
i, 0) satisfying (??). This is the

gradient flow of the Chern-Simons functional [24]

SCS =

∫

M3

Tr (1
2
AdA+ 1

3
A3) =

∫

M3

Tr (1
2
Ai∂jAk +

1
3
AiAjAk)dx

ijk, (19)

where dxijk = dxi ∧ dxj ∧ dxk, the volume form. In his canonical quantisation

of this theory, Witten [24] considered the 3-fold to be of the formM3 = Σ×R1,

where the data on the 2-dimensional boundary Σ, a Riemann surface, satisfied

the equations (15).

Now applying an x4-dependent gauge transformation to the vector potentials

Aa 7→ g−1(xi, x4)Aag(x
i, x4) + g−1(xi, x4)∂ag(x

i, x4) , a = 1, . . . , 4, (20)

which yields a pure-gauge form for the fourth vector potential, A4 = g−1∂4g .

The non-gauge covariant equation (18) now takes the gauge covariant form of

the four dimensional SO(4)-invariant anti-self-duality equations

Fab +
1
2
ǫabcdF

cd = 0 , a, b, c, d = 1, . . . 4 , (21)
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a set of 3 equations for the 4 vector potentials. (The self-duality equations

emerge on reversing the x4-direction of the flow.)

Using a manifestly u(2)-covariant notation for Yang’s complex coordinates

(zα , zα := zα , α, α = 1, 2), these equations take the form (c.f. (15)) [25],

ΩαβF
αβ = 0 ⇔ F1̄2̄ = 0 (22)

gαβFαβ = 0 ⇔ F11̄ + F22̄ = 0 . (23)

This is a system consisting of one complex and one real equation, leaving as the

sole non-zero part, the trace-free part of the (1,1)-curvature. The U(2)-invariant

metric on C2 ≃ R4 is given by gαβdz
αdzβ = dz1dz1̄+ dz2dz2̄ =: dzαdzα and the

symplectic (2,0) volume form, invariant under SU(2), by Ω = Ωαβdz
α ∧ dzβ =

dz1 ∧ dz2 =: dz12.

Now, complexifying all the data by dropping all reality conditions (see for

instance the discussion in [11]), we obtain the additional equation Fαβ = 0,

which allows us to choose the holomorphic gauge Aα = 0. The equation (23)

then takes the form of a conservation law [26]

gαβ∂αAβ = ∂βAβ = 0 , α, β = 1, 2 , (24)

which has local solution Aβ = Ωβγ∂
γf , where Ω = Ωαβdz

α ∧ dzβ = dz1̄2̄ is the

symplectic (0,2)-form. The remaining equation in (22) then takes the form of

Leznov’s wave equation [27]

�f + 1
2
Ωαβ [∂αf , ∂βf ] = 0 , (25)

with Laplacian � = gαβ∂α∂β = ∂α∂α. Solutions provide stationary points of

the Leznov functional

SL =

∫

MC

Tr

(

1

2
f�f +

1

3
Ωαβf∂αf∂βf

)

. (26)

whose variation has the standard heat equation form,

∂

∂t
f = �f + 1

2
Ωαβ [∂αf , ∂βf ] . (27)

In this case, the left-hand-side side does not allow interpretation as a (gauge-

fixed) component of the curvature.

In all the above cases, in dimensions d = 1, . . . , 4, the equations are fully

SO(d)-invariant. The special geometric structures characterising these equa-

tions are thus precisely the volume forms, which are trivially special democratic

10



forms. The oxidised volume form in d-dimensions vold = dx1...d may be obtained

from lower dimensional volume forms by taking succesive wedge products with

the additional basis one-forms, vold = vold−1 ∧dx
d.

4 From four to eight dimensions

4.1 Permutation to d=6

To proceed to higher dimensions, we now consider the complex version (22),(23)

of the four-dimensional equations. Following the previous mapping from two to

three dimensions (16), we now oxidise these equations from C2 to C3 by requiring

invariance under the cyclic permutations generated by σ = (1 2 3) ∈ S3 , where

the indices are now complex;

{F1̄2̄ = 0} −→ {Fσp(1)σp(2) = 0 ; σ = (1̄ 2̄ 3̄) , p = 1, 2}. (28)

This yields the system (c.f. (??))

ΩαβγF
βγ = 0 ⇔ {F1̄2̄ = F2̄3̄ = F3̄1̄ = 0} (29)

gαβFαβ = 0 ⇔ F11̄ + F22̄ + F33̄ = 0 , α, α = 1, 2, 3 , (30)

a set of three complex and one real equation. Here gαβdz
αdzβ is the U(3)-

invariant hermitian metric and Ω = dz1 ∧ dz2 ∧ dz3 = dz123, the complex

(3,0) volume form. These equations were obtained in [4] as SU(3)⊗U(1))/Z2-

invariant curvature constraints which imply the second order Yang-Mills equa-

tions. They later made an appearance in work by Donaldson [28], Uhlenbeck

and Yau [18] as the equations for holomorphic connections on three (complex)

dimensional Kähler manifolds, g being the Kähler metric.

In the six real coordinates, xα := Re zα , xα+3 = Im zα , α = 1, 2, 3, the

equations take the form (6), with the special democratic four-form (see [4])

T(6) = dx1425 + dx1436 + dx2536. (31)

This is invariant under the group S3 of permutations of the 3 ordered pairs

({1, 4}, {2, 3}, {4, 5}), or, equivalently, the symmetries generated by the per-

mutation σ = (123)(456) ∈ S6. The stabiliser of T(6) in SO(6) is the group

SU(3)×U(1)/Z2 and under this, the space of 2-forms has the following decom-

position into eigenspaces of T(6) [4]:

Λ2
R

6 =
(

su(3)0 , λ = −1
)

⊕
(

V 3
2 ⊕ V

3

−2 , λ = 1
)

⊕
(

Rω0 , λ = 2
)

, (32)
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where (V n
q , λ) is the n-dimensional irreducible representation of SU(3), the

index q denotes the U(1) charge, λ the eigenvalue of T(6) and ω0 = gαβdz
α∧dzβ

is the invariant metric form associated with g. Two-forms parallel to ω0 are

contained in the l = 2 eigenspace. Under the action of T(6) the curvature tensor

therefore decomposes into T(6)-eigenspaces according to

F =
(

Fγδ −
1
3
gγδF0 , λ=− 1

)

⊕
(

Fαβ ⊕ Fαβ , λ=1
)

⊕
(

Fαα , λ=2
)

, (33)

where F0 denotes the trace gαβFαβ . The set of seven equations (29), (30) thus

projects the curvature to the 8-dimensional su(3) part, the λ = −1 eigenspace.

Analogously to (23), complexifying the Yang-Mills fields, the equation (30),

in the holomorphic gauge Aα = 0 , α = 1, 2, 3 , can be locally solved in terms of

three prepotentials taking values in the complexification of the gauge group:

Aα = Ωαβγ∂
γfβ . (34)

The remaining conditions (29) provide extrema of the Chern-Simons action

S =

∫

MC

Tr (Ā∂̄Ā+ Ā3) ∧ ∗Ω

=

∫

MC

Tr (1
2
Aα∂βAγ +

1
3
AαAβAγ) dz

αβγ . (35)

Inserting (34) in (29) yields a wave equation analogous to (25) for the triplet of

complex prepotentials fβ,

∂β∂[αfβ] +
1
2
Ωβδη[∂δfη , ∂[αfβ]] = 0 . (36)

The associated heat flow equation takes the form

∂

∂t
fα = ∂β∂[αfβ] +

1
2
Ωβδη [∂δfη , ∂[αfβ]] . (37)

The reduction of (29),(30) to the missing d = 5 case involves choosing a con-

stant unit vector in R6 and projecting to the five-dimensional space orthogonal

to it. Without loss of generality, we may simply choose one of the basis vectors,

say e6, effectively deleting the variables x6 and yielding an SO(4)-invariant 4-

form T = dx1245. The corresponding equations (see [4]) are an embedding of

four-dimensional self-duality (21) in five dimensional space. A five dimensional

reduction of the Chern-Simons action (35) and corresponding flow equations

were discussed some time ago by Nair and Schiff [29].
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4.2 Flow to d=7 and d=8

Since the three complex equations (29) have an action (35), we may write down

the partial curvature flow, for the three complex potentials Aα, now depending

on seven variables (zα, zα, x7):

∂

∂x7
Aα = ΩαβγF

βγ , α = 1, 2, 3. (38)

This being the gradient flow for the functional (35). Now, analogously to the

four-dimensional case (20), an x7-dependent gauge transformation yields the

fully gauge covariant form of this partial curvature flow

F7α = ΩαβγF
βγ ⇔ {F71 = F2̄3̄ , F72 = F3̄1̄ , F73 = F1̄2̄} . (39)

Here ∂/∂x7 denotes the real vector field (the ‘time’ of the flow) and α, β, γ =

1, 2, 3 are complex indices. The three complex equations (39) together with the

real equation,

gαβFαβ = F11̄ + F22̄ + F33̄ = 0 , (40)

imply the Yang-Mills equations in seven dimensions. Choosing real coordinates

(x1, . . . , x7), these equations they take the manifestly G2-invariant form [4]

ψijkF
jk = 0 , i, j, k = 1, . . . , 7 . (41)

Here ψ is the G2-invariant Cayley three form whose components ψijk provide

structure constants of the algebra of imaginary octonions. Choosing the first

six real coordinates as the real and imaginary parts of the complex coordinates

as follows, zα = xα + ixα+3 , α = 1, 2, 3, we obtain,

ψ = dx367 + dx257 + dx147 + dx465 + dx243 + dx135 + dx162. (42)

Its four-form dual is given by

ϕ := ∗ψ = dx1245 + dx1346 + dx2356 + dx7123 + dx1567 + dx7246 + dx3457, (43)

in terms of which the equations (41) take the form,

Fij +
1
2
ϕijklF

kl = 0 , i, j, k = 1, . . . , 7 , (44)

which projects the curvature to the λ = −1 eigenspace of ϕ; the eigenspace

decomposition of the space of 2-forms being [4]

Λ2
R

7 = (g2 , λ = −1)⊕ (R7 , λ = 3). (45)
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Since the system (41) consists of 7 equations for 7 potentials and has the

Chern-Simons type action

SCS =

∫

M7

Tr (AdA+ A3) ∧ ∗ψ =

∫

M7

Tr (1
2
Ai∂jAk +

1
3
AiAjAk) ψ

ijk , (46)

we can immediately write down the corresponding partial curvature flow in eight

dimensions analogous to (18):

∂

∂x8
Ai =

1
2
ψijkF

jk , i = 1, . . . , 7 . (47)

This is the temporal gauge (A8 = 0) form of the Spin(7)-invariant equations

in eight dimensions, which were discovered in [4] and shown there to arise as

the projection of the curvature form to the λ = −1 eigenspace of the Spin(7)-

invariant 4-form φ,

Fab +
1
2
φabcdF

cd = 0 , a, b, c, d = 1, . . . 8 , , (48)

where in terms of the seven dimensional forms ψ , ϕ in (41) and (44) the four-

form φ in eight dimensions is given by φ = dx8 ∧ ψ + ϕ. The decomposition

Λ2R8 into eigenspaces of this 4-form is given by

Λ2
R

8 = (spin7 , λ = −1)⊕ (R7 , λ = 3). (49)

In complex coordinates, zα = xα + ixα+4 , α = 1, 2, 3, 4, the equations (48)

take the form (see [4]) incorporating (39),

Fαβ +
1
2
Ωαβγδ F

γδ = 0 ⇔ {F41 = F2̄3̄ , F42 = F3̄1̄ , F43 = F1̄2̄}

gαβFαβ = 0 ⇔ F11̄ + F22̄ + F33̄ + F44̄ = 0 , (50)

where g is the U(4)-invariant hermitian metric on C4 ≃ R8 and Ω = dz1234

is the SU(4)-invariant volume form in C4. In the complex ‘temporal’ gauge,

A4 = 0, the three complex equations in (50) therefore take the form of a partial

curvature flow with complex flow parameter z4,

∂

∂z4
Aα = 1

2
Ωαβγ F

βγ (51)

∂

∂z4
A4̄ = gαβ3 Fαβ (52)

14



where Ωαβγ , g
αβ
3 are the volume form and inverse metric of the complex 3-space

orthogonal to the complex vector field ∂/∂z4. The equation (51) thus gives the

complex variation of the Chern-Simons action (35).

All the above duality equations in dimensions up to eight are more or less

well-known [4]. Our main result is that the pattern of succesive dimensional

oxidation actually continues to higher dimensions. Proceeding further, we see

that a particularly interesting 12-dimensional system results.

5 Self-duality in 12 dimensions

Following the method of oxidising the duality equations from R4 to R6, we

now extend the system (50) in C4 to C6 by juxtaposing two additional complex

variables z5, z6 and then remixing the six complex indices by requiring symmetry

under permutations generated by σ = (135)(246) ∈ S6. We thus obtain the

equations,

gαβFαβ = F11̄ + F22̄ + F33̄ + F44̄ + F55̄ + F66̄ = 0 , (53)

together with

F12 + F3̄4̄ + F5̄6̄ = 0 , F34 + F5̄6̄ + F1̄2̄ = 0 , F56 + F1̄2̄ + F3̄4̄ = 0 (54)

F13 + F4̄2̄ = 0 , F14 + F2̄3̄ = 0 , F15 + F6̄2̄ = 0

F16 + F2̄5̄ = 0 , F35 + F6̄4̄ = 0 , F36 + F4̄5̄ = 0 . (55)

These equations imply the 12-dimensional Yang-Mills equations! The proof fol-

lows from Theorem 2 and the observation that these equations allow expression

in the form (9), (10), with the (4,0)-form Φ taking the form

Φ = dz1234 + dz1256 + dz3456 . (56)

This four-form is thus given by Φ = ω2, where ω is the symplectic (2,0)-form

ω = dz12 + dz34 + dz56 ∈ Λ2
C

6 . (57)

This is analogous to the R6 case, except that now everything is complex. The

(4,0)-form Φ is manifestly invariant under the action of Sp(3) ⊂ SU(6) ⊂

Spin(12).

The three conditions in (54) are equivalent to the four real equations,

Im(F1̄2̄) = Im(F3̄4̄) = Im(F5̄6̄) = 0 ,

Re(ωαβFαβ) = Re(F1̄2̄ + F3̄4̄ + F5̄6̄) = 0 , (58)
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where the symplectic (0,2)-form ω = ωαβdz
α ∧ dzβ = dz1̄2̄ + dz3̄4̄ + dz5̄6̄ and

ωαβωβγ = δαγ . The system of equations thus consists of 5 real equations, (53)

and (58), together with 6 complex equations (55), a total of 17 real equations.

The entire system (53),(54),(55) in real coordinates for 12-dimensional eu-

clidean space given by xi = Re zi , xi+6 = Im zi , i = 1, . . . , 6 , takes the following

form. Here we denote the indices 10,11,12 by 0, a, b respectively.

F12 + F34 + F56 + F87 + F09 + Fba = 0 (59)

F17 + F28 + F39 + F40 + F5a + F6b = 0 (60)

F13 + F42 + F97 + F80 = 0

F14 + F23 + F07 + F98 = 0

F15 + F62 + Fa7 + F8b = 0

F16 + F25 + Fb7 + Fa8 = 0

F35 + F64 + Fa9 + F0b = 0

F36 + F45 + Fb9 + Fa0 = 0

F19 + F73 + F84 + F20 = 0

F10 + F74 + F92 + F38 = 0

F1a + F75 + F86 + F2b = 0

F1b + F76 + Fa2 + F58 = 0

F3a + F95 + F06 + F4b = 0

F3b + F96 + Fa4 + F50 = 0 (61)

F18 + F72 = 0

F30 + F94 = 0

F5b + Fa6 = 0 (62)

These equations have the familiar form (6), with the 4-form T(12) ∈ Λ4R12 being

given by the special democratic form

T(12) = dx1234 + dx1256 + dx1287 + dx1209 + dx12ba + dx1397 + dx1380

+dx1407 + dx1498 + dx15a7 + dx158b + dx16b7 + dx16a8 + dx2307

+dx2398 + dx2479 + dx2408 + dx25b7 + dx25a8 + dx267a + dx26b8

+dx3456 + dx3487 + dx3409 + dx34ba + dx35a9 + dx35b0 + dx36b9

+dx36a0 + dx45b9 + dx45a0 + dx469a + dx46b0 + dx5687 + dx5609

+dx56ba + dx7890 + dx78ab + dx90ab, (63)
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which has a set of 39 non-zero components. The characteristic polynomial of this

Sp(3)-invariant four-form, acting on the space of two-forms has been calculated

using Maple. The eigenspace decomposition of the space of 2-forms in terms of

Sp(3) representations (see e.g. [30, 31]) is given by

Λ2
R

12 =
(

sp3 ⊕ V 14(π2)⊕ V 14(π2) , λ = −1
)

⊕
(

V 14(π2) , λ = −3
)

⊕ (Cω , λ = −5) ⊕ (Rω0 , λ = 3) . (64)

Here, ω is the symplectic form (57) and ω0 the metric form ω0 = gαβdz
α ∧ dzβ .

V 14(π2) denotes the 14-dimensional representation with highest weight π2, the

2nd fundamental weight of sp3. The 4-form T(12) is in fact one of six Sp(3)-

invariant 4-forms in 12 dimensions. The 17 equations (59)-(61) project the cur-

vature two-form to the 49-dimensional eigenspace with eigenvalue λ = −1. The

other eigenspaces have rather small dimensions compared with dim(Λ2R12) =

66. We therefore expect the corresponding solutions to be rather trivial. Sp(3),

the stabiliser of the 4-form T(12) is a maximal subgroup of SU(6).

The similarity of the equations (53)-(55) to the three and six dimensional

sytems in R3 and C3 ≃ R6 discussed above suggests that this is the counterpart

in three dimensional quaternionic space H3 ≃ C6. The imaginary quaternion

units satisfy i2 = j2 = k2 = −1 and ij = −ji = k, together with the relations

which result on cyclically permuting (i, j, k). We consider C to be an R-vector

space spanned by (1, i) and H a C-vector space spanned by (1, j). Scalar mul-

tiplication of z ∈ C with the quaternionic basis element j satisfies zj = jz, so

quaternions may be written in the form

q := z + jw = z + wj , q ∈ H , z, w ∈ C . (65)

The conjugate quaternion is then given by

q := z − wj = z − jw , q ∈ H , z, w ∈ C . (66)

The conjugate imaginary units are clearly given by i = −i , j = −j , k = −k .

Quaternions being noncommutative, conjugation is an involutive antiautomor-

phism, i.e. q = q and q1q2 = q2q1. There exist related involutive automorphisms

given by conjugation with the quaternion units,

id : q 7→ q = z + wj ,

α : q 7→ −iqi = z − wj ,

β : q 7→ −jqj = z + wj ,

γ : q 7→ −kqk = z − wj , (67)
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in terms of which the real and imaginary parts of q can be expressed as linear

combinations of q, α(q), β(q), γ(q) (see e.g. [32]).

Now, let M be a three quaternionic-dimensional (i.e. 12 real-dimensional)

space. In a local coordinate frame TpM ≃ H3 ≃ C6. We define three quater-

nionic coordinates qA , A = 1, 2, 3, in terms of pairs of the complex coordinates

zα := xα + ixα+6 , α = 1, . . . , 6 used above,

q1 := z1 + z2j = x1 + ix7 + jx2 + kx8 ,

q2 := z3 + z4j = x3 + ix9 + jx4 + kx0 ,

q3 := z5 + z6j = x5 + ixa + jx6 + kxb (68)

and we denote the conjugate coordinates as qA = qA.

For any two quaternionic vector fields Q1, Q2 the curvature components

F (Q1, γ(Q2)) and F (Q2, γ(Q1)) have the same content in terms of real curvature

components, since γ is an involutive automorphism. We now denote the basis

vectors of the coordinate vector fields onM by QA := ∂/∂qA, their quaternionic

conjugates by QA := QA = ∂/∂qA and their α, β, γ-conjugates by Qα(A) :=

α(QA), etc. The hermitian metric in local quaternionic coordinates is given by

d2s = gABdq
AdqB = dq1dq1 + dq2dq2 + dq3dq3.

Proposition 1 On a three quaternionic dimensional Riemannian manifold,

the following 8 quaternionic curvature constraints are equivalent to the system

(59)-(62) of self-duality equations in 12 dimensions:

gAB F (QB , Qα(A)) =
3

∑

A=1

F (QA , Qα(A)) = 0 (69)

gAB F (QB , Qβ(A)) =

3
∑

A=1

F (QA , Qβ(A)) = 0 (70)

F (Q1 , Qγ(2)) = F (Q2 , Qγ(3)) = F (Q3 , Qγ(1)) = 0 (71)

F (Q1 , Qγ(1)) = F (Q2 , Qγ(2)) = F (Q3 , Qγ(3)) = 0 . (72)

Proof: The equivalence to the 17 equations (59)-(62), or equivalently to the

complex form (53)-(55) follows from a direct expansion of the quaternionic

vector fields in the basis (1, j). �
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6 Flowing to 14 dimensions

The similarity between the 3 quaternionic equations in (71), the 3 complex

equations in (29) and the 3 real equations in (??) immediately suggests that

in analogy to the flows (18) and (38), we may write down flows for the three

quaternionic partial curvatures in (71) into a futher complex direction, with

coordinate z7. We write, in M = M3
H
× C with coordinates (q1, q2, q3, z7), in

analogy with (51) and (52),

∂

∂z7
A(Q1) = −F (Q2 , Qγ(3))

∂

∂z7
A(Q2) = −F (Q3 , Qγ(1))

∂

∂z7
A(Q3) = −F (Q1 , Qγ(2))

∂

∂z7
A(Z7) =

3
∑

A=1

F (QA , Qα(A)) (73)

together with (70), considered as an equation in 14 dimensions,

3
∑

A=1

F (QA , Qβ(A)) = 0 . (74)

Writing the quaternionic vector fields QA , A = 1, . . . , 3 in terms of complex

vector fields Zα , α = 1, . . . , 6 according to the choice in (68) and unravelling

the A(Z7) = 0 gauge, we obtain the system

F (Z7 , Z1 + Z2j) + F (Z3 − jZ4 , Z5 − Z6j) = 0

F (Z7 , Z3 + Z4j) + F (Z5 − jZ6 , Z1 − Z2j) = 0

F (Z7 , Z5 + Z6j) + F (Z1 − jZ2 , Z3 − Z4j) = 0

F (Z7 , Z7) −
3

∑

α=1

F (Z2α−1 − jZ2α , Z2α−1 − jZ2α) = 0

3
∑

α=1

F (Z2α−1 − jZ2α , Z2α−1 + jZ2α) = 0 (75)

Expanding the quaternionic vector fields in the basis (1, j), we obtain equations
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on C7, which are contained in the system

Fαβ +
1
2
Φαβγδ Fγδ = 0 (76)

gαβFαβ = 0 (77)

with Φ given by the GC

2 -invariant (4,0)-form

Φ = dz1234 + dz1256 + dz3456 + dz1375 + dz1467 + dz2367 + dz2457. (78)

By Theorem 2 we therefore have a system of equations which implies the Yang-

Mills equations in 14 dimensions.

Unlike the previous analogous cases, the equations (76) are not equivalent

to the set (75). The former set contains more equations than the latter. More

precisely, (76) includes, for instance, the three equations

F71 + F3̄5̄ + F6̄4̄ = F71 + F3̄5̄ + F64 = F71 + F35 + F6̄4̄ = 0 . (79)

Under the GC

2 -invariant 4-form Φ, both real and imaginary parts of Fαβ split

into their 7- and 14-dimensional irreducible parts. The equations of the form

(79) imply that under (76) the real part is projected to the 14-dimensional piece

(7 equations) and the imaginary part is zero (21 equations). The real form of

the system (76),(77) is given by the set of 29 equations,

F18 + F29 + F30 + F4a + F5b + F6c + F7d = 0

F12 + F34 + F56 − F89 − F0a − Fbc = 0

F13 − F24 − F80 + F9a + Fbd + F75 = 0

F14 + F23 − F8a − F90 − Fcd − F76 = 0

F15 − F26 − F8b + F9c − F0d − F73 = 0

F16 + F25 − F8c − F9b + Fad + F74 = 0

F17 − F35 + F46 − F8d + F0b − Fac = 0

F72 − F36 − F45 + F9d + F0c + Fab = 0 (80)

F78 − F1d = F79 − F2d = F70 − F3d = 0

F7a − F4d = F7b − F5d = F7c − F6d = 0

F19 − F28 = F10 − F38 = F1a − F48 = 0

F1b − F58 = F20 − F39 = F2a − F49 = 0

F3a − F40 = F2b − F59 = F3b − F50 = 0

F4b − F5a = F1c − F68 = F2c − F69 = 0

F3c − F60 = F4c − F6a = F5c − F6b = 0 . (81)
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These 29 equations correspond to the λ = −1 eigenspace of the special demo-

cratic 4-form given by

T(14) = dx1234 + dx1256 + dx1298 + dx12a0 + dx12cb + dx1375 + dx13bd

+ dx1308 + dx139a + dx14a8 + dx1409 + dx1467 + dx14dc + dx15b8

+ dx159c + dx15d0 + dx16c8 + dx16b9 + dx1ad6 + dx170b + dx1a7c

+ dx2367 + dx23a8 + dx2309 + dx23dc + dx2457 + dx2480 + dx24a9

+ dx24db + dx25c8 + dx25b9 + dx2ad5 + dx268b + dx26c9 + dx20d6

+ dx207c + dx2a7b + dx3456 + dx3498 + dx34a0 + dx34cb + dx35b0

+ dx35ac + dx835d + dx93d6 + dx36c0 + dx36ba + dx83b7 + dx937c

+ dx94d5 + dx45c0 + dx45ba + dx460b + dx46ca + dx84d6 + dx847c

+ dx947b + dx5698 + dx56a0 + dx56cb + dx9a75 + dx8a76 + dx9076

+ dx890a + dx89bc + dx8057 + dx80db + dx8acd + dx90cd + dx9abd

+ dx0abc + dx187d + dx297d + dx307d + dx4a7d + dx5b7d + dx6c7d.

Its characteristic polynomial is given by

χ(T(14)) = (λ+ 1)62(λ− 3)14(λ+ 3)7(λ− 5)7(λ− 6) (82)

and the above 29 equations correspond to the projection to 62-dimensional

λ=− 1 eigenspace.

Deleting all terms containing the 14th index d from the above equations

yields the 13-dimensional reduction, corresponding to a flow along a real pa-

rameter rather than the complex one chosen in (73). This is also a set of 29

equations, projecting the curvature to the 49-dimensional λ = −1 eigenspace

of the corresponding reduction of the 4-form T(14). The reduced 4-form has

characteristic polynomial

χ(T(13)) = (λ+ 1)49(λ− 3)8(λ+ 3)(λ− 5)2(λ− 4)6(λ2 + λ− 4)6 . (83)

7 Oxidation to 16 dimensions

Analogously to the oxidations (47), (51) and (52) to eight real dimensions, we

may oxidise the system (76),(77) in C7 to one in C8 by taking gαβ to be the

C8-metric and the (4,0)-form Φ to be given by the Spin(7)C-invariant,

Φ = dz1234 + dz1256 + dz1278 + dz3456 + dz3478 + dz5678 + dz1368 (84)

+dz1375 + dz1467 + dz1458 + dz2367 + dz2457 + dz2358 + dz2486. (85)
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The corresponding system includes the flow equations based on (75),

F (Z8 , Z1j − Z2) + F (Z7 , Z1 + Z2j) + F (Z3 − jZ4 , Z5 − Z6j) = 0

F (Z8 , Z3j − Z4) + F (Z7 , Z3 + Z4j) + F (Z5 − jZ6 , Z1 − Z2j) = 0

F (Z8 , Z5j − Z6) + F (Z7 , Z5 + Z6j) + F (Z1 − jZ2 , Z3 − Z4j) = 0

F (Z8 , Z8) + F (Z7 , Z7) −

3
∑

α=1

F (Z2α−1 − jZ2α , Z2α−1 − jZ2α) = 0

4
∑

α=1

F (Z2α−1 − jZ2α , Z2α−1 + jZ2α) = 0 .(86)

The real form of the full system of equations with (4,0)-form Φ given in (85)

is given by

F12 + F34 + F56 + F78 − F90 − Fab − Fcd − Fef = 0

F13 − F24 − F57 + F68 − F9a + F0b + Fce − Fdf = 0

F14 + F23 + F58 + F67 − F9b − F0a − Fcf − Fde = 0

F15 − F26 + F37 − F48 − F9c + F0d − Fae + Fbf = 0

F16 + F25 − F38 − F47 − F9d − F0c + Faf + Fbe = 0

F17 − F28 − F35 + F46 − F9e + F0f + Fac − Fbd = 0

F18 + F27 + F36 + F45 − F9f − F0e − Fad − Fbc = 0

F19 + F20 + F3a + F4b + F5c + F6d + F7e + F8f = 0

F79 − F1e = F80 − F2f = F5a − F3c = F6b − F4d = 0

F70 − F2e = F3d − F6a = F4c − F5b = F1f − F89 = 0

F69 − F1d = F2c − F50 = F3f − F8a = F7b − F4e = 0

F1c − F59 = F2d − F60 = F3e − F7a = F8b − F4f = 0

F1b − F49 = F5f − F8c = F2a − F30 = F6e − F7d = 0

F6f − F8d = F5e − F7c = F40 − F2b = F39 − F1a = 0

F7f − F8e = F5d − F6c = F10 − F29 = F3b − F4a = 0 . (87)

The corresponding 4-form T(16) ∈ Λ4
R

16 has characteristic polynomial

χ(T(16)) = (λ+ 1)84(λ− 3)21(λ− 7)8(λ+ 5)7 , (88)

so the above 36 equations correspond to the vanishing of the imaginary part of

Fαβ (28 equations), the 7-dimensional irreducible piece of the real part of Fαβ

and the singlet trace condition on the (1,1)-curvature.
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Deleting all terms containing f , the 16th index, from the above equations

yields 36 equations in 15 dimensions which projects the curvature to the 69-

dimensional λ = −1 eigenspace of the corresponding 4-form T(15), which has

characteristic polynomial

χ(T(15)) = (λ+ 1)69(λ− 6)8(λ− 3)14(λ2 + 3λ− 6)7 . (89)

8 The reductions to 8 < d < 12

We now briefly comment on some reductions of the above 12-dimensional system

to the lower dimensions which were missed out in the discussion above.

d=11

Deleting all terms containing dxb in (59)-(61) yields a set of 17 equations in

11-dimensions. The correspondingly reduced four-form T(11) := T(12)|dxb=0 has

characteristic polynomial

χ(T(11)) = (λ+ 1)38(λ− 2)8(λ− 3)5(λ− 4)2(λ2 + λ− 4). (90)

d=10

Reducing the above 11-dimensional 4-form further to the 10-dimensional hy-

persurface defined, for instance, by x6 = 0 yields a 4-form with characteristic

polynomial

χ(T(10)) = (λ+ 1)30(λ− 1)8(λ− 3)6(λ− 4). (91)

The λ = −1 eigenspace corresponds to a set of 15 equations amongst the 45

curvature components. This case is the complex counterpart of the d = 5 case

discussed at the end of section 4.1. In C5, these equations take the form (9),(10)

with α, β = 1, . . . , 5 and the complex (4,0)-form given by the contraction of the

(5,0) volume form with a constant unit (0,1)-vector. This (4,0)-form is the

SU(4)-invariant volume form in the 4-dimensional complex space orthogonal to

this vector. Choosing, this vector, for instance in the direction of the z5-axis,

we obtain Φ = dz1234, yielding the following equations on C5

F11̄ + F22̄ + F33̄ + F44̄ + F55̄ = 0

F12 + F3̄4̄ = F13 + F4̄2̄ = F14 + F2̄3̄ = 0

F15 = F25 = F35 = F45 = 0 . (92)
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d=9

The most symmetric reduction of (92) to 9-dimensions, making z5 real, is a

trivial embedding of the Spin(7)-invariant set of equations (50) in 9 dimensions.

9 Some open questions

An intruiguing open problem is the relation of the 12-dimensional system to

sextonions and to the ‘missing row’ of the Freudenthal magic square related to

E
7
1
2
(see [12, 6]).

In the cases where the duality equations describe (partial) curvature flows,

it remains to be seen whether solutions in the bulk can always be seen as arising

from solutions on the initial value surface (boundary) of the flow. For instance,

to what extent can the known four-dimensional solutions of the self-duality

equations (21) be seen as arising from a flow which has a flat 3d connection as

its initial value, or do the known solutions of the 8-dimensional Spin(7)-invariant

equation [8, 9, 34] arise as a solutions of the flow equation (47) from solutions

(e.g. [33]) of the G2-invariant equation (41) on the initial value seven-fold.
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