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We discuss the effect of superimposing multiple sources of resonant non-Gaussianity, which

arise for instance in models of axion inflation. The resulting sum of oscillating shape contribu-

tions can be used to “Fourier synthesize” different non-oscillating shapes in the bispectrum.

As an example we reproduce an approximately equilateral shape from the superposition of

O(10) oscillatory contributions with resonant shape. This implies a possible degeneracy

between the equilateral-type non-Gaussianity typical of models with non-canonical kinetic

terms, such as DBI inflation, and an equilateral-type shape arising from a superposition of

resonant-type contributions in theories with canonical kinetic terms. The absence of oscilla-

tions in the 2-point function together with the structure of the resonant N -point functions,

imply that detection of equilateral non-Gaussianity at a level greater than the PLANCK

sensitivity of fNL ∼ O(5) will rule out a resonant origin. We comment on the questions

arising from possible embeddings of this idea in a string theory setting.

November 2, 2012

ar
X

iv
:1

21
1.

00
70

v1
  [

he
p-

th
] 

 1
 N

ov
 2

01
2



Contents

1 Introduction 2

2 A sum of resonant bispectra 4

2.1 Potential, solution and slow-roll parameters . . . . . . . . . . . . . . . . . . 4

2.2 The power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The bispectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Equilateral features from summed resonant non-Gaussianity 10

3.1 Equilateral and local shapes for x− → 0 . . . . . . . . . . . . . . . . . . . . . 12

3.2 Scale invariance vs. scale dependence . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Fourier analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Constraints from the power spectrum . . . . . . . . . . . . . . . . . . . . . . 18

4 Possible avenues for embedding: Axion monodromy inflation 19

4.1 Axion monodromy inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Periodic corrections to the potential . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusions 23

A Computing the mode functions and bispectrum 25

A.1 The mode functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.2 Mode functions in the bispectrum . . . . . . . . . . . . . . . . . . . . . . . . 28

A.3 Squeezed limit consistency relation . . . . . . . . . . . . . . . . . . . . . . . 28

1



1 Introduction

Recent years have seen the advent of precise observations of the cosmic microwave back-

ground radiation (CMB) [1, 2, 3], and the redshift-distance relation for large samples of

distant type IA supernovae [4, 5], as well as a host of additional increasingly precise measure-

ments such as baryon acoustic oscillations [6] or the determination of the Hubble parameter

H0 by the Hubble Space Telescope key project [7]. These results are so far in concordance

with a Universe very close to being spatially flat, as well as with a pattern of coherent

acoustic oscillations in the early dense plasma which was seeded by an almost scale-invariant

spectrum of super-horizon size curvature perturbations with Gaussian distribution. This

structure is a direct consequence of a wide class of models of cosmological inflation driven

by the potential energy of a single scalar field with canonically normalized kinetic energy in

(strict) slow-roll. In these models of inflation the spectrum of scalar curvature perturbations

generated during the quasi-de-Sitter phase is necessarily Gaussian, with 3-point interactions

generating very small non-Gaussian deviations fNL = O(ε, η) of order of the slow-roll param-

eters during inflation [8]. Consequently there are large classes of inflationary models which

generate sizable levels of non-Gaussianity and are characterized by departures from one or

more of the defining properties of canonically normalized single-field slow-roll inflation.

Non-Gaussianity can arise from a non-canonical kinetic term for a single scalar field

characterized by the presence of higher-derivative terms, from controlled non-permanent

violations of slow-roll such that the overall inflationary behaviour is preserved, or from the

presence of several light scalar fields during inflation. A series of results have established

that these different mechanisms of generating a large 3-point function and its associated non-

Gaussianity lead to different ‘shapes’, the distributions of the amount of non-Gaussianity over

the momentum-conservation dictated triangular domain of the three fluctuation momenta in

the 3-point function. These shape functions allow for discrimination among many different

classes of inflationary models, provided one has sufficient measurement accuracy for the

shape, and one has shown the existence of a complete orthonormal system of shapes of

non-Gaussianity in the space of inflation models. For two recent reviews see e.g. [9, 10].

In this article, we explore the degeneracy, at the level of non-Gaussianity, of different

classes of inflationary models. Specifically we study degeneracy between models of inflation

characterized by so-called non-canonical kinetic terms such as DBI inflation [11, 12] and
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theories which are purely canonical. By non-canonical kinetic terms we mean terms of the

form Xn, where X = 1
2
∂µφ∂µφ, so that a non-canonical Lagrangian is given by some general

P (X,φ) [13]. These are thus a subset of the theories described by the Horndeski action,

which is the most general action for a single field with at most two time derivatives acting

on it at the level of the equation of motion, i.e. the most general action for a single scalar

field without ghosts or Ostrogradski instabilities (See e.g. [14] and [15]).

Theories in this class give rise to an equilateral-type non-Gaussianity inversely propor-

tional to the reduced speed of sound, cs (see e.g. [16]):

f equilNL ∼ 1

c2
s

, (1.1)

where

c2
s =

(
1 + 2X

PXX
PX

)−1

. (1.2)

By contrast, canonical slow-roll single scalar field models give rise to Gaussian spectra

(with corrections of order the slow-roll parameters) for which all odd-point correlation func-

tions vanish and all even-point correlations are given in terms of the two-point functions.

How then could there be any observational degeneracy between a model of non-canonical

inflation and a canonical single scalar field model of inflation? In fact, single scalar field

models with canonical kinetic term give rise to (approximately) Gaussian spectra only as

long as the slow-roll conditions are always satisfied. As argued in [17], these theories can

generate observably large non-Gaussianities when there are features in the potential. The

two classes of such models considered in [17] are: 1) potentials with steps resulting in a

localized violation of slow-roll, and 2) potentials with a small modulation which imply a

large variation η̇ for small ε and η. Because one of the terms in the three-point function

is proportional to εη̇, this can give rise to an appreciable non-Gaussianity with a specific

shape, termed resonant non-Gaussianity [18], which is orthogonal to the local and equilat-

eral shapes. Resonant non- Gaussianity comes with the additional property of allowing for

very efficient calculability of the N -point functions up to N = 10 . . . 20 [19].

However, as we shall show, a closely related model, in which a sum of such modulations

in the potential is present, leads to a very different non-Gaussianity. Its shape is of the

equilateral type in the sense that its momentum average has a large overlap with the standard

equilateral one, despite the lack of non-canonical kinetic terms. Yet, periodic scale dependent
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features remain. Thus observation of equilateral non-Gaussianity might not necessarily imply

that non-canonical kinetic terms were present or relevant in the underlying model of inflation.

This degeneracy at the level of the three-point function leads us to conclude that it may

not be as easy as previously hoped to distinguish amongst single-field models of inflation.

However, we then clarify that the non-observation of oscillating contributions to the 2-point

function, and the structure of the resonant N -point functions place tight constraints on the

maximum amount of resonantly generated non-Gaussianity with equilateral characteristics.

In particular, this implies that detection of equilateral non-Gaussianity at a level greater

than the PLANCK sensitivity of fNL ∼ O(5) will rule out a resonant origin [20]. In case

a detection of non-Gaussianity eludes PLANCK, future 21cm observations may provide a

detection capability of fNL & O(0.01) down to the slow-roll level itself due to the extremely

large number of modes (O(1016)) available [21, 22]. For equilateral-type non-Gaussianities of

this magnitude there is then a degeneracy between a possible non-canonical and a resonant

origin.

2 A sum of resonant bispectra

2.1 Potential, solution and slow-roll parameters

From an effective field theory point of view, we can begin with a model of a single scalar

field with canonical kinetic term and modulated potential

V (φ) = V0(φ) +
∑
i

Ai cos

(
φ+ ci
fi

)
, (2.3)

where we have generalized the modulated potential in [18] to the case where the modulation

is a series of terms with varying phases. For suitable coefficients and values of fi, the sum

remains a small perturbation on the potential V0(φ) (see Figure 1). We will show that slow-

roll inflation for this theory is supported for sufficiently large fi, while a large variation in

the slow-roll parameters is possible. In Sections 2.2 and 2.3 we give the power spectrum

and bispectrum respectively, finding that the bispectrum is given by a series of the resonant

bispectra found for a singly modulated potential in [18]. We shall follow closely the analysis

in [18]. The details of our calculations are given in Appendix A.

The equation of motion for the inflaton φ with potential eq. (2.3) is
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Figure 1: Modulated linear potential, for a convenient choice of ci, fi values.

φ̈+ 3Hφ̇+ V ′0(φ) =
∑
i

Ai
fi

sin

(
φ+ ci
fi

)
. (2.4)

As in [18] we treat the oscillations as a perturbation and write φ = φ0 + φ1 + ... where

φ0 is the solution in the absence of modulations, given by

φ̇0 = − V ′0(φ0)√
3V0(φ0)

. (2.5)

The equation of motion for φ1, written in terms of derivatives with respect to φ0 (denoted

by a prime) is

φ′′1 −
3√
2εV0

φ′1 −
(

3

2
− 3ηV0

2εV0

)
φ1 =

3

2εV0V0

∑
i

Ai
fi

sin

(
φ0 + ci
fi

)
, (2.6)

where V0 = V0(φ0), and εV0 and ηV0 are the canonical slow-roll parameters evaluated for the

potential V0. Note that ε′V0 =
√

2εV0(ηV0 − 2εV0). The solution is a generalization of that

found in [18]; to first order in slow-roll parameters and assuming fi �
√

2ε? ∀ i, it is given

by

φ1(t) = − 3

2ε?V0(φ?)

∑
i

Aifi sin

(
φ0 + ci
fi

)
, (2.7)

where the subscript ? indicates that ε = εV0(φ?) is evaluated at horizon exit. This solution

works because φ1 =
∑
φi, where each φi satisfies the EOM for a specific fi. φ0(t) is time
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dependent but, for the period of interest, in which modes observed today exit the horizon,

we can approximate it as being given by the value at horizon crossing, i.e. φ?, except in the

oscillating term. In other words we have assumed that the dominant variation in φ1 is due

to the modulating terms. Defining

b?i ≡
Ai

V ′0(φ?)fi
, (2.8)

we have that the full solution is well approximated by

φ(t) = φ0(t)−
∑
i

3b?i f
2
i√

2ε?
sin

(
φ0 + ci
fi

)
. (2.9)

The slow-roll parameters ε = − Ḣ
H2 and δ = Ḧ

2HḢ
can be calculated for the potential

eq. (2.3) and are found to be:

ε = ε? +

(
V ′0
V0

)2

φ′1,

ε = ε? − 3
√

2ε?
∑
i

b?i fi cos

(
φ0 + ci
fi

)
+O((b?i )

2),

ε = ε0 + ε1 +O((b?i )
2;

δ = ε? − η? −
√

2ε?φ
′′
1 + ε?(η? − ε?)φ1,

δ = ε? − η? −
∑
i

3b?i sin

(
φ0 + ci
fi

)
+O((b?i)2,

δ = δ0 + δ1 +O((b?i )
2.

(2.10)

The SR parameter of interest for observation is δ̇1
H

where δ0 = ε? − η? is the value of

δ coming from the unmodulated potential V0. A large δ̇
H

is what is responsible for a large

resonant non-Gaussianity in [18]. Here, we find

δ̇1

H
=

∑
i

√
2ε?
fi

3b?i cos

(
φ0 + ci
fi

)
. (2.11)

Note that
√

2ε?
fi

is large for all i for the solution eq. (2.9).

2.2 The power spectrum

As in [18], the Mukhanov-Sasaki equation for the mode function Rk of the curvature per-

turbation in our case is given by (see the Appendix for details)

d2Rk

dx2
− 2(1 + δ1(x))

x

dRk

dx
+Rk = 0, (2.12)
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where x = −kτ for τ the conformal time. We have neglected ε0 and δ0 and are working only

to leading order in ε?. The form of this equation is the same as in [18], but δ1 is now defined

in eq. (2.10) and given by

δ1 = −3
∑
i

b?i sin

(
φ0 + ci
fi

)
. (2.13)

We will find a sum of integrals each encountering resonance at a value xres,i. As in the

case of a single modulation, the effect of δ1 is negligible both at early times x � xres,i and

at late times x� xres,i. We therefore look for a solution of the form

Rk(x) = R(o)
k,0

[
i

√
π

2
x3/2H

(1)
3/2(x)− c(−)

k (x)i

√
π

2
x3/2H

(2)
3/2(x)

]
, (2.14)

where R(o)
k,0 is the value of Rk(x) outside the horizon in the absence of modulations, H

(1,2)
3/2 (x)

are Hankel functions and c
(−)
k (x) vanishes at early times. Then the Mukhanov-Sasaki equa-

tion gives an equation governing the time evolution of c
(−)
k (x) which is given by (for fi �

√
2ε?

for all i)
d

dx

[
e−2ix d

dx
c

(−)
k (x)

]
= −2i

δ1(x)

x
. (2.15)

To solve this we need δ1 as a function of the conformal time τ . In terms of τ the

background equation of motion is given by

dφ0

d ln(−τ)
=
√

2ε?, (2.16)

with solution φ0(τ) = φ? +
√

2ε? ln τ
τ?

. This can be written as φ0(x) = φk +
√

2ε? lnx, where

φk = φ? −
√

2ε? ln k
k?

is the value of the field when the mode with comoving momentum k

exits the horizon. Then, writing c
(−)
k (x) =

∑
i c

(−)
k,i (x), we need to solve

d

dx
c

(−)
k,i (x) = −6ib?i fi√

2ε?
e2ix cos(

φk
fi

+
ci
fi

+

√
2ε?
fi

lnx). (2.17)

Thus each c
(−)
k,i (x) behaves like c

(−)
k (x) in [18] but with b? = bi?, f = fi and resonance at

different x values xres,i = (2fiφ?)
−1.

For each term we can use the stationary phase approximation to find

c
(−)
k,i = 3b?i

√
π

2

(
fi√
2ε?

)1/2

e
−i(φk+ci

fi
)
, (2.18)

⇒ Rk(x) = R(o)
k,0

[
i

√
π

2
x3/2H

(1)
3/2(x)−

∑
i

3ib?iπ

2

√
fi√
2ε?

e
−i(φk+ci

fi
)
x3/2H

(2)
3/2(x)

]
. (2.19)
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Outside the horizon, k/aH � 1 i.e. x = −kτ = k/aH � 1 (using the definition of

conformal time and the fact that during inflation H is constant). Then we find

Rk(x) = R
(0)
k,0

[
1 +

∑
i

3b?i

√
fiπ

2
√

2ε?
cos

(
φk + ci
fi

)

− i
∑
i

3b?i

√
fiπ

2
√

2ε?
sin

(
φk + ci
fi

)
+O(x3)

]
,

(2.20)

and

|R(0)
k |

2 = |R(0)
k,0|

2 [1 + δns] , (2.21)

with

δns =
∑
i

3b?i

(
2πfi√

2ε?

)1/2

cos

(
φk + ci
fi

)
, (2.22)

which is just the generalization of (2.30) in [18] one might have expected.

2.3 The bispectrum

Next we ask if this generalization carries through to the bispectrum as calculated in [18]. As

in the case of a single modulation, the leading contribution comes from

HI(t) ⊃ −
∫
d3xa3(t)ε(t)δ̇(t)R2(x, t)Ṙ(x, t), (2.23)

where to linear order in b?i we can use the approximations ε ≈ ε?, δ ≈ δ1 and use the

unperturbed mode functions1

Rk(x) = R(o)
k,0i

√
π

2
x3/2H

(1)
3/2(x). (2.24)

The analysis of [18] therefore carries over to our case, with the three-point function given

by

< R(k1, t)R(k2, t)R(k3, t) >= (2π)7∆4
R

1

k2
1k

2
2k

2
3

δ3(k1 + k2 + k3)
G(k1, k2, k3)

k1k2k3

. (2.25)

for

G(k1, k2, k3)

k1k2k3

=
1

8

∫ ∞
0

dX
δ̇1

H
e−iX

[
−i− 1

X

∑
i 6=j

ki
kj

+
i

X2

K(k2
1 + k2

2 + k2
3)

k1k2k3

]
+ c.c, (2.26)

1To see why we can use the unperturbed mode functions, see Appendix A.2.
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where K ≡ k1 + k2 + k3, X ≡ −Kτ , and δ̇1 is given by eq. (2.11). Equivalently this can be

written

G(k1, k2, k3)

k1k2k3

=
1

8

∑
i

∫ ∞
0

dX
δ̇1,i

H
e−iX

[
−i− 1

X

∑
i 6=j

ki
kj

+
i

X2

K(k2
1 + k2

2 + k2
3)

k1k2k3

]
+ c.c. (2.27)

where

δ̇1,i

H
=

√
2ε?
fi

3b?i cos

(
φ0 + ci
fi

)
=

√
2ε?
fi

3b?i cos

(
φK +

√
2ε? lnX + ci
fi

)
. (2.28)

Now, for each integral in the sum the biggest contribution comes from Xres,i =
√

2ε?
fi

. This

can be seen by defining

IK,i =
3b?i
√
ε?

fi

∫ ∞
0

dXe−iX cos

(
φK +

√
2ε? lnX + ci
fi

)
=

3b?i
√

2ε?
2fi

∫ ∞
0

dX(ei(φK+ci)/fie
−i(X−

√
2ε? lnX
fi

)
+ e−i(φK+ci)/fie

−i(X+
√
2ε? lnX
fi

)
).

(2.29)

The phase of the first term can be zero while the phase of the second cannot, which

means that the first term will dominate, with its dominant contribution at Xres,i =
√

2ε?
fi

.

This confirms that the main contribution to the bispectrum arises when the modes are still

deep in the horizon. In this regime, we can approximate 1/X and 1/X2 by 1/Xres,i and

1/X2
res,i in eq. (2.27) and we have

G(k1, k2, k3)

k1k2k3

=
1

4

∑
i

[
ImIK,i −

1

Xres,i

∑
` 6=m

k`
km

ReIK,i −
1

X2
res,i

K(k2
1 + k2

2 + k2
3)

k1k2k3

ImIK,i

]
.

(2.30)

Further we can evaluate IK,i in the stationary phase approximation to get

IK,i =
3b?i
√

2π

2

(√
2ε?
fi

)3/2

ei(φK+ci)/fie−
iπ
4 e
−i(
√
2ε?
fi
−
√
2ε?
fi

ln
√
2ε?
fi

)
. (2.31)

Using φK = φ? −
√

2ε? ln K
k?

, this gives us the shape of the non-Gaussianity as a sum of

the resonant non-Gaussianity shapes in [18] (up to an overall phase):2

2Note that each term in the sum over i in eq. (2.32) actually has a different phase contribution which

depends on the fi, see eq. (2.31). However, we can absorb these terms into the ci which we are free to choose,

such that eq. (2.32) is correct.
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Gres(k1, k2, k3)

k1k2k3

=
∑
i

3
√

2πb?i
8

(√
2ε?
fi

)3/2
[

sin

(
φK + ci
fi

)
− fi√

2ε?

∑
`6=m

k`
km

cos

(
φK + ci
fi

)

−
(

fi√
2ε?

)2
K(k2

1 + k2
2 + k2

3)

k1k2k3

sin

(
φK + ci
fi

)]

=
∑
i

3
√

2πb?i
8

(√
2ε?
fi

)3/2 [
sin

(√
2ε?
fi

ln
K

k?
+
ci
fi

)
+

fi√
2ε?

∑
` 6=m

k`
km

cos

(√
2ε?
fi

ln
K

k?
+
ci
fi

)
+ ...

]
.

(2.32)

As a consistency check of our calculation, we have checked that this sum of resonant

bispectra satisfies the squeezed limit consistency relation [8, 23]. The details are presented

in Appendix A.3.

3 Equilateral features from summed resonant non-Gaussianity

We now want to discuss what kind of non-Gaussianities could have a sizable overlap with

summed resonant non-Gaussianity. One could also turn this question around and ask what

values the parameters b?i , fi and ci have to take in order to generate a degeneracy. From

an effective field theory point of view it is perfectly fine to choose ad hoc values for these

parameters as long as they are not in conflict with observations such as the power spectrum

and fulfill certain consistency conditions. For instance, the frequencies should certainly not

be super Planckian, i.e. fi < 1, and monotonicity of the inflaton potential requires b?i < 1.

A possible stringy origin of these parameters is discussed below in Section 4.

In [24, 25], bounds on oscillating features in the power spectrum were given for a quadratic

and a linear inflaton potential respectively. The bound that was found in both works is

b?i fi <
10−5

√
2ε?

, (3.33)

for a single modulation in the potential. We assume that this bound is valid for multiple

modulating terms in the potential. Regarding the applicability of the bound eq. (3.33) to

general potentials V0(φ), see the discussion in Section 3.4.
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Let us briefly discuss the general form of the bispectrum. Due to the appearance of

the delta function in eq. (2.25), a momentum configuration is completely characterized by

the absolute values of the three momenta k1, k2 and k3. Furthermore, for a scale-invariant

spectrum this reduces to two variables. Then, one usually considers the bispectrum as a

function of the two rescaled momenta x2 = k2/k1 and x3 = k3/k1. A region that includes

only inequivalent momentum configurations is given by 1− x2 ≤ x3 ≤ x2.

Let us switch to the variables x± = x2±x3, with 1 < x+ < 2 and 0 < x− < 1. Note that the

resonant non-Gaussianity eq. (2.32) is to first order in fi/
√

2ε? only a function of x+ and k1

but not of x− since

sin

(√
2ε?
fi

ln
K

k?

)
= sin

(√
2ε?
fi

(y + ln k1/k?)

)
, (3.34)

having defined y ≡ ln(1 + x+). Note that summed resonant non-Gaussianities are therefore

not scale invariant, as is clear from in the explicit dependence on k1 in eq. (3.34). We will

discuss the issue of scale dependence in Section 3.2.

Furthermore, eq. (3.34) implies that as far as other types of non-Gaussianities are con-

cerned, we can only expect degeneracies with the summed resonant type if they are pre-

dominantly a function of x+. We will show in the next section, Section 3.1, that this is

primarily the case for equilateral non-Gaussianity, typically arising in non-canonical models

of inflation.

To measure the degree of degeneracy between different kinds of non-Gaussianities we fol-

low [26]. The bispectrum can always be parametrized in the form G(k1,k2,k3)
k1k2k3

∼ fNLS(k1, k2, k3),

with ‘amplitude’ fNL and shape function S(k1, k2, k3). In general, the shape refers to the

dependence of S(k1, k2, k3) on the momentum ratios k2/k1 and k3/k1 when the overall mo-

mentum scale K is fixed, while the dependence of S on K when the momenta ki are fixed

gives the running of the bispectrum.

Now the cosine of two shapes is defined via the normalized scalar product

C(S, S ′) =
F (S, S ′)√

F (S, S)F (S ′, S ′)
, (3.35)

where

F (S, S ′) =

∫
V

dV
K
S(k1, k2, k3)S ′(k1, k2, k3) , (3.36)

with
dV
K

=
dk1 dk2 dk3

k1 + k2 + k3

=
1

2
kdk dα dβ , (3.37)
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where we have switched to the variables k, α and β defined according to [26]

k =
1

2
(k1 + k2 + k3) , k1 = k(1− β) ,

k2 =
k

2
(1 + α + β) , k3 =

k

2
(1− α + β) ,

(3.38)

with the integration boundaries

α ∈ [−1 + β, 1− β] , β ∈ [0, 1] and k ∈ [kmin, kmax] . (3.39)

3.1 Equilateral and local shapes for x− → 0

Out of the many known types of non-Gaussianities,3 we discuss the following two represen-

tative types: The equilateral type

Gequil(k1, k2, k3)

k1k2k3

= f equilNL Sequil(k1, k2, k3) , (3.40)

with

Sequil(k1, k2, k3) =
(k1 + k2 − k3)(k1 + k3 − k2)(k3 + k2 − k1)

k1k2k3

, (3.41)

is characteristic of non-canonical inflation.

The local type is given by

Glocal(k1, k2, k3)

k1k2k3

= f localNL Slocal(k1, k2, k3) , (3.42)

with

Slocal(k1, k2, k3) =
k3

1 + k3
2 + k3

3

k1k2k3

, (3.43)

and is dominant in multi-field inflation for instance.

In the limit x− → 0, the shape functions are given by

S
x−→0
equil (x+) =

4(x+ − 1)

x2
+

, (3.44)

S
x−→0
local (x+) =

4 + x3
+

x2
+

. (3.45)

Now, one can evaluate the cosine eq. (3.35) to find the overlap of Sequil and S
x−→0
equil (x+):

C(Sequil, S
x−→0
equil ) = 0.93 . (3.46)

3For an overview see e.g. [9].
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Hence, the equilateral shape is well approximated by its x− → 0 limit. For the local shape the

overlap is much smaller. Slocal diverges for squeezed momentum configurations which makes

it necessary to regulate the integrals that enter the cosine eq. (3.35). We only give an upper

bound C(Slocal, S
x−→0
local ) < 0.7, which was obtained by cutting the integration boundaries

eq. (3.39) as follows:

β ∈ [∆, 1−∆] with ∆ = 5 · 10−5 . (3.47)

The different qualitative levels of agreement of the equilateral and local shape are also

visualized in Figure 2. Notice that the shape function Snon−can from non-canonical inflation

shows a slightly more complicated momentum dependence than the equilateral shape func-

tion eq. (3.41), see [16]. We find C(Snon−can, S
x−→0
non−can) > 0.93, so the approximation by the

x− → 0 limit is even better in the case of Snon−can.

3.2 Scale invariance vs. scale dependence

Let us now discuss how well the scale-invariant equilateral shape can be approximated by

a scale-dependent shape, such as summed resonant non-Gaussianity. It is obvious that the

overlap cannot be made arbitrarily large; however, we will show in the following that the

overlap can still be considerable.

Let Sperequil(y) be the periodic generalization of

S
x−→0
equil (y) = 4

ey − 2

(ey − 1)2
, y ∈ [ln 2, ln 3] , (3.48)

to y ∈ R, i.e. Sperequil(y+∆y) = Sperequil(y) with ∆y = ln 3− ln 2. This definition is motivated by

the fact that we are going to Fourier expand on the interval y ∈ [ln 2, ln 3] and this expansion

will itself be periodic with period ∆y.

Furthermore, let us consider the scale-dependent shape Sperequil(y+ln k1/k?) = Sperequil(lnK/k?)

which is a shape that can be approximated by the shape of some combination of resonant

non-Gaussianities, since they have the same functional dependence, see eq. (3.34). The

different shapes in (y, ln k1/k?) space are shown in Figure 3.

The calculation of the cosine eq. (3.35) between the shapes Sperequil(ln 2k/k?) and Sequil(α, β)

13
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Figure 2: The equilateral and local shape functions (left) and their approximations x− → 0

(right).

simplifies due to the reduced dependencies on the integration variables k, α and β to

C
(
Sequil, S

per
equil

)
=

∫
dα dβ Sequil(α, β)(

2
∫
dα dβ Sequil2(α, β)

)1/2

2
∫ kmax
kmin

dk k Sperequil(ln 2k/k?)(
[k2
max − k2

min]
∫ kmax
kmin

dk k Sperequil
2(ln 2k/k?)

)1/2

(3.49)

We find that eq. (3.49) is to very good approximation independent of the values of kmin and

kmax, if kmin � k? and kmax � k?. This is due to the periodicity of Sperequil(ln 2k/k?), yielding

the second fraction on the RHS of eq. (3.49) essentially independent of these values. For

kmax = 104k? and kmin = 10−4k?, we find

C
(
Sequil, S

per
equil

)
= 0.83 . (3.50)

Let us also mention that the overlap would be greater than 83%, if we had considered

14



Figure 3: The scale-invariant shape S
x−→0
equil (y) (left) and scale-dependent shape Sperequil(y +

ln k1/k?) (right) for y ∈ [ln 2, ln 3] and ln k1/k? ∈ [0,∆y]

not the equilateral shape function eq. (3.41), but the exact shape function [16] that arises in

non-canonical single field models of inflation. This is due to the fact that the overlap between

Sx−→0 and S is larger than for the equilateral shape function eq. (3.41), as discussed at the

end of Section 3.1.

3.3 Fourier analysis

Having found that the equilateral shape function has a non-negligible degeneracy with the one

dimensional function Sperequil(y + ln k1/k?), the question of degeneracy with summed resonant

non-Gaussianities can be expressed in terms of a Fourier analysis. Let us set k1 = k? for

conciseness in the remainder of this section; however the following analysis is valid for all

values of k1.

Let us define

Bi =
3
√

2πb?i
8

(√
2ε?
fi

)3/2

and Fi =

√
2ε?
fi

. (3.51)

Then, summed resonant non-Gaussianity, eq. (2.32), can, to first order in fi/
√

2ε?, be written

15



in the form4

Gres
k1k2k3

(y) =
2N∑
i=1

Bi sin(Fiy + Ci) =
N∑
i=1

Bi cos(Fiy) +BN+i sin(Fiy) (3.52)

where in the last equality of eq. (3.52), we have chosen the phases Ci such that there appears

a sine and a cosine for each frequency Fi.

The Fourier expansion of a generic function f(y) on the interval y ∈ [a, a+ b] is given as

f(y) ' u0

2
+

N∑
i

[
ui cos

(
2πi

b
y

)
+ uN+i sin

(
2πi

b
y

)]
, (3.53)

with

ui =
2

b

∫ a+b

a

f(y) cos

(
2πi

b
y

)
dy for i ≥ 0 ,

uN+i =
2

b

∫ a+b

a

f(y) sin

(
2πi

b
y

)
dy for i ≥ 1 .

(3.54)

Note that eq. (3.52) is of the Fourier form, eq. (3.53), if the constant term

u0 =
2

b

∫ a+b

a

f(y)dy , (3.55)

is zero. Since Sperequil(y) is monotonically increasing and has a zero at ln 2, the numbers a and

b can always be chosen such that u0 = 0. Note that we can always redefine Sperequil(y) on the

(non-physical) interval [ln 2 − ξ, ln 2] for ξ � 1 such that the integral eq. (3.55) has a large

negative contribution on this interval, i.e.

u0 ∼
∫ a+b

a

f(y)dy =

∫ ln 2

ln 2−ξ
f(y)dy +

∫ ln 3

ln 2

f(y)dy , (3.56)

where the first term on the RHS of eq. (3.56) is negative and has the same absolute value

as the positive second term such that u0 = 0. For instance one could use f(y) = −|f0| with

|f0| � 1 for y ∈ [ln 2− ξ, ln 2]. Hence, b = ln 3− ln 2.

In Figures 4 and 5, we show the Fourier expansion of Sperequil(y) for N = 5 and N = 10.

The coefficients ui are given in table 1 for N = 5.

4Due to the suppression by fi/
√

2ε? � 1, the second order contribution to Gres/(k1k2k3) induces a

non-negligible correction only in the squeezed momentum configurations which we ignore in the following.
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Figure 4: Fourier expansion of Sperequil(y) for N = 5 (left) and N = 10 (right).

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

0.41 0.01 -0.17 0.04 0.09 -0.20 0.24 -0.03 -0.12 0.05

Table 1: Fourier expansion coefficients ui, eq. (3.54), of Sperequil(y) for N = 5.

Let us discuss how the Fourier expansion parameters a, b and ui of eq. (3.54) relate to

the parameters Bi and Fi of eq.’s (3.51) and (3.52). Clearly, if we want to impose

Gperequil(y) ' Gres(y) , (3.57)

we have to set

Bi = f equilNL ui ≤ 0.41 f equilNL and Fi =
2πi

b
' 15.5 i , (3.58)

where we have used that the maximal ui is u1 = 0.41 for N = 5. In the derivation of the

bispectrum in Section 2.3 we assumed fi �
√

2ε?, i.e. Fi � 1. We see from eq. (3.58) that

this constraint is satisfied with growing i. Now, solving for b?i and fi in eq. (3.51) yields

b?i =
8

3
√

2π

f equilNL ui

F
3/2
i

≤ f equilNL

fmaxNL

and fi =

√
2ε?
Fi

= 0.06

√
2ε?
i

, (3.59)

where we have once again used max{ui} = 0.41 and fmaxNL ≡ 140.

There are two things we can conclude from eq. (3.59). First of all, frequencies are

necessarily sub-Planckian as is required for consistency. Second, we see that for f equilNL > fmaxNL

the monotonicity condition b?i < 1 is violated. Hence fmaxNL ≡ 140 is the maximal equilateral
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non-Gaussianity that could be matched by summed resonant non-Gaussianity if there were

no constraints from the power spectrum. The fNL that is consistent with the data is much

smaller than 140, as we will discuss in the following section.

3.4 Constraints from the power spectrum

Figure 5: Fourier expansion of Sperequil(y) for N = 5 (left) and N = 10 (right). We have set

k1 = k?.

Let us discuss the constraint on the product b?i fi from the power spectrum, i.e. eq. (3.33).

Using eq. (3.59), we find

b?i fi <
8

3
√

2π

√
2ε? f

equil
NL ui

F
5/2
i

< 5 · 10−4f equilNL

√
2ε? , (3.60)

where the product on the far right is the maximum value of b?i fi. Since the maximum value

of b?i fi has to be smaller than the upper bound given in eq. (3.33) this implies

ε? f
equil
NL < 10−2 . (3.61)

Given the values for b?i and fi obtained for the Fourier expansion, we can check the

behaviour of eq. (2.22). We find that to leading order it behaves like a single oscillation with

fi given by the lowest frequency f1. This means that the two-point function bounds found

for the singly modulated potential will still apply in our case.
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Note, that eq. (3.33) was derived for large-field models (linear axion monodromy infla-

tion [25] and a quadratic potential [24]), and thus should not have validity for, say, ε? . 10−3.

Therefore, from this result we can argue at most for a resonantly generated f equilNL . O(1).

More generally, an analysis of inflation in presence of periodically broken shift symmetry

which generates resonant non-Gaussianity showed [20] that the structure of the resonant

N -point functions displays a hierarchical suppression with increasing N . Hence, the non-

observation of oscillating contributions to the 2-point function places tight constraints on the

maximum amount of resonantly generated non-Gaussianity to no greater than the PLANCK

sensitivity, that is fNL ∼ O(5).

4 Possible avenues for embedding: Axion monodromy inflation

We have seen that a potential modulated by a sum of small oscillating terms as given in

eq. (2.3) :

V (φ) = V0(φ) +
∑
i

Ai cos

(
φ+ ci
fi

)
, (4.62)

will lead to a bispectrum given by a sum of resonant bispectrum terms eq. (2.32). This

follows as long as fi �
√

2ε? for each i. Furthermore, a Fourier series of these resonant

bispectra leads to a summed resonant bispectrum which closely approximates the equilateral

bispectrum. Taking this series amounts to a choice of parameters {fi, ci}, consistent with

the bounds above, for a suitable number of terms in the bispectrum or equivalently in the

modulated potential eq. (2.3).

It remains to ask how such a sum of sinusoidal corrections to the potential could arise. In

this section we argue for one possible source for these corrections in the context of axion mon-

odromy inflation [27, 25], where the resonant non-Gaussianity shape was first observed [18].

The oscillatory correction considered in these papers arises from nonperturbative effects such

as instantons, and is quite general in large field models. We show that these effects can also

give rise to a sum of periodic potentials such as that in eq. (4.62) and studied here.

4.1 Axion monodromy inflation

Up to this point we have taken the potential eq. (4.62) as the starting point, in keeping

with a low-energy effective field theory point of view of inflation in which we are agnostic as
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to the UV origins of the theory. One possible avenue for a realization of multiple resonant

non-Gaussianity is given by axion monodromy inflation [27, 25]. Axion monodromy inflation

is a string theoretic realization of large field inflation, where the approximate shift symmetry

of the axion protects the required flatness of the potential from higher-dimensional operators

which become relevant when the field range is super-Planckian. Axions in string theory arise

either as the Hodge duals of 2-form fields in 4 dimensions or as zero modes of p-forms on

the compact manifold [28], and inherit their periodicity from these fields. Normalization of

the axion kinetic term results in a coupling to other fields inversely proportional to fa, the

axion decay constant. In general string theoretic constructions this decay constant is larger

than the range allowed by cosmological bounds (to avoid excessive production of axionic

dark matter which could overclose the universe) [28]. However, despite this, the field range

spanned within a single period is generally sub-Planckian in string theory [29].

This limitation (for the purposes of large field inflation) is circumvented in axion mon-

odromy inflation, where a large field range for the inflaton axion field c = 2π
∫

Σ
C2 is possible

for instance when the two-cycle Σ on which it is supported is wrapped by a space-filling

5-brane which breaks the shift symmetry c → c + 2π in the potential, and gives rise to

monodromy in the potential energy: the potential is no longer a periodic function of the

axion, and increases without bound as the axion VEV increases. This follows from the DBI

action, which gives a potential

V0(c) ∼
√
`4 + c2 , (4.63)

where `
√
α′ is the size of the wrapped cycle. Generalizations of this effect arise generically

in the presence of fluxes.

The initial axion VEV is large, leading to a linear unmodulated potential V0(φ), which

means that 1√
2ε?

= φ?, the value of the inflaton at horizon exit, and b? = b is independent

of φ?. Inflation ends when at small values of the axion VEV, V0(φ) is no longer linear, the

axion oscillates about its minimum, and the inflationary energy is diverted into any string

modes coupled to the axion.

Many of the consistency conditions (such as e.g. the absence of large back reaction from

the axion-induced 3-brane charge building up on the 5-branes) for axion monodromy inflation

were already discussed in [27, 25]. Some remaining questions may consist of e.g. finding an

explicit realization on a concrete compact 3-fold in type IIB (despite the generality of the

mechanism which in the context of fluxes [30] should lead to many explicit avenues for
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construction), or details of the 3-brane charge back reaction and the mass scale of some of

the KK modes in particular setups. For a more detailed discussion of some of these and

related points see e.g. [25, 31].

4.2 Periodic corrections to the potential

In [27, 25], working in an O3/O7 orientifold of Type IIB, the axion found to be suitable

for this model of inflation was that arising from the zero mode of the RR two-form C2 on

a 2-cycle Σ in the internal manifold, denoted c = 2π
∫

Σ
C2. The cohomology groups H(p,q)

split into two eigenstates under the action of the orientifold in a flux compactification [32]

(see also [33])

H(p,q) = H
(p,q)
+ ⊕H(p,q)

− , (4.64)

where the ± subscripts refer to even/odd behaviour under the orientifold action. Because

C2 is odd under the orientifold projection, only the mode coming from wrapping a 2-cycle

which is also odd under the orientifold will survive, i.e. we take Σ ∈ H−2 . Such an odd

cycle can be written as v− = v1 − v2, where v1 and v2 are two-cycles in the CY which are

mapped into each other by the orientifold action. The + combination is then obviously an

even two-cycle.

Generally, one expects non-perturbative effects to lead to small periodic corrections to

the potential for the axion, leading to the modulated potential which gives rise to resonant-

type non-Gaussianity [25, 18]. These corrections arise from instanton corrections to the

action, specifically worldsheet instanton contributions to the Kähler potential. Instantons

arise when the (p+1)-dimensional world volume of a Euclidean p-brane is wrapped over

a (p+1) cycle in the internal manifold. Their corrections are exponentially suppressed by

the size of the wrapped cycles. Space-time instantons, which correct the superpotential, are

localized in R4, while worldsheet instantons, which correct the Kähler potential, are localized

in 2 dimensions. These are due to Euclidean D1-branes and their SL(2,Z) images (i.e. F-

and D-strings as well as their bound states, (p, q) strings) wrapping 2-cycles v+ threaded by

the axionic C2 forms. In [25] this correction was taken to be of the form

K = −2 log[VE + e−2πv+/
√
gs cos(c)] , (4.65)

for the c axion, where VE is the Einstein-frame volume of the CY manifold, and v+ is the

even cycle dual to that wrapped by C2 and on which the instanton is supported. τ is the
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axion-dilaton τ = C0 + ie−φ and the Ga are complex scalar fields composed of the RR and

NSNS axionic fields c and b as [34]

Ga = ca − τba, (4.66)

where a runs over the number of axions.

The expression in eq. (4.65) captures the important sinusoidal features of the instanton

corrections to the Kähler potential. The detailed form of one such series of leading (in the

sense of exponentially unsuppressed) corrections in the b-axions was found in [35]. It is given

by

g(τ, τ̄ , Ga, Ḡa) = −1

4

∑
β

nβ
∑
(m,n)

(τ − τ̄)3/2

|n+mτ |3
cos((n+ τm)

Ka(G
a − Ḡa)

τ − τ̄
−mkaGa), (4.67)

where β are curves in the negative eigenspace H−2 spanned by the basis {ωa}, the nβ are

the Gopakumar-Vafa invariants for these curves and Ka =
∫
β
ωa. The sum over (m,n)

corresponds to a summation over SL(2,Z) images of worldsheet instantons, which arise from

F-strings wrapping 2-cycles. This ensures inclusion of Euclidean D1-branes and bound states,

(p, q)-strings, in the instanton corrections. Generically then, at large |bi| this correction is a

function of all the bi-axions present.

On general grounds then (see also the short discussion in [35] on p. 9) we expect the

presence of a qualitatively analogous series of corrections which depend on the ci-axions at

large |ci| and which are exponentially suppressed in the volumes of the curves in H+
2 . As these

terms will again contain a summation over all images under SL(2,Z), the individual terms

will not be ∼ cos(ci) for a given ci but instead should have a dependence ∼ cos(α(n,m, τ)ic
i).

We may thus proceed by assuming the corrected Kähler potential to be of the form

K = −2 log

{
VE − e−

2πv+√
gs

∑
n,m

An,m(τ, τ̄) cos [α(n,m, τ, τ̄)c− ψ(m,n, τ, τ̄ , b)]

}
, (4.68)

for the case of one c-axion. The moduli potential often stabilizes b due to its appearance

in the Kähler potential already at the leading level [34, 27]. Note, that this fixes b not

necessarily at zero which can give rise to a non-zero phase ψ(m,n, τ, τ̄ , b).

This correction to the Kähler potential results in a proportional correction to the scalar

potential of the theory, as well as corrections to the kinetic terms of τ and Ga which are
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exponentially suppressed in the curve volume v+. Hence, normalization of the axion kinetic

term, as e.g. in (5.19) of [25], will yield a correction to the potential of the form of eq. (4.62)

δV ∼ e−2πv+/
√
gs
∑
i

Ãi cos(α̃i
φ

f
− ψi) , (4.69)

where we renamed the corresponding coefficients in eq. (4.68) as effective parameters Ãi, α̃i.

For a very crude estimate of the number of terms one may expect to contribute to δV

we note that already values of n,m smaller than 3 give O(10) possible terms in the SL(2,Z)

sum, each of which can have contributions from the sum over rational curves in H−2 . This

could easily give the O(20) terms required in the sum of resonant bispectra to reproduce an

equilateral-type non-Gaussian signal.

Thus we have argued it to be plausible that a series of sinusoidal corrections with suitably

varying frequencies may be achievable in connection with an axion monodromy generated

potential, using the instanton corrections already considered at leading order in previous

work. While the necessary and much deeper analysis of such constructions is left to the fu-

ture, such a setup could form the starting point for a concrete model realizing the mechanism

described in the preceding sections.

5 Conclusions

We have seen that a potential modulated by a sum of small oscillating terms will lead to a bis-

pectrum given by a sum of resonant bispectrum terms which can sum to a bispectrum which

closely approximates the equilateral bispectrum. This has potentially relevant implications

for the aim of differentiating between inflationary models using data on non-Gaussianities.

This potential differentiating power rests on (a) non-Gaussianity being one of the few possi-

ble consequences of inflation that is not generic, (b) different classes of inflationary theories

giving rise to different dominant bispectrum shapes, and (c) new data allowing us to set

bounds on the amplitude of different shapes in the bispectrum being expected in the next

few years [36].

In broad terms, single scalar field inflationary models with canonical kinetic terms have

non-Gaussian signal of order the slow-roll parameters, so that they would be ruled out by

any measurable detection of non-Gaussianity. P (X,φ) theories (or more generally, Horn-

deski theories) with non-canonical kinetic terms of a single inflaton field give rise to pre-
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dominantly equilateral-type non-Gaussianity [16], while multi-field inflation gives rise to

predominantly local-type non-Gaussianity and folded-type non-Gaussianity could indicate a

non-Bunch Davies vacuum (For reviews see [9, 10] and references therein). Orthogonal-type

non-Gaussianity, found in [37], can be the dominant type in multi-field DBI galileon inflation

with an induced gravity term [38, 39]. Different contributions to the non-Gaussianity can

also appear in combination, as in [40].

Here we have focussed on the possible degeneracy of equilateral-type non-Gaussianity,

associated with single field theories with non-canonical kinetic terms, and summed resonant

non-Gaussianity in a theory with canonical kinetic terms, arising from a potential modulated

by a series of sinusoidal terms. It has been noted that within the class of non-canonical the-

ories described by the Horndeski action, it may be difficult to differentiate between different

models because some linear combination of the same shapes is always present [41, 42, 14].

The best way to differentiate between these models is therefore via conditions on the relative

amplitudes of these terms which will differ for different models [43]. Despite this, one might

hope to be able to identify the presence of non-canonical kinetic terms, via the dependence

of the equilateral signal on the reduced sound speed f eqNL ∼ 1
c2s

.

However, there is considerable degeneracy between observables even at this level. A

dominantly equilateral signal has been found in multi-field models such as trapped inflation

[44], where there is no reduction in the speed of sound. In addition, it was shown recently

that f eqNL may not depend explicitly on c2
s in a weakly coupled extension of the EFT of

inflation with reduced sound speed, depending instead on the Hubble scale and the UV

cutoff of the theory [45]. Our result adds to the existing degeneracies as we have shown

that even differentiating between canonical single field inflation models, with features in

the potential, and non-canonical single field models may be more difficult than initially

anticipated. However, differentiation is possible due to the tight constraints on the maximum

amount of resonantly generated equilateral-type non-Gaussianity which arise from the non-

observation of oscillating contributions to the 2-point function, and the structure of the

resonant N -point functions. In particular, this implies that detection of equilateral non-

Gaussianity at a level greater than the PLANCK sensitivity of fNL ∼ O(5) will rule out a

resonant origin [20]. In case a detection of non-Gaussianity eludes PLANCK, future 21cm

observations may provide a detection capability of fNL & O(0.01) down to the slow-roll

level itself due to the extremely large number of modes (O(1016)) available [21, 22]. For
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equilateral-type non-Gaussianities of this magnitude there is then a degeneracy between a

possible non-canonical and a resonant origin.

Let us note in closing that we have consciously kept most of discussion at the level

of effective field theory. Beyond the very general considerations laid out in Section 4 any

concrete analysis of embedding quasi-equilateral non-Gaussianity from multiple resonant

oscillatory contributions into string theory e.g. along the lines of axion monodromy has to

await much fuller treatment in the future.
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A Computing the mode functions and bispectrum

A.1 The mode functions

We work in the comoving or unitary gauge where the inflationary perturbations are set to

zero and spatial perturbations of the metric are written

δgij(x, t) = 2a(t)2R(x, t)δij. (A.70)

The Fourier transform R(k, t) can be written in terms of modes

R(k, t) = Rk(t)a(k) +R?
k(t)a

†(−k), (A.71)
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for which the mode function Rk(t) satisfies the Mukhanov-Sasaki equation [46, 47], which

for small ε is given by [48]

d2Rk

dx2
− 2(1 + 2ε+ δ)

x

dRk

dx
+Rk = 0, (A.72)

where x = −kτ , for τ the conformal time. For x� 1, Rk(t) approaches a constant valueR(0)
k

which is related to the primordial scalar power spectrum. In the slow-roll approximation

the Mukhanov-Sasaki equation is easily solved to give the answer in (2.16) of [18]. But in

our case, as in [18], δ̇/H is large compared to ε and δ and this SR approximation is invalid.

Neglecting ε0 and δ0 and to leading order in ε?, the Mukhanov-Sasaki equation becomes

d2Rk

dx2
− 2(1 + δ1(x))

x

dRk

dx
+Rk = 0. (A.73)

for

δ1 = −3
∑
i

b?i sin

(
φ0 + ci
fi

)
. (A.74)

As in the single modulation case, the effect of δ1 is negligible at early times, for x �
xres,i ∀i, and

Rk(x) = R(o)
k,0i

√
π

2
x3/2H

(1)
3/2(x), (A.75)

where R(o)
k,0 is the value of Rk(x) outside the horizon in the absence of modulations and

H
(1)
3/2(x) is a Hankel function. Similarly for x� xres,i, i.e. at sufficiently late times, the effect

of δ1 is again negligible and the solution must be of the form

Rk(x) = R(o)
k,0

[
c

(+)
k i

√
π

2
x3/2H

(1)
3/2(x)− c(−)

k i

√
π

2
x3/2H

(2)
3/2(x)

]
. (A.76)

As in [25], c
(+)
k,i = 1 +O((bi?)

2) at late times, where c
(+)
k =

∑
i c

(+)
k,i = 1 + g(x) in the notation

of [25]. (One can see this by solving (3.31) of [25] for each i).

Thus we look for a solution of the form

Rk(x) = R(o)
k,0

[
i

√
π

2
x3/2H

(1)
3/2(x)− c(−)

k (x)i

√
π

2
x3/2H

(2)
3/2(x)

]
, (A.77)

where c
(−)
k (x) vanishes at early times. Then the Mukhanov-Sasaki equation gives an equation

governing the time evolution of c
(−)
k (x) which is given by (for fi �

√
2ε? for all i)

d

dx

[
e−2ix d

dx
c

(−)
k (x)

]
= −2i

δ1(x)

x
. (A.78)
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This can be written as

d

dx

[
e−2ix d

dx
c

(−)
k (x)

]
=

6i

x

∑
i

b?i sin(
φk
fi

+
ci
fi

+

√
2ε?
fi

lnx) , (A.79)

d

dx
A(x) =

6i

x

∑
i

b?i sin(
φk
fi

+
ci
fi

+

√
2ε?
fi

lnx). (A.80)

Let A(x) =
∑

iAi(x), so that

∑
i

d

dx
Ai(x) =

6i

x

∑
i

b?i sin(
φk
fi

+
ci
fi

+

√
2ε?
fi

lnx) (A.81)

Ai(x) = −6ib?i fi√
2ε?

cos(
φk
fi

+
ci
fi

+

√
2ε?
fi

lnx) (A.82)

is a solution. Then write

A(x) =
∑
i

Ai(x) = e−2ix d

dx
c

(−)
k (x) = e−2ix d

dx

∑
i

c
(−)
k,i (x) . (A.83)

Then we find
d

dx
c

(−)
k,i (x) = −6ib?i fi√

2ε?
e2ix cos(

φk
fi

+
ci
fi

+

√
2ε?
fi

lnx). (A.84)

To find the mode functions outside the horizon, we use the expansions of the Hankel

functions for small arguments:

H
(1)
3/2(x) =

4

3
√
π

(x
2

)3/2

− i

2
√
π

(
2

x

)3/2

(A.85)

H
(2)
3/2(x) =

4

3
√
π

(x
2

)3/2

+
i

2
√
π

(
2

x

)3/2

. (A.86)

We find

Rk(x) =R
(0)
k,0

[
1 +

∑
i

3b?i

√
fiπ

2
√

2ε?
cos

(
φk + ci
fi

)

− i
∑
i

3b?i

√
fiπ

2
√

2ε?
sin

(
φk + ci
fi

)
+O(x3)

]
,

(A.87)

and

|R(0)
k |

2 = |R(0)
k,0|

2

[
1 +

∑
i

3b?i

(
2fiπ√

2ε?

)1/2

cos

(
φk + ci
fi

)]
. (A.88)
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A.2 Mode functions in the bispectrum

To see that we can use the unperturbed mode functions to calculate the bispectrum in Sec-

tion 2.3, note first that at late times, for x� 1, the mode function in eq. (A.88) approaches

a constant, given by R(o)
k,0[1 + c

(−)
k ]. The contribution at early times, x � 1, within the

horizon, is

Rk(x) = R(0)
k,0

[
−ixeix + ic

(−)
k (x)xe−ix

]
= Rk,0 +Rk,1,

(A.89)

where we have used the x� 1 limit of the Hankel functions [18]:

i

√
π

2
x3/2H

(1)
3/2(x) ≈ −ixeix

i

√
π

2
x3/2H

(2)
3/2(x) ≈ −ixe−ix

(A.90)

and Rk,0 is the unperturbed part of the mode function. We find

˙Rk,0 = R(0)
k,0xe

ix (A.91)

˙Rk,1 = R(0)
k,0xe

−ix
[
c

(−)
k (x) + i

d

dx
c

(−)
k (x)

]
(A.92)

⇒ |
˙Rk,1|

| ˙Rk,0||
=

∣∣∣∣c(−)
k (x) + i

d

dx
c

(−)
k (x)

∣∣∣∣ . (A.93)

By eq. (2.18)) and eq. (A.84) we see that this ratio is small for fi �
√

2ε? (which is when

the non-Gaussianity is appreciable). Thus the correction to the time derivative of the mode

function is also small, and we can use the unperturbed mode functions and time derivatives

in evaluating the three-point function.

A.3 Squeezed limit consistency relation

In [18] the squeezed limit consistency relation found in [8, 23] was checked for resonant

non-Gaussianity. It is straightforward to extend this to summed non-Gaussianities. The

consistency condition can be phrased as [18]

lim
k3→0
〈R(k1, t)R(k2, t)R(k3, t)〉 ' −(2π)3δ3(k1 + k2 + k3)|R(0)

k3
|2|R(0)

k |
2d ln ∆2

R(k)

d ln k
, (A.94)
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where in the squeezed limit k1 ' k2 = k � k3. Furthermore, |R(0)
k |2 = 2π2∆2

R/k
3, with5

∆2
R(k) = ∆2

R(k?)

(
k

k?

)ns−1
[

1 +
∑
i

3b?i
√

2π

(
fi√
2ε?

)1/2

cos

(√
2ε?
fi

ln
k

k?

)]
, (A.95)

such that
d ln ∆2

R(k)

d ln k
' −

∑
i

3b?i
√

2π

(√
2ε?
fi

)1/2

sin

(√
2ε?
fi

ln
k

k?

)
, (A.96)

neglecting slow roll corrections to ns = 1. Now we can write

lim
k3→0
〈R(k1, t)R(k2, t)R(k3, t)〉 ' (2π)7∆4

R
1

k1k2k3

δ3(k1 + k2 + k3)

× 2k

k3

∑
i

3b?i
√

2π

8

(√
2ε?
fi

)1/2

sin

(√
2ε?
fi

ln
k

k?

)
.

(A.97)

Comparing with eq. (2.25), to fulfill the consistency condition eq. (A.94), Gres has to be given

as
Gres(k, k, k3)

k2k3

' 2k

k3

∑
i

3b?i
√

2π

8

(√
2ε?
fi

)1/2

sin

(√
2ε?
fi

ln
k

k?

)
, (A.98)

in the squeezed limit. This is indeed the case up to a phase, as can be seen by taking the

limit k3 → 0 of eq. (2.32).
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