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ASYMPTOTICS OF RELATIVE HEAT TRACES AND

DETERMINANTS ON OPEN SURFACES OF FINITE AREA

CLARA L. ALDANA

Abstract. The goal of this article is to prove that on surfaces with
asymptotically cusp ends the relative determinant of pairs of Laplace
operators is well defined. We consider a surface with cusps (M, g) and a
metric h on the surface that is a conformal transformation of the initial
metric g. We prove the existence of the relative determinant of the pair
(∆h,∆g) under suitable conditions on the conformal factor. The core
of the paper is the proof of the existence of an asymptotic expansion
of the relative heat trace for small times. We find the decay of the
conformal factor at infinity for which this asymptotic expansion exists
and the relative determinant is defined.

Following the paper by B. Osgood, R. Phillips and P. Sarnak about
extremal of determinants on compact surfaces, we prove Polyakov’s for-
mula for the relative determinant and discuss the extremal problem in-
side a conformal class. We discuss necessary conditions for the existence
of a maximizer.

Introduction

In this paper we study the relative determinant of Laplace operators on
surfaces with asymptotically cusp ends and the asymptotic expansion of the
corresponding relative heat traces for small values of time. A surface with
asymptotically cusp ends is defined in Section 1.4.

Regularized determinants of elliptic operators play an important role in
many fields of mathematics and mathematical physics. They were initially
introduced by D.B. Ray and I.M. Singer in [19] in relation to R-torsion. The
regularized determinant of the Laplace operator on a compact Riemannian
manifold is defined via a zeta function regularization process. It is an impor-
tant spectral invariant. For instance, in the 2-dimensional case, B. Osgood,
R. Phillips and P. Sarnak (OPS)1 showed in [17] that the determinant, con-
sidered as a functional on the space of metrics, has very interesting extremal
properties. They proved the following result: Let M be a closed surface,
then in a given conformal class, among all metrics of unit area, there exists
a unique metric of constant curvature at which the regularized determinant

Key words and phrases. Surfaces with asymptotically cusp ends; heat kernels; asymp-
totic expansion of heat traces; relative determinants.

This article is register at the MPG, AEI-2012-200.
1From now on we abbreviate B. Osgood, R. Phillips and P. Sarnak as OPS.
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attains a maximum. They also proved a corresponding statement for com-
pact surfaces with boundary and suitable conditions at the boundary.

Relative determinants were introduced in a general setting by W. Müller
in [15] as a way to generalize regularized determinants in the compact case.
Previously, a relative determinant for admissible surfaces was introduced by
R. Lundelius in [12], and for Dirac operators in R

n by V. Bruneau in [4]. A
good example of a non-compact space is a surface with cusps. A surface with
cusps is a 2-dimensional complete Riemannian manifold (M,g) of finite area
such that outside a compact set the metric is hyperbolic. The hyperbolic
ends are called cusps. The Laplace operator ∆g associated to the metric g on
M has continuous spectrum. Therefore its zeta regularized determinant can
not be defined in the same way as in the compact case. Here is when relative
determinants enter into the play. The relative determinant is defined for a
pair of non-negative self-adjoint operators (A,B) in a Hilbert space provided
they satisfy certain conditions. It is defined through a zeta function using
the trace of the relative heat semigroup Tr(e−tA − e−tB), t > 0.

For surfaces with cusps in [15] W. Müller proved that the relative de-
terminant of the Laplacian is well defined when the Laplacian is compared
with a model operator defined on the cusps. In this paper we extend this
result to surfaces with asymptotically cusp ends. We also prove Polyakov’s
formula for metrics for which the relative determinant of the corresponding
Laplacians is defined. The analysis of the extremal of the determinant in
this case is performed in the same way as in OPS, [17]. Unfortunately, the
maximizer (the metric of constant curvature) is not always among the class
of metrics for which we can define the relative determinant.

The paper is organized as follows:
We start by fixing a surface with cusps and a class of metrics on M that

are conformal to g and that satisfy suitable conditions. Let h = e2ϕg be a
metric in the conformal class of g; if the cusps are “kept” but the metric
h is not hyperbolic on them, then we say that (M,h) is a surface with
asymptotically cusp ends. Associated to the metric h, there is a Laplacian
which we denote by ∆h. We will consider the relative determinant of pairs
of the form (∆h,∆g) and (∆h, ∆̄1,0), where ∆̄1,0 is a model operator over
M that is associated to the cusps.

In Section 1 we introduce all the notation and background theory that we
need throughout the paper. In Section 2 we prove the trace class property
of the relative heat operator for all positive values of t, when the conformal
factor ϕ as well as its derivatives up to second order decay as O(y−α),
α > 0 as y goes to infinity; here we are using coordinates (y, x) in the cusps
Z = [1,∞) × S1.

In Section 3, we prove the existence of an asymptotic expansion of the
relative heat trace for small values of t. Theorem 3.6 gives precise conditions
for the existence of such an expansion up to order ν ≥ 1. The expansion
exists if the function ϕ|Z(y, x) and its derivatives up to second order are
O(y−k) as y goes to infinity, with k ≥ 5ν + 8; although if ν ≥ 3, more
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derivatives of ϕ should decay at infinity as well. The precise decay of the
higher derivatives is given in the statement of the theorem.

The proof of this result is very technical but uses classical methods such as
parametrices, Duhamel’s principle, upper bounds of heat kernels, universal
coverings, very particular inequalities, and the explicit form of the local
heat invariants. The idea of the proof is to write the relative heat trace as
an integral over the manifold, and to split this integral into three areas of
integration: the compact part, a cutoff of the cusps and the end of the cusps.
The cutoff is done at a height a > 1 that is fixed at the beginning. The
conditions on the conformal factor come from assumptions in different parts
of the proof. Along the paper, we will explain each of these assumptions in
detail. The main point is that later in the proof we let a be a function of t
and take the limit as t → 0. Then, the integral over the cutoff will have a
complete asymptotic expansion as t → 0 (as a → ∞). The integral on the
end of the cusps is estimated by a term tν , ν > 0. The estimation is obtained
using the trace norm of some auxiliary operators. The order k ≥ 5ν + 8 in
the decay condition of the conformal factor comes from this bound.

In Section 4.1, we use the previous results to define the relative determi-
nant of the pairs (∆h,∆g) and (∆h,∆1,0) using relative zeta functions. In
spite of not having an optimal result in Section 3, the result is good enough
to have a well-defined relative determinant for a pair of metrics (h, g) satis-
fying the conditions above.

In Section 4.2 we study det(∆h,∆1,0) as a functional on metrics of a given
area in a conformal class and look for its extremal values.

We give a proof of a Polyakov’s-type formula for det(∆h,∆1,0). The proof
of this formula follows the same lines as the proof of OPS in the compact
case in [17] and the formula is the same as the one obtained by R. Lundelius
in [12] for heights of pairs of admissible surfaces. However, let us point out
that our methods are different from the ones in [12]. In the same way as
in [17] and in [12], we see that if there exists a maximum it is attained at
the metric of constant curvature. The equation relating the curvature of
the metrics g and h = e2ϕg is Rh = e−2ϕ(∆gϕ + Rg). The study of the
associated differential equation for ϕ, together with the constant curvature
condition in the cusps for g and constant curvature everywhere for h, leads
to a precise decay for the function ϕ at infinity. Unfortunately this decay is
not included in the conditions required to define the relative determinant.
Therefore the metric of constant curvature will not be in the conformal class
under consideration unless we start with a metric of constant curvature.

In relation with this problem, there is a recent paper by P. Albin, F. Ro-
chon and the author, [1]. We worked with renormalized integrals to define
renormalized determinants of Laplacians on surfaces that have asymptoti-
cally hyperbolic ends, cusps as well as funnels (funnels involve infinite area).
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An earlier version of this paper was published in the ArXiv, under the
title “Relative determinants of Laplacians on surfaces with asymptotically
cusp ends.”

1. Notation and definitions

1.1. Relative determinants. Let us recall the definition of relative de-
terminants introduced by W. Müller in [15]: The relative determinant is
defined for two self-adjoint, nonnegative linear operators, H1 and H0, in a
separable Hilbert space H satisfying the following assumptions:

(1) For each t > 0, e−tH1 − e−tH0 is a trace class operator.
(2) As t → 0, there is an asymptotic expansion for the relative trace of

the form:

Tr(e−tH1 − e−tH0) ∼
∞∑

j=0

k(j)∑

k=0

ajkt
αj logk t,

where −∞ < α0 < α1 < · · · and αk → ∞. Moreover, if αj = 0 we
assume that ajk = 0 for k > 0.

(3) Tr(e−tH1 − e−tH0) = h+O(e−ct), as t→ ∞ for some constant c > 0
where h = dimkerH1 − dimkerH0.

These properties allow us to define the relative zeta function as:

(1.1) ζ(s;H1,H0) =
1

Γ(s)

∫ ∞

0
(Tr(e−tH1 − e−tH0)− h)ts−1dt.

Using the meromorphic continuation of ζ(s;H1,H0) to the complex plane,
the relative determinant is defined as:

det(H1,H0) := e−ζ
′(0;H1,H0).

In a more general setting, condition (3) is replaced by an asymptotic
expansion as t → ∞. In that case, in order to define the relative zeta
function, the integral in (1.1) has to be split in two parts, see [15].

1.2. Surfaces with cusps. A surface with cusps (swc)2 is a 2-dimensional
Riemannian manifold that is complete, non-compact, has finite volume and
is hyperbolic in the complement of a compact set. Therefore it admits a
decomposition of the form

M =M0 ∪ Z1 ∪ · · · ∪ Zm,
where M0 is a compact surface with smooth boundary and for each i =
1, ...,m we assume that

Zi ∼= [ai,∞)× S1, g|Zi = y−2
i (dy2i + dx2i ), ai > 0

The subsets Zi are called cusps. Sometimes we denote Zi by Zai to indicate
the “starting point” ai. For simplicity, by S1 we mean the circle with

radius 1/2π with length 1. Instances of surfaces with cusps are quotients

2 From now on we abbreviate “surface with cusps” as swc.
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of the form Γ(N)\H, where H is the upper half plane and Γ(N) ⊆ SL2(Z) is
a congruence subgroup, i.e. Γ(N) = {γ ∈ SL2(Z)|γ ≡ Id (mod N)}. These
quotients play an important role in the theory of automorphic forms.

To any surface with cusps (M,g) we can associate a compact surface M
such that (M,g) is diffeomorphic to the complement of m points in M . Let
p denote the genus of the compact surface M ; then the pair (p,m) is called
the conformal type of M .

Later we use the following estimate of the Riemannian distance in the
cusp Z

dg0(z, z
′) ≥ | log(y/y′)|,

for z = (y, x), z′ = (y′, x′), see for example [13].

For any oriented Riemannian manifold (M,g) the Laplace-Beltrami ope-
rator on functions is defined as ∆f = − div grad f . It is equal to ∆ = d∗d.
We consider positive Laplacians. If (M,g) is complete, ∆ has a unique closed
extension that we denote by ∆g.

On a cusp Z, the Laplacian is given by

∆Z = −y2
(
∂2

∂y2
+

∂2

∂x2

)
.

Let us consider the following operators:

Definition 1.1. Let a > 0, let ∆a,0 denote the self-adjoint extension of the
operator

−y2 ∂
2

∂y2
: C∞

c ((a,∞)) → L2([a,∞), y−2dy)

with respect to Dirichlet boundary conditions at y = a. The domain of ∆a,0

is then given by Dom(∆a,0) = H1
0 ([a,∞))∩H2([a,∞)), where H1

0 ([a,∞)) =
{f ∈ H1([a,∞)) : f(a) = 0}.

Let ∆̄a,0 = ⊕m
j=1∆aj ,0 be defined as the direct sum of the self-adjoint

operators ∆aj ,0 defined above. The operator ∆̄a,0 acts on a subspace of

⊕m
j=1L

2([aj ,∞), y−2
j dyj).

Now, let a > 0, let Za be endowed with the hyperbolic metric g and let
∆Za,D be the self-adjoint extension of

−y2
(
∂2

∂y2
+

∂2

∂x2

)
: C∞

c ((a,∞)× S1) → L2(Za, dAg)

with respect to Dirichlet boundary conditions at {a}×S1. It is known that
the operator ∆Za,D can be decomposed as follows: Put

(1.2) L2
0(Za) = {f ∈ L2(Za, dAg)|

∫

S1

f(y, x)dx = 0 for a. e. y ≥ a}.

The orthogonal complement of L2
0(Za) in L2(Za, dAg) consists of functions

that are independent of x ∈ S1.
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Then we can decompose L2(Za, dAg) as the orthogonal direct sum

L2(Za, dAg) = L2([a,∞), y−2dy)⊕ L2
0(Za).

This decomposition is invariant under ∆Za,D so in terms of this decomposi-
tion we can write ∆Za,D = ∆a,0 ⊕∆Za,1, where ∆Za,1 acts on L2

0(Za).

Remark 1.2. The operator ∆Za,1 has compact resolvent; in particular it
has only point spectrum, see Lemma 7.3 in [16]. In addition, the counting

function for ∆Za,1, N∆Za,1
(λ) = #{λ̃j ≤ λ}, where {λ̃j} are the eigenvalues

of ∆Za,1, satisfies N∆Za,1
(λ) ∼ λ

4πAg. See [10, Thm.6]. This implies that

the heat operator e−t∆Za,1 is trace class.

1.3. Spectral theory of surfaces with cusps. For the spectral theory
of manifolds with cusps we refer the reader to W. Müller [13], Y. Colin de
Verdière [10], and the references therein. The results in [13] hold for any
dimension. For surfaces in particular we refer to [14]. Here we recall only
the main facts and definitions that we use in this article.

For a surface with cusps (M,g), the spectrum of the Laplacian σ(∆g) is
the union of the point spectrum σp and the continuous spectrum σc. The
point spectrum consist of a sequence of eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .

Each eigenvalue has finite multiplicity, and the counting function N(Λ) =
#{λj|λj ≤ Λ2} for Λ > 0 satisfies lim supN(Λ)Λ−2 ≤ Ag(4π)

−1, where Ag
denotes the area of (M,g). Depending on the metric, the set of eigenvalues
may be infinite or not.

The continuous spectrum σc of ∆g is the interval [14 ,∞) with multiplic-
ity equal to the number of cusps of M . For a proof of this fact, see for
example [13, p.206]. The spectral decomposition of the absolutely contin-
uous part of ∆g is described by the generalized eigenfunctions Ej(z, s), for
j = 1, . . . ,m with z ∈ M , s ∈ C. To each cusp we can associate such gen-
eralized eigenfunctions, they are also called Eisenstein functions by analogy
with the Eisenstein series on hyperbolic surfaces. They are closely related
to the wave operators W±(∆g, ∆̄a,0) and to the scattering matrix S(λ). For
details, see [13, sec.7]. The main properties of the Eisenstein functions and
the scattering matrix can be found in [13, Theorem 7.24].

1.4. Conformal transformations. In this section we give few properties
of metrics that are conformal to each other.

A conformal transformation of a metric g on M is a metric h defined as
h = ρg where ρ ∈ C∞(M) and ρ > 0. In this paper we write the function ρ
as ρ = e2ϕ with ϕ ∈ C∞(M). We call the function ϕ the conformal factor.
Depending on the case the conformal factor may have compact support or
not. If the support is not compact we require ϕ as well as some of its
derivatives to decay at infinity. In what follows the metric h will always
denote a conformal transformation of g.
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Two metrics g1, g2 are said to be quasi-isometric if there exist constants
C1, C2 > 0 such that

C1g1(z) ≤ g2(z) ≤ C2g1(z), for all z ∈M,

in the sense of positive definite forms.
Quasi-isometric metrics have equivalent geodesic distances. The associ-

ated L2-spaces coincide as sets, thought the inner product is not the same.

Remark 1.3. Let h = e2ϕg. If the function ϕ is bounded on M , the met-
rics g and h are quasi-isometric and the geodesic distances, dg and dh, are
equivalent. If in addition the metric g is complete, so is the metric h.

Let us first give a handwaving definition of what we mean by a surface
with asymptotically cusps ends. The reason to do that is that we need flex-
ibility in the conditions on the conformal factors:

A surface with asymptotically cusp ends (swac)3 is a surface (M,h) where
the metric h is a conformal transformation of the metric on a swc (M,g)
such that the conformal factor as well as some of its derivatives have a suit-
able decay in the cusps.

Now, let (M,g) be a swc and h be as above. A point z = (y, x) in a cusp
has injectivity radius injg(z) ∼ 1

y . If we assume that ∆gϕ = O(1) as y → ∞,

the surface (M,h) has bounded Gaussian curvature. Then by [16, Prop.2.1],
the injectivity radius of both metrics are comparable. Thus the injectivity
radius of a swac also vanishes.

Let Ag denote the area of (M,g), dAg the volume element, and Rg(z) its
Gaussian curvature. Let Ah, dAh and Rh be the quantities corresponding to
(M,h), for any conformal transformation h of g. Let ∆h be the Laplacian
associated to h. Then the following relations hold:

dAh = e2ϕdAg, ∆h = e−2ϕ∆g, Rh = e−2ϕ(∆gϕ+Rg)

The domains of the Laplacians ∆g and ∆h lie in different Hilbert spaces.
Thus, sometimes it is necessary to consider a unitary map between the
spaces L2(M,dAg) and L

2(M,dAh). From the definition of the metrics and
the transformation of the area element the unitary map is given by:

(1.3) T : L2(M,dAg) → L2(M,dAh), f 7→ e−ϕf.

The Laplacian operators transform in the following way:

T−1∆hTf = e−2ϕ
(
∆gf + 2〈∇gf,∇gϕ〉g − (∆gϕ+ |∇gϕ|2g)f

)
(1.4)

T∆gT
−1f = e2ϕ (∆hf − 2〈∇hϕ,∇hf〉h + (∆hϕ− |∇hϕ|h)f)

3 From now on we abbreviate “surface with asymptotically cusp ends” as swac.
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Note that the operators T−1∆hT and T∆gT
−1 are self-adjoint in the cor-

responding transformed domain.

Let us finish this section recalling Gauss-Bonnet theorem on a swc. The
Euler characteristic a surfaceM with m cusps is given by χ(M) = (2−2p−
m), where p is the genus of the compact surface M defined in Section 1.2.
A Gauss-Bonnet formula is valid in this setting:

∫

M
RgdAg = 2πχ(M),

where Rg denotes the Gaussian curvature of the metric g. The same formula
is valid for the metric h = e2ϕg when ϕ and ∆gϕ suitably decay at infinity,
since ∫

M
Rh dAh =

∫

M
e−2ϕ(∆gϕ+Rg)e

2ϕ dAg =

∫

M
Rg dAg.

1.5. Heat kernels and their estimates.

1.5.1. Heat kernels. The heat semigroup associated to a closed self-adjoint
operator can be constructed using the spectral theorem. For the existence
and uniqueness of the heat kernel on a complete open manifold with Ricci
curvature bounded from below see J. Dodziuk, [11]. For the main properties
of heat kernels see [11] and [7].

Let (M,g) and h = e2ϕg be as above, and let e−t∆h , e−t∆g , e−t∆a,0 denote
the heat semigroups associated to the Laplacians ∆h, ∆g and ∆a,0, respec-
tively. Since the Laplacians are positive, the heat equation is ∆+∂t = 0. Let
Kh(z, z

′, t) and Kg(z, z
′, t) denote the heat kernels corresponding to ∆h and

∆g respectively. The heat kernel on a surface with cusps was constructed
by W. Müller in [13].

Like the Laplacians, the heat semigroups act on different spaces. The
operator e−t∆h may act on L2(M,dAg), but it is not self-adjoint with respect
to this inner product. To make e−t∆h and e−t∆g act on the same space
and preserve self-adjointness we use the unitary map T defined by (1.3).
The transformed operators T−1e−t∆hT and Te−t∆gT−1 are self-adjoint on
the corresponding space. The integral kernel of the transformed operator
T−1e−t∆hT : L2(M,dAg) → L2(M,dAg) is given by KT−1e−t∆hT (z, z

′, t) =
eϕ(z)Kh(z, z

′, t)eϕ(z
′).

1.5.2. Estimates of the heat kernels. In this section we recall the bounds of
the heat kernels, since we use them repeatedly. If the manifold is closed,
there exists a constant c > 0 such that for any fixed 0 < τ < ∞, the heat
kernel satisfies the following bounds

(1.5) K(x, y, t) ≪ t−n/2e−
cd(x,y)2

t , for t ≤ τ.

If the manifold has a boundary, consider the closed self-adjoint extension of
the Laplacian with respect to Dirichlet boundary conditions. In this case,
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let K ⊂M be compact and a τ > 0, then there exist positive constants c, c′

such that

KD(x, y, t) ≤ c′t−n/2(e−
cd(x,y)2

t + e−
d(y,∂M)2

8t ),

for (x, y, t) ∈ K ×M × (0, τ ], see [7, chapter VII].

Now, let Z̃ = R
+×S1 be the complete cusp. Let us consider the hyperbolic

metric on it, g0 = y−2(dy2 + dx2). Then (Z̃, g0) is a complete Riemannian
manifold and it is called a horn. Let ∆1 be the unique self-adjoint extension
of the Laplacian defined on C∞

c (R+ × S1). The notation ∆1 is arbitrary.
The construction of the heat kernel for ∆1 on R

+×S1 can be found in [13].
We denote this heat kernel by K1.

Let τ > 0 be arbitrary, then there exist constants C, c > 0 such that for
0 < t < τ , y, y′ ≥ 1, and k, l,m ∈ N one has:

(1.6)

∣∣∣∣
∂k

∂tk
dlzd

m
z′K1(z, z

′, t)

∣∣∣∣ ≤ C(yy′)
1
2 t−1−k−l−m exp

(
−
cd2g0(z, z

′)

t

)

where dg0 the hyperbolic distance in the horn, and the constants depend on
τ , see [13, Prop.2.32].

Let (M,g) be a surface with one cusp that we denote by Z, Z = [a,∞)×S1

for some a ≥ 1. Let i(z) be the function given by:

(1.7) i(z) =

{
1, if z ∈M \ Z;
y, if z ∈ Z and z = (y, x).

Given τ > 0, there exist C, c > 0 such that

(1.8) |Kg(z, z
′, t)| ≤ C(i(z)i(z′))

1
2 t−1 exp

(
−
cd2g(z, z

′)

t

)

for 0 < t < τ , where dg is the Riemannian distance in (M,g), see [13,
eq.(4.12)].

Let us now go back to the metric h = e2ϕg. Its restriction to Z can be

extended to a metric on the horn Z̃ in the following way: On Z̃ we have
the hyperbolic metric g0, and g|Z = g0. We start by extending the function

ϕ|Z to a smooth function ϕ̃ on Z̃ that vanishes in a small neighborhood
of zero. Then on (0,∞) × S1 we define h as h := e2ϕ̃g0. It is a complete
metric and h = g0 close to the boundary {0}×S1. In this way we can define

the Laplacian on (Z̃, h). Denote its unique self-adjoint extension by ∆1,h.

Clearly ∆1,h = e−2ϕ̃∆1. The heat kernel associated to ∆1,h is denoted by

K1,h(z, z
′, t), for z, z′ ∈ Z̃ and t > 0.

The estimates of the heat kernel of the operator ∆1,h can be derived from
S. Y. Cheng, P. Li and S. T. Yau’s paper [9], Theorems 4, 6 and 7. However,
in the estimates appears the injectivity radius to a power α that depends
only on the dimension of the manifold; from the proof in [9] it is not clear
how to determine the value α = 1 that we need. In order to pin down
the value of α in this particular case we prove in Appendix A the following
lemma.
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Lemma 1.4. Let h and g be as above and such that ϕ and ∆gϕ decay in
the cusp. Then the heat kernel Kh satisfies:

(1.9) Kh(z, z
′, t) ≪ (i(z)i(z′))

1
2 t−1 exp

(
− c̃ d

2
h(z, z

′)

t

)

for 0 < t < τ , where c̃ > 0 is a constant.
Let ∗ denote the metric g or h, then derivatives of the heat kernel K∗

satisfy:

(1.10) |∇K∗(z, z
′, t)| ≤ c (i(z)i(z′))1/2t−3/2 exp

(
− c̃ d

2
∗(z, z

′)
t

)
, and

(1.11) |∆∗K∗(z, z
′, t)| ≤ C (i(z)i(z′))1/2t−2 exp

(
− c̃ d

2
∗(z, z

′)
t

)
,

where the constants c, C depend on τ , the curvature, and the covariant
derivatives of the curvature. Even more, we can exchange the distances dg
and dh in the exponentials on the right-hand side by adjusting the constant
in the exponential. In the same way, the heat kernel K1,h and its derivatives
satisfy the same estimates as Kh above.

For a surfaces with hyperbolic cusps, the estimates in the lemma above
were established in [13].

1.5.3. Heat kernels for other operators. In this part we introduce the other
heat operators that we will use throughout this article.

For a > 1 let ∆a,0 be the operator defined in Definition 1.1. The heat ker-
nel pa(y, y

′, t) associated to ∆a,0 can be computed explicitly, see [6, sec.14.2]
or [13, p.258]. It is given by
(1.12)

pa(y, y
′, t) =

e−t/4√
4πt

(yy′)1/2
{
e−(log(y/y′))2/4t − e−(log(yy′)−log(a2))2/4t

}
,

for y, y′ > a. This is easy to verify by direct computation. Also note that
for 1 ≤ y ≤ a, pa(y, y

′, t) = 0.
The operator e−t∆a,0 acts on L2([a,∞), y−2dy). However, we can regard it

as an operator acting on L2([1,∞), y−2dy) by considering the corresponding
inclusion and restriction. Similarly, the operator e−t∆1,0 can be regarded as
acting on L2([a,∞), y−2dy).

Now, let us assume that M can be decomposed as M = M0 ∪ Z with
Z = [1,∞)×S1. Then we can make the operator e−t∆a,0 act on L2(M,dAg)
in the following way:

e−t∆a,0f(z) =

∫ ∞

a

∫

S1

pa(y, y
′, t) f |Za

(y′, x′)dx′
dy′

y′2
for z = (y, x) ∈ Za,

and zero otherwise. From the symmetry of pa(y, y
′, t), is clear that the

operator e−t∆a,0 acting on L2(M,dAg) is symmetric.
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Recall the operator ∆Z,D defined in Section 1.2. The kernel of the oper-

ator e−t∆Z,D is constructed by a classical method (see [7, chapter VII]) and
it is given by:

(1.13) KZ,D((y, x), (y
′, x′), t) = K1((y, x), (y

′, x′), t)+p1,D((y, x), (y
′, x′), t)

where y, y′ ≥ 1, x, x′ ∈ S1, t > 0, and p1,D((y, x), (y
′, x′), t) is a function

that satisfies: for every τ > 0 there exist constants C, c > 0 such that:

(1.14) |p1,D(z, z′, t)| ≤ Ct−1(i(z)i(z′))1/2e−
c(dg(z,∂Z)+dg(z

′,∂Z))2

t

for all z, z′ ∈ Z and 0 < t < τ .
Now let ∆Z,h be the self-adjoint extension of the operator

−e−2ϕy2(∂2y + ∂2x) : C
∞
c (Z) → L2(Z, dAh)

obtained after imposing Dirichlet boundary conditions at {1}×S1. Let KZ,h

denote the kernel of the operator e−t∆Z,h . As in the case of the heat kernel
associated to the operator ∆Z,D, given in (1.13), the kernel KZ,h is given
by:

(1.15) KZ,h(z, z
′, t) = K1,h(z, z

′, t) + ph,D(z, z
′, t),

for z, z′ ∈ Z and t > 0 where the term ph,D(z, z
′, t) is determined by the

boundary condition. In the same way as above, ph,D(z, z
′, t) satisfies, up to

some constants, the same estimate as the one in equation (1.14).

1.5.4. Duhamel’s Principle. There are several ways to state and use Duhamel’s
principle, see for example [7, VII.3].

Duhamel’s principle can be applied in the non-compact setting under
certain assumptions on the decay of the functions. This is the case of the
heat kernels on surfaces with cusps and asymptotically cusp ends. In terms
of the operators, Duhamel’s principle can be stated as:

(1.16) T−1e−t∆hT − e−t∆g =

∫ t

0
T−1e−s∆hT (∆g − T−1∆hT )e

−(t−s)∆g ds.

2. Trace class property of relative heat operators

In this section we prove Theorem 2.1, which says that the difference of
the heat operators corresponding to the metrics g and h is trace class. As
we know, none of the heat operators e−t∆h nor e−t∆g is trace class, which is
the reason why we consider their difference. This is the first step to define
the relative determinant of the pair (∆h,∆g).

In the second part we consider other relative heat traces that are naturally
associated to a surface with cusps.
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2.1. Trace class property. Let (M,g),M0, Z as well as ∆g, ∆Z,D, and ∆1

be as in Section 1. For simplicity, we assume that M has only one cusp so it
can be decomposed as M =M0 ∪Z with M0 compact and Z = [1,∞)×S1.

Theorem 2.1. Let h = e2ϕg, and assume that on the cusp Z the functions
ϕ(y, x), |∇gϕ(y, x)| and ∆gϕ(y, x) are O(y−α) with α > 0, as y → ∞. Let
T be the unitary map defined in equation (1.3). Then for any t > 0 the
operator

T−1e−t∆hT − e−t∆g

is trace class.

To prove this statement we follow a procedure similar to that used by W.
Müller and G. Salomonsen in [16]. We use Duhamel’s principle which was
stated in Section 1.5.4.

Let ‖ · ‖ denote the operator norm and ‖ · ‖1,g, (‖ · ‖1,h, resp.), denote the
trace norm in L2(M,dAg), (in L2(M,dAh), resp.). From equation (1.16),
we have:

(2.1) ‖T−1e−t∆hT − e−t∆g‖1,g

≤
∫ t/2

0
‖(∆g − T−1∆hT )e

−(t−s)∆g‖1,g ds

+

∫ t

t/2
‖e−s∆h(T∆gT

−1 −∆h)‖1,h ds

When considering the trace of the operator on the right-hand side of (1.16)
as an integral using heat kernels and their estimates one has to take two
aspects into account. One is related with the time singularity at t = 0 and
the other one is related with the convergence of the space integral. The idea
of breaking up the integral in equation (2.1) comes from the need to avoid the
time singularities coming from the heat kernel Kh(z, z

′, s) (Kg(z, z
′, t − s))

close to s = 0 (t − s = t) that do not integrate to something finite in a
neighborhood of zero (of t). Equation (2.1) reduces the proof of Theorem
2.1 to the following Proposition:

Proposition 2.2. Let 0 < a < b < ∞, under the same conditions of
Theorem 2.1 we have that for each t ∈ [a, b], the operators

(∆g − T−1∆hT )e
−t∆g and e−t∆h(T∆gT

−1 −∆h)

are trace class and each trace norm is uniformly bounded on [a, b].

Proof. The proof follows in several steps. The idea is to decompose each
operator as the product of two Hilbert-Schmidt (HS)4 operators whose norms
are uniformly bounded on t at the corresponding interval. To prove the HS
property we use that if R is an integral operator on M with kernel r, its HS

4We use HS to abbreviate Hilbert-Schmidt.
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norm is given by the L2(M ×M)-norm of r. Let α be as in the statement
of Theorem 2.1, i.e. α denotes the decay of the conformal factor ϕ. Let
β = α/2, if α ∈ (0, 1), and β = 1/2 if α ≥ 1; so that 0 < β ≤ 1/2.
Let us define an auxiliary function φ that we will use repeatedly, such that
φ ∈ C∞(M) satisfies φ > 0 and

(2.2) φ(y, x) = y−β, (y, x) ∈ Z.

Let Mφ and M−1
φ denote the operators multiplication by φ and φ−1, respec-

tively. The motivation to introduce the function φ is the fact that the heat
operator e−t∆g itself is not HS but when multiplied by φ it becomes HS.
The proof is given below.

Step 1. To proof the trace class property of (∆g − T−1∆hT )e
−t∆g , we

write

(∆g − T−1∆hT )e
−t∆g = ((∆g − T−1∆hT )e

−(t/2)∆gM−1
φ ) ◦ (Mφe

−(t/2)∆g ),

and prove that for every t > 0, (∆g−T−1∆hT )e
−t∆gM−1

φ and Mφe
−t∆g are

HS operators.
Step 1.1. (∆g − T−1∆hT )e

−t∆gM−1
φ is HS. Equation (1.4) implies:

(∆g − T−1∆hT )e
−t∆gM−1

φ = ((1 − e−2ϕ(z))∆g)e
−t∆gM−1

φ

+ e−2ϕ(−2〈∇gϕ,∇g · 〉g + (∆gϕ+ |∇gϕ|2g))e−t∆gM−1
φ .

Let us start with the term ((1 − e−2ϕ(z))∆g)e
−t∆gM−1

φ ; to prove that it

is HS, we just need to prove that the following integral is finite:
∫

M

∫

M
|(1− e−2ϕ(z))∆g,zKg(z, z

′, t)φ(z′)−1|2dAg(z)dAg(z′).

Let us use the decomposition of M as M =M0 ∪ Z to split the integral as:

(2.3)

∫

M

∫

M
· · · dAg(z)dAg(z

′) =
∫

M0

∫

M0

· · · dAg(z)dAg(z
′)

+

∫

M0

∫

Z
· · · dAg(z)dAg(z

′) +
∫

Z

∫

M0

· · · dAg(z)dAg(z
′)

+

∫

Z

∫

Z
· · · dAg(z)dAg(z

′).

Now, we use the estimates of the derivatives of heat kernel Kg(z, z
′, t)

given in (1.11), the fact that 1 − e−2ϕ(z) decays as y−α at infinity, and
the definition of the function i(z) given in (1.7). To estimate the resulting
integrals we use the equations in Observation B.1. For simplicity let us
just write c instead of 2c for the constant in the exponential factor of the
estimates of the heat kernels.
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For the first term in the sum in equation (2.3) which involves z ∈M0 and
z′ ∈M0 we have:

∫

M0

∫

M0

|(1− e−2ϕ(z))∆g,zKg(z, z
′, t)φ(z′)−1|2dAg(z)dAg(z′)

≪
∫

M0

∫

M0

t−4e−
c
t
d2g(z,z

′) dAg(z) dAg(z
′) ≪ t−4.

For the second term in the sum in (2.3) which involves z′ ∈M0 and z ∈ Z
we have:

∫

M0

∫

Z
|(1 − e−2ϕ(z))∆g,zKg(z, z

′, t)φ(z′)−1|2dAg(z)dAg(z′)

≪ t−4

∫

M0

∫

S1

∫ ∞

1

1

y1+2α
e−

c
t
d2g((y,x),z

′) dy dx dAg(z
′) ≪ t−4.

The third term in the sum in equation (2.3) involves variables z ∈ M0

and z′ ∈ Z. In this case we use that the Riemannian distance satisfies
dg(z, z

′) ≥ dg(∂Z, z
′) ≥ | log(y′)| from which we infer:

∫

Z

∫

M0

|(1 − e−2ϕ(z))∆g,zKg(z, z
′, t)φ(z′)−1|2dAg(z)dAg(z′)

≪
∫ ∞

1

∫

S1

∫

M0

y′1+2βt−4e−
c
t
d2g(z,(y

′,x′)) dAg(z) dx
′ dy

′

y′2

≪ t−4

∫ ∞

1
e−

c
t
(log(y′))2 dy′ = t−4

∫ ∞

0
e−

c
t
u2eu du≪ t−7/2et/c

′
.

Finally, the last term in the sum in (2.3) in which the variables z, z′ lie
in Z we have:

∫

Z

∫

Z
|(1 − e−2ϕ(z))∆g,zKg(z, z

′, t)φ(z′)−1|2dAg(z)dAg(z′)

≪ t−4

∫ ∞

1

∫ ∞

1
y−1−2αy′−1+2βe−

c
t
(log(y/y′))2 dy dy′ ≪ t−7/2e

t
c ,

since α > β. Thus we obtain:

‖(1− e−2ϕ)∆ge
−t∆gM−1

φ ‖22 ≪ t−4
(
1 + t1/2et/c

)
.

We proceed now with the operators e−2ϕ〈∇gϕ,∇g · 〉ge−t∆gM−1
φ and

e−2ϕ(∆gϕ+ |∇gϕ|2g))e−t∆gM−1
φ . Their integral kernels are given by

e−2ϕ(z)〈∇g,zϕ(z),∇g,zKg(z, z
′, t)〉gφ−1(z′), and

e−2ϕ(z)(∆gϕ(z) + |∇g,zϕ(z)|2g)Kg(z, z
′, t)φ−1(z′),
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respectively. For which we have respectively the following estimates:

|e−2ϕ(z)〈∇g,zϕ(z),∇g,zKg(z, z
′, t)〉gφ−1(z′)|2

≪ t−3i(z)i(z′)|∇gϕ(z)|2e−
c
t
d2g(z,z

′)φ−1(z′)2, and

|e−2ϕ(z)(∆gϕ(z) + |∇g,zϕ(z)|2gKg(z, z
′, t)φ−1(z′)|2

≪ t−2(|∆gϕ(z)| + |∇gϕ(z)|2g)2i(z)i(z′)e−
c
t
d2g(z,z

′)φ−1(z′)2.

We split the integrals onM×M in the same way as in equation (2.3), and
the integrals obtained are very similar to those carried out in the previous
part for the operator (1− e−2ϕ)∆ge

−t∆g . The main difference occurs in the
power of t.

For the operator e−2ϕ〈∇gϕ,∇g · 〉ge−t∆gM−1
φ we use the estimates in

(1.10) and the decay of the function |ϕ| at infinity.
Now, for the operator e−2ϕ(∆gϕ+ |∇gϕ|2g))e−t∆gM−1

φ we use the estimate

of the heat kernel given in equation (1.8) and the decay of the functions
involving ϕ. Let us only show the integral on Z × Z. For z ∈ Z we have
(∆gϕ(z) + |∇g,zϕ(z)|2g)2 ≪ (y−α + y−2α)2 ≪ y−2α. Then

∫

Z

∫

Z
|e−2ϕ(z)(∆gϕ(z) + |∇g,zϕ(z)|2g)Kg(z, z

′, t)φ−1(z′)|2dAg(z)dAg(z′)

≪ t−2

∫ ∞

1

∫ ∞

1
y−1−2αy′−1+2βe−

c
t
(log(y/y′))2dydy′ ≪ t−3/2e

t
c .

Thus in the same way as above we obtain:

‖e−2ϕ〈∇gϕ,∇g · 〉ge−t∆gM−1
φ ‖22 ≪ t−3

(
1 + t1/2et/c

)
, and

‖e−2ϕ(∆gϕ+ |∇gϕ|2g)e−t∆gM−1
φ ‖22 ≪ t−2

(
1 + t1/2et/c

)
.

Step 1.2. The operator Mφe
−t∆g is HS. To see this, we have to prove

that the following integral is finite:

∫

M

∫

M
|φ(z)Kg(z, z

′, t)|2dAg(z)dAg(z′).

We decompose the integral as in equation (2.3), and proceed in the same
way as above, using in this case the estimates ofKg(z, z

′, t) given in (1.8) and
the definition of the functions φ and i(z). Again, for the sake of simplicity
we just write c instead of 2c in the exponential factor of the heat estimates.
The computations are very similar to those in the previous case.
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The integrals overM0×M0,M0×Z, and Z×M0 do not have any problem.
As for the last term, whose variables z, z′ lie in Z, we have:

(2.4)

∫

Z

∫

Z
|φ(z)Kg(z, z

′, t)|2dAg(z′)dAg(z)

≪
∫ ∞

1

∫ ∞

1
y1−2β y′t−2e

−c
t
(log(y/y′))2 dy

′

y′2
dy

y2

= t−2

∫ ∞

1

∫ ∞

1
y−1−2βy′−1e

−c
t
(log(y/y′))2 dy dy′ ≤ t−3/2ec

′t.

Therefore

‖Mφe
−t∆g‖22 ≪ t−2 + t−3/2et/4c.

In this way we have that (∆g − T−1∆hT )e
−t∆g is a trace class operator

and the trace norm satisfies:

‖(∆g − T−1∆hT )e
−t∆g‖1,g

≤ ‖(∆g − T−1∆hT )e
−(t/2)∆gM−1

φ ‖2 · ‖Mφe
−(t/2)∆g‖2

≪ (t−2 + t−3 + t−4)1/2
(
1 + t1/2et/c

)1/2 (
t−2 + t−3/2et/c

′
)1/2

;

the last expression is integrable for t in compact subsets of (0,∞).
Step 2. In this step we prove that the operator e−t∆h(T∆gT

−1 −∆h) is
trace class. The proof is very similar to the proof for (∆g − T−1∆hT )e

−t∆g

since the heat kernels satisfy the same estimates, and the metrics are quasi-
isometric. Let us write:

e−t∆h(T∆gT
−1 −∆h) = (e−(t/2)∆hMφ) ◦ (M−1

φ e−(t/2)∆h(T∆gT
−1 −∆h)),

where φ ∈ C∞(M) is as above. Then we have to prove that for every t > 0,
the kernels of the operators e−t∆hMφ and M−1

φ e−t∆h(T∆gT
−1 − ∆h) are

square integrable.

The operator M−1
φ e−t∆h(T∆gT

−1−∆h) is HS. First of all let us consider

the kernel of the operator e−t∆h(T∆gT
−1 −∆h). For f ∈ C∞

c (M) we have
that:

(e−t∆h(T∆gT
−1 −∆h)f)(z)

=

∫

M
Kh(z, z

′, t) · (T∆g,z′T
−1 −∆h,z′)f(z

′)dAh(z
′)

=

∫

M
((T∆g,z′T

−1 −∆h,z′)Kh(z, z
′, t)) · f(z′)dAh(z′),
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since the operators T∆g,z′T
−1 and ∆h are symmetric on L2(M,dAh). Now,

let us use the equation

(2.5) T∆gT
−1 −∆h

= (e2ϕ − 1)∆h − 2e2ϕ〈∇hϕ,∇h · 〉h + (∆gϕ− |∇gϕ|2g)
to write

M−1
φ (T∆gT

−1 −∆h)e
−t∆h =M−1

φ e−t∆h{(e2ϕ − 1)∆h

− 2e2ϕ〈∇hϕ,∇h · 〉h + (∆gϕ− |∇gϕ|2g)}.
It follows that M−1

φ e−t∆h(T∆gT
−1 −∆h) is HS if the following functions

(1) φ(z)−1(e2ϕ(z′)− 1)∆h,z′Kh(z, z
′, t),

(2) φ(z)−1e2ϕ(z
′)〈∇h,z′ϕ,∇h,z′Kh〉h and

(3) φ(z)−1(∆gϕ(z
′)− |∇g,z′ϕ|2g)Kh(z, z

′, t)

are in L2(M ×M,dAhdAh).
We split again the integral in the same way as in equation (2.3) and use the

estimates of the heat kernel Kh(z, z
′, t) and its derivatives given in equations

(1.9), (1.10) and (1.11). We also use that for any function f ∈ L1(M,dAh)
we have: ∫

M
|f |dAh ≪

∫

M
|f |dAg.

For the first function listed above, the integrals are almost the same as
the ones corresponding to the operator (1− e−2ϕ)∆ge

−t∆gM−1
φ . Then,

∫

M

∫

M
|φ(z)−1(e2ϕ(z

′)−1)∆h,z′Kh(z, z
′, t)|2dAh(z)dAh(z′) ≪ t−4+ t−7/2et/c

for some constant c > 0.
Similarly for the other two functions we get bounds by t−3(1 + t1/2et/c)

and t−2(1 + t1/2et/c), respectively. Combining these estimates we obtain:

‖M−1
φ e−t∆h(T∆gT

−1 −∆h)‖22 ≪ (t−4 + t−3 + t−2)(1 + t1/2et/c).

In the same way as in Step 1.2 we can prove that e−t∆hMφ is HS with
HS norm satisfying:

‖e−t∆hMφ‖22 ≪ t−2(1 + t1/2e
t
c ).

Finally, for the operator e−t∆h(T∆gT
−1 −∆h) we obtain:

‖e−t∆h(T∆gT
−1 −∆h)‖1,h ≤ ‖e−(t/2)∆hMφ‖2 · ‖M−1

φ e−(t/2)∆h(T∆gT
−1 −∆h)‖2

≪ t−1(t−4 + t−3 + t−2)1/2
(
1 + t1/2et/c

)

This expression is clearly integrable for t on compact subsets of (0,∞).
This finishes the proofs of Proposition 2.2 and Theorem 2.1. �

Corollary 2.3. Let ψ satisfy the same conditions as ϕ in the statement of
Theorem 2.1. Then, for any t > 0 the operator ψe−t∆h is trace class.
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Proof. To proof this Lemma we follow the same method as above. Namely,
we use the semigroup property of e−t∆h to decompose the operator ψe−t∆h

as

ψe−t∆h = ψe−(t/2)∆hMφ−1Mφe
−(t/2)∆h ,

where φ is the function given by equation (2.2) andMφ denotes the multipli-

cation operator by φ. We already proved that the operators ψe−t/2∆hMφ−1

and Mφe
−t/2∆h are HS. �

2.2. Relative trace for other heat operators. In this section, we con-
sider relative heat traces of some operators naturally associated to the sur-
face with cusps.

Proposition 2.4. The operator e−t∆g − e−t∆Z,D is trace class for all t > 0,
where e−t∆Z,D is considered as acting on L2(M,dAg).

This is a corollary of Proposition 6.4 in [13]. The statement of that
proposition can be rewritten in our notation as follows:

Assume thatM can be decomposed asM =M0∪Z with Z = [1,∞)×S1.
Let P0 be the orthogonal projection of L2(M,dAg) onto L

2([1,∞), y−2dy).

Then for every t > 0, e−t∆g − e−t∆1,0P0 is a trace class operator.
To see that Proposition 2.4 follows from this statement, recall what we

explained in Section 1.2: the operator ∆Z,D can be decomposed as ∆Z,D =

∆1,0 ⊕∆Z,1, where the heat operator e−t∆Z,1 is trace class. So we have:

‖e−t∆g − e−t∆Z,D‖1 = ‖e−t∆g − e−t∆1,0‖1 + ‖e−t∆Z,1‖1
Now, let us consider the operator ∆a,0 for a > 1. To see that e−t∆g −

e−t∆a,0 is trace class, we will proceed by writing the difference as

e−t∆g − e−t∆a,0 = e−t∆g − e−t∆1,0 + e−t∆a,0 − e−t∆1,0 .

By Proposition 2.4, the first difference is trace class, so it suffices to show
that e−t∆a,0 − e−t∆1,0 is trace class.

Proposition 2.5. For any a > 1 and t > 0 the operator e−t∆a,0 − e−t∆1,0

acting on L2([1,∞), y−2dy) is trace class and the trace is given by:

Tr(e−t∆a,0 − e−t∆1,0) = − 1√
4πt

e−t/4 log(a).

As an operator on L2([a,∞), y−2dy) the trace is given by:

Tr(e−t∆a,0 − e−t∆1,0) = −e
−t/4
√
4π

Erf (log(a)/
√
t),

where Erf (s) =
∫ s
0 e

−v2dv.

Proof. Let us just sketch the proof. For the complete proof, see [2].
We use the explicit expression of each heat kernel given by equation (1.12)

to prove that, for each t > 0, e−t∆a,0 −e−t∆1,0 is a Hilbert Schmidt operator.
We prove this by direct computation, showing that the difference of the heat
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kernels is in L2([1,∞)× [1,∞), dy
′

y′2
dy
y2
). The computations are tiresome and

involve functions of the form exp
(
− log(yy′/a2)2

4t

)
and exp

(
− log(y/y′)2

2t

)
that

should be properly bounded.
The second step is to decompose the difference as the following sum:

e−t∆a,0 − e−t∆1,0 = e−t/2∆a,0Mφ ·M−1
φ (e−t/2∆a,0 − e−t/2∆1,0)

+ (e−t/2∆a,0 − e−t/2∆1,0)M−1
φ ·Mφe

−t/2∆1,0 ,

where Mφ is multiplication by the function φ defined in equation (2.2) with
β = 1/2. We then prove that each term is Hilbert Schmidt in a similar
fashion as we did in Section 2.1.

Now, let us compute the trace:

Tr(e−t∆a,0 − e−t∆1,0) =

∫ ∞

1
(pa(y, y, t)− p1(y, y, t))

dy

y2

=
e−t/4√
4πt

∫ ∞

a
(e−(log(y2))2/4t − e−(log(y2)−log(a2))2/4t)

dy

y

− e−t/4√
4πt

∫ a

1
(1− e−(log(y2))2/4t)

dy

y
= − e−t/4√

4πt
log(a).

If we consider e−t∆a,0 − e−t∆1,0 as an operator acting on L2([a,∞), y−2dy)
we have that:

Tr(e−t∆a,0 − e−t∆1,0) =

∫ ∞

a
(pa(y, y, t) − p1(y, y, t))

dy

y2

= − e−t/4√
4πt

∫ a

1
e−(log(y))2/tdy

y
.

�

Remark 2.6. The trace of e−t∆a,0−e−t∆1,0 as an operator on L2([a,∞), y−2dy)
has an asymptotic expansion for small values of t. This follows from Propo-
sition 2.5 and the fact that Erf (x) has an expansion for x≫ 1. Taking into

account only the first term we have that Erf (x) =
√
π
2 +O(x−1), as x→ ∞

from which we infer that:

Tr(e−t∆a,0 − e−t∆1,0)L2([a,∞),y−2dy) = −1

4
+O(

√
t) as t→ 0.

Remark 2.7. Let us study the case when the manifold M can be decom-
posed as M = M0 ∪ Za with a ≥ 1 and we want to compare the operators
e−t∆g and e−t∆1,0 . In this case we could consider the operator e−t∆1,0 acting
on L2(M,dAg) in the way explained in Section 1.5.3. However it is more
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convenient and accurate to consider the extended space:

L2(M,dAg)⊕ L2([1, a], y−2dy)

= L2(M0, dAg)⊕ L2
0(Za)⊕ L2([a,∞), y−2dy)⊕ L2([1, a], y−2dy)

= L2(M0, dAg)⊕ L2
0(Za)⊕ L2([1,∞), y−2dy)

where L2
0(Za) is the space defined in equation (1.2). Then the operators

e−t∆g and e−t∆1,0 act on the extended space by being null where they are not
defined. In this way we have that

(2.6) Tr(e−t∆g − e−t∆1,0)L2(M)⊕L2([1,a])

= Tr(e−t∆g − e−t∆a,0)L2(M) +Tr(e−t∆a,0 − e−t∆1,0)L2([1,∞))

where for the sake of simplicity we dropped the densities in the notation of
the L2 spaces.

3. Asymptotics of relative heat traces for small time

In this section we prove the existence of an asymptotic expansion in t of
the relative heat trace Tr(T−1e−t∆hT−e−t∆g ) for small time. More precisely,
we prove that for any ν ≥ 1, there exists an expansion up to order ν of the
relative heat trace as t → 0. By an expansion up to order ν we mean that
the remainder term is an O(tν).

We give explicit conditions on the decay of the conformal factor and its
derivatives that guarantee the existences of such expansion.

3.1. Asymptotics for non-compactly supported perturbations. Let
(M,g) be a swc. For the sake of simplicity we assume that (M,g) has only
one cusp Z ∼= [1,∞)×S1 with the hyperbolic metric on it. We take g as the
background metric on M . Let h = e2ϕg. To start with, let us assume that
for (y, x) ∈ Z, the functions ϕ(y, x) and ∆gϕ(y, x) are O(y−1) as y → ∞.

Let n > 1, let us introduce the following notation:

(3.1) Mn :=M0 ∪ ([1, n]× S1), Z ′
n = [1, n]× S1, Zn = [n,∞)× S1.

We start by constructing the kernel of a parametrix Qh(z, w, t) of the heat
operator associated to ∆h by patching together suitable heat kernels over
Z ′
3 =M3 ∩ Z = [1, 3] × S1. Let us consider the following kernels:

• K1,h(z, w, t): the heat kernel of ∆1,h on the horn Z̃ = R
+×S1, as

was defined in Section 1.5.
• KZ,h(z, w, t): the heat kernel for ∆Z,h, as defined in Section 1.5.3.
KZ,h is given by equation (1.15).

• For the compact part we consider a closed manifold W containing
M2 isometrically. Let ∆W,h be the Laplacian onW and KW,h(z, w, t)

be the kernel of the corresponding heat operator e−t∆W .
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For any two constants 1 < b < c, let φ(b,c) be a smooth function on

[1,∞)× S1 that is constant in the second variable, is non-decreasing in the
first variable, and satisfies φ(b,c)(y, x) = 0 for y ≤ b, and φ(b,c)(y, x) = 1 for
y ≥ c. Let ψ2 = φ( 5

4
,2) and ψ1 = 1−ψ2; then {ψ1, ψ2} is a partition of unity

on [1, 2] × S1. Let ϕ2 = φ(1, 9
8
) and ϕ1 = 1 − φ( 5

2
,3), so that ϕi = 1 on the

support of ψi, i = 1, 2. Extend these functions to M in the obvious way.
Note that |∇hϕi(z)| ≪ 1 and |∆hϕi(z)| ≪ 1, for i = 1, 2. For this choice of
functions we have that:

• supp∇hϕ1 ⊆ [52 , 3]× S1, and, suppψ1 ⊆M2.

• supp∇hϕ2 ⊆ [1, 98 ]× S1, and, suppψ2 ⊆ [54 ,∞)× S1.

Now, we put:

(3.2) Qh(z, w, t) = ϕ1(z)KW,h(z, w, t)ψ1(w) + ϕ2(z)K1,h(z, w, t)ψ2(w).

From the properties of the heat kernels, KW,h andK1,h, and the construction
of the gluing functions it is easy to see that Qh(z, w, t) → δw−z, as t→ 0.

Lemma 3.1. There exist constants C ≥ 0 and c > 0 such that
∣∣∣∣
(
∂

∂t
+∆h,z

)
Qh(z, w, t)

∣∣∣∣ ≤ Ce−c/t, for 0 < t ≤ 1.

Proof. We use the estimates of the heat kernels given by equations (1.9),
(1.10) and (1.11) as well as Theorem 2.1 and the equivalence of the geodesic
distances dg and dh. From the definition of Qh and the properties of the
heat kernels it follows that:
∣∣∣∣
(
∂

∂t
+∆h,z

)
Qh(z, w, t)

∣∣∣∣≪ |(〈∇ϕ1,∇zKW,h〉+ (∆hϕ1)KW,h)ψ1(w)|

+ |(〈∇ϕ2,∇zK1,h〉+ (∆hϕ2)K1,h)ψ2(w)|.

Note that
∣∣( ∂
∂t +∆h,z

)
Qh(z, w, t)

∣∣ has compact support in z. We consider
the following terms separately:

S1 := |(〈∇ϕ1,∇zKW,h〉+ (∆hϕ1)KW,h)ψ1(w)|,
S2 := |(〈∇ϕ2,∇zK1,h〉+ (∆hϕ2)K1,h)ψ2(w)|.

S1 = 0 unless z ∈ supp∇ϕ1 and w ∈ suppψ1. In this case dg(z, w) ≥
log(5/4), then that taking c′1 = c log(5/4) we obtain:

S1 ≤ (|∇ϕ1(z)| |∇zKW,h(z, w, t)| + |∆hϕ1(z)| |KW,h(z, w, t)|)χsupp ψ1(w)

≪ t−3/2e−cd
2
g(z,w)/t + t−1e−cd

2
g(z,w)/t ≪ e−c

′
1/2t for t ∈ (0, 1].

In the same way as above, S2 = 0 unless z ∈ supp∇ϕ2 and w = (v, u) ∈
suppψ2 = [54 ,∞) × S1. In this case dg(z, w) ≥ log(v/(9/8)) ≥ log(10/9).
Therefore:

S2 ≪ v1/2e−c(log(8v/9))
2/2t(t−3/2 + t−1)e−c

′
2/2t ≪ e−c

′
2/4t,

where c′2 = c log(10/9). This finishes the proof of the lemma. �
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Remark 3.2. Note that
(
∂

∂t
+∆h,z

)
Qh(z, w, t)

∣∣∣∣
w=z

= 0.

In order that the expression above does not vanish we need that

dg(z, w) ≥ min{log(5/4), log(10/9)} > 0.

We now prove that in the expression of asymptotic expansion of the rel-
ative heat trace we can replace the heat kernel Kh by the parametrix Qh
defined above.

Lemma 3.3. There exist constants C ≥ 0 and c3 > 0 such that, for any
0 < t ≤ 1:

∫

M
|Qh(z, z, t) −Kh(z, z, t)|dAh(z) ≤ Ce−

c3
t .

Proof. Applying Duhamel’s principle to the heat kernelKh and the parametrix
Qh we obtain:

Qh(z, z
′, t)−Kh(z, z

′, t) =
∫ t

0

∫

M
Kh(z, w, s)

(
∂

∂t
+∆h,w

)
Qh(w, z

′, t− s) dAh(w) ds.

Remark 3.2 implies that:

∫

M
|Qh(z, z, t) −Kh(z, z, t)|dAh(z)

≤
∫ t

0

∫

M

∫

M
|Kh(z, w, s)

(
∂

∂t
+∆h,w

)
Qh(w, z, t − s)| dAh(w) dAh(z) ds

=

∫ t

0



∫

M2

∫

[ 5
2
,3]×S1

· dAh(w) dAh(z) +
∫

Z 5
4

∫

[1, 9
8
]×S1

· dAh(w) dAh(z)


 ds.

The first integral on the right-hand side is bounded by:

∫ t

0

∫

M2

∫

[ 5
2
,3]×S1

i(z)1/2s−1e−
c2
s e−

c′

t−s dAh(w) dAh(z) ds

≪
(∫ t

0
e−

c2
2s e−

c′

t−s ds

)(∫ 3

5
2

dv

v2

)
≪ te−

c3
t ≪ e−

c3
t

since 0 < t ≤ 1.
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For the second integral on the right-hand side above, recall that suppψ2 ⊂
[5/4,∞) × S1. Thus:
∫ t

0

∫

Z 5
4

∫

[1, 9
8
]×S1

|Kh(z, w, s)

(
∂

∂t
+∆h,w

)
Qh(w, z, t−s)| dAh(w) dAh(z) ds

≪
∫ t

0

∫ ∞

5
4

∫ 9
8

1
y1/2e−

c2
2s e−

c1
t−s

dv

v2
dy

y2
ds ≤ te−

c3
t ≤ e−

c3
t .

�

Since the function e−2ϕ is bounded, the derivatives of the gluing functions
ϕ1 and ϕ2 with respect to the metric g satisfy the same bounds as the
derivatives with respect to the metric h. Then we can perform the same
construction for the kernel Kg(z, w, t) to replace it by Qg(z, w, t).

The relative heat trace is given by:

Tr(T−1e−t∆hT − e−t∆g ) =

∫

M
(Kh(z, z, t)e

2ϕ(z) −Kg(z, z, t)) dAg(z).

Using Lemma 3.3, we obtain:
∣∣∣∣
∫

M
(Kh(z, z, t)e

2ϕ(z) −Kg(z, z, t))dAg(z)

−
∫

M
(Qh(z, z, t)e

2ϕ(z) −Qg(z, z, t))dAg(z)

∣∣∣∣≪ e−c3/t.

Therefore we have to determine the asymptotic expansion of the integral:
∫

M
Qh(z, z, t)e

2ϕ(z) −Qg(z, z, t)dAg(z).

The definitions of Qh and Qg induce a natural decomposition of the integral
into two regions of integration, the compact part and the cusp. However,
when we use the local expansion of the heat kernel in the cusp we need to
integrate the remainder term uniformly. For this purpose we decompose the
cusp as in (3.1): Let a > 1, then

Z = Z ′
a ∪ Za.

Therefore the integral decomposes as:
∫

M
Qh(z, z, t)e

2ϕ(z) −Qg(z, z, t)dAg(z) = I0(t) + I1(t) + I2(t),

where

I0(t) =

∫

M
ψ1(z)(KW,h(z, z, t)e

2ϕ(z) −KW,g(z, z, t)) dAg(z),(3.3)

I1(t) =

∫

Z′
a

ψ2(z)(K1,h(z, z, t)e
2ϕ(z) −K1,g(z, z, t)) dAg(z),(3.4)

I2(t) =

∫

Za

ψ2(z)(K1,h(z, z, t)e
2ϕ(z) −K1,g(z, z, t)) dAg(z).(3.5)
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For the moment we consider a fixed, but later we will assign to it a value
depending on t.

The integral I0 has a complete asymptotic expansion in t. To see that,
note that in the local expansions of the kernels KW,g(z, z, t) andKW,h(z, z, t)
the corresponding remainder terms are uniformly bounded on compact sets,
therefore they can be integrated.

The other two integrals can be rewritten as traces of the operators:

A(t) = MχZ′
a
Mψ2(T

−1e−t∆1,hT − e−t∆1,g ) and

B(t) = MχZa
Mψ2(T

−1e−t∆1,hT − e−t∆1,g ),

respectively. Propositions 3.4 and 3.5 below take care of these integrals.

Proposition 3.4. Under the conditions of Theorem 2.1, there is a complete
asymptotic expansion as t → 0 of the integral I1(t) in equation (3.4). The
asymptotic expansion has the following form:

∫

[1,a]×S1

ψ2(z)(K1,h(z, z, t)e
2ϕ(z) −K1,g(z, z, t)) dAg(z) ∼ t−1

∞∑

j=0

âjt
j.

The coefficients âj depend on the parameter a. There is a remainder term

that also depends on a as O(e−
c

a4t ), for a positive constant c.

Proof. In order to deal with the integral I1(t) we first recall what K1,h and

K1,g are. Recall that h was extended to the horn Z̃ and that K1,h(z, w, t)

denotes the heat kernel for ∆h on Z̃. The idea of this proof is to use the local
asymptotic expansion of the corresponding heat kernels and find a uniform
bound on the remainder term.

The universal covering of Z̃ is Ẑ = R
+×R with projection π : Ẑ → Z̃ and

group of deck transformations Γ = Z. The metric h on Z̃ induces a metric ĥ
on Ẑ, that has the same curvature properties as h. In addition, ĥ = e2ϕ̂ĝ0,
where ĝ0 is the lift of g0 to Ẑ and is precisely the hyperbolic metric on H,

and the function ϕ̂ is a lift of ϕ̃ (ϕ̃ the extension of ϕ to Z̃), ϕ̂ = ϕ̃ ◦ π. It

follows that ĥ and ĝ0 are quasi-isometric. Therefore by Proposition 2.1 in

[16], the injectivity radius of ĥ is bounded from below by a positive constant

independent of the point. In this way (Ẑ, ĥ) has bounded geometry. Let kh
denote the heat kernel of ∆ĥ in Ẑ. It satisfies the following estimate:

(3.6) kh(z̃, w̃, t) ≤ Ct−1e−
c d2(z̃,w̃)

t ,

where z̃, w̃ ∈ Ẑ and 0 < t ≤ 1, [9]. It is not difficult to verify that

(3.7) K1,h(z, w, t) =
∑

m∈Z
kh(z̃, w̃ +m, t),

where π(z̃) = z, π(w̃) = w.
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The construction above can be performed for the kernel K1,g as well.
Then the integral I1(t) becomes:
∫ a

1

∫ 1

0
ψ̃2(z̃)

(
∑

m∈Z
kh(z̃, z̃ +m, t)e2ϕ̂(z̃+m) −

∑

l∈Z
kg(z̃, z̃ + l, t)

)
dAĝ(z̃),

because F = R
+ × [0, 1] is a fundamental domain for Γ and the domain

corresponding to Z ′
a in F is [1, a] × [0, 1]; and ψ̃2 is the natural extension

and lift of ψ2 to H. Thus

I1(t) =

∫ a

1

∫ 1

0
ψ̃2(z̃)(kh(z̃, z̃, t)e

2ϕ̂(z̃) − kg(z̃, z̃, t)) dAĝ(z̃)

+

∫ a

1

∫ 1

0
ψ̃2(z̃)

∑

m6=0

(kh(z̃, z̃ +m, t)e2ϕ̂(z̃+m) − kg(z̃, z̃ +m, t)) dAĝ(z̃).

(3.8)

We will start by estimating the second term on the right-hand side of
(3.8). Note that ϕ̂ = ϕ̃ ◦ π implies that the function e2ϕ̂ is bounded. This,

the fact that the metrics ĥ and ĝ are quasi-isometric and the estimate on
the heat kernel kh imply that:

(3.9)
∑

m6=0

kh(z̃, z̃ +m, t)e2ϕ̂(z̃+m) ≪ t−1
∑

m6=0

exp

(
−
c1d

2
ĝ(z̃, z̃ +m)

t

)
.

The explicit expression of the hyperbolic distance in the upper half plane
gives:

dĝ((x̃, ỹ), (x̃+m, ỹ)) = cosh−1

(
1 +

m2

2ỹ2

)
.

If s ≥ 1, cosh−1(s) = log(s+
√
s2 − 1); this implies:

dĝ((x̃, ỹ), (x̃+m, ỹ)) = log

(
1 +

m2

2ỹ2
+

|m|
ỹ

√
m2

4ỹ2
+ 1

)
≥ log

(
1 +

m2

2ỹ2

)
.

For ỹ = y ∈ [1, a], log(1 + m2

2ỹ2
) ≥ log(1 + 1

2a2
). Thus

e−
c1d

2
ĝ(z̃,z̃+m)

t ≤ e−
c1 log(1+1/2a2)2

2t e−
c1 log(1+m2/2ỹ2)2

2t .

In addition, 0 ≤ s ≤ 1 satisfies log(1+s) ≥ s/2. Applying this to s = (2a2)−1

gives:
(3.10)

∑

m6=0

e−
c1d

2
ĝ(z̃,z̃+m)

t ≤ e−
c1

25a4t

∑

m6=0

e−
c1 log(1+ m2

2ỹ2
)2

2t ≤ e−
c2
a4t

∑

m6=0

e−
c1 log(1+ m2

2a2
)2

2t ,

with c2 a positive constant. In order to estimate the series, we compare

it with an integral using the fact that exp

(
− c1 log(1+

m2

2a2
)2

2t

)
is a decreasing
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function of m. We proceed in the following way:

(3.11)
∑

m6=0

e−
c1 log(1+ m2

2a2
)2

2t ≪
∫ ∞

1
e−

c1 log(1+ u2

2a2
)2

2t du

≤
∫ √

2a

1
e−

c1 log(1+ u2

2a2
)2

2t du+

∫ ∞

√
2a
e−

2c1 log( u√
2a

)2

t du

≪ (
√
2a− 1) + a

∫ ∞

0
e−

2c1v
2

t evdv ≪ a(1 +
√
tect) ≪ a,

where for the integral on the right-hand side, we used the change of variables
v = log( u√

2a
); and in the middle step we used that for x ≥ 1, (log(x2+1))2 ≥

(log(x))2. Now we can use (3.9) and the bounds above to estimate the second
term on the right-hand side of equation (3.8):

(3.12)∫ a

1

∫ 1

0
|ψ̃2(z̃)

∑

m6=0

(kh(z̃, z̃ +m, t)e2ϕ̂(z̃+m) − kg(z̃, z̃ +m, t))| dAĝ(z̃)

≪ t−1

∫ a

1

∫ 1

0
|ψ̃2(z̃)

∑

m6=0

e−
c1d

2
ĝ(z̃,z̃+m)

t |dAĝ(z̃)

≪ t−1e−
c2
a4t

∫ a

1

∑

m6=0

e−
c1 log(1+ m2

2a2
)2

2t
dy

y2
≪ t−1ae−

c2
a4t .

Let us remark that in equation (3.12), the right-hand side is a O(e−c/a
4t) as

t→ 0 with c > 0.
Now, let us denote the first term on the right-hand side of equation (3.8)

by Ĩ1(t). The heat kernels kh(z̃, z̃, t) and kg(z̃, z̃, t) have a uniform local
asymptotic expansion as t→ 0 of the usual form:

(3.13) k∗(z̃, z̃, t) = t−1
N∑

k=0

ak(∗̂, z̃)tk +RN (∗̂, z̃, t), for any N ≥ 0,

where ∗ = g, h. For the remainder terms there is a constant C > 0 such that

(3.14) |RN (ĥ, z̃, t)| ≤ CtN and |RN (ĝ, z̃, t)| ≤ CtN

independent of z̃. Replacing the corresponding expansion in Ĩ1(t) we obtain:

(3.15) Ĩ1(t) =

∫ a

1

∫ 1

0
ψ̃2(z̃)t

−1

(
N∑

k=0

ak(ĥ, z̃)e
2ϕ̂(z̃) − ak(ĝ, z̃)

)
tkdAĝ(z̃)

+

∫ a

1

∫ 1

0
(RN (ĥ, z̃, t)e

2ϕ̂(z̃) −RN (ĝ, z̃, t))dAĝ(z̃).
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Note that each integral converges separately since the integrands are bounded
and the domain has finite area. So, strictly speaking we do not need to con-
sider relative objects in this part. However, when we take a = t−1/5 and we
take the limit as t→ 0, the need of considering the relative integral becomes
clear.

We estimate the integrals of the remainder terms using equation (3.14):

(3.16)

∣∣∣∣
∫ a

1

∫ 1

0
ψ̃2(z̃)(RN (ĥ, z̃, t)e

2ϕ̂(z̃) −RN (ĝ, z̃, t))dAĝ(z̃)

∣∣∣∣

≤
∫ a

1

∫ 1

0
(|RN (ĥ, z̃, t)e

2ϕ̂(z̃)|+ |RN (ĝ, z̃, t)|)dAĝ(z̃) ≪ tN
∫ ∞

1

dy

y2
≪ tN ,

for 0 < t ≤ 1. Note that this estimation is independent of a. This finishes
the proof of Proposition 3.4. �

Proposition 3.5. Let ϕ|Z(z), ∆gϕ|Z(z), and |∇gϕ|g|Z(z) with z = (y, x),

be O(y−k) as y → ∞, with k ≥ 1. Then For 0 < t ≤ 1, we have:

(3.17) |I2(t)| = |Tr(MχZa
Mψ2(T

−1e−t∆1,hT − e−t∆1,g ))| ≪ a−k+1/2t−3/2.

Proof. To prove Proposition 3.5 we want to apply Duhamel’s principle on
the cusp Z. However the heat operators involved in the trace correspond

to Laplacians in the horn Z̃. Therefore in order to make the computations
easier, we first replace them by the heat operators e−t∆Z,h and e−t∆Z,g cor-
responding to the extensions of the Laplacians on the cusps with respect
to Dirichlet boundary conditions. Then, we apply Duhamel’s principle to
e−t∆Z,h and e−t∆Z,g . We have to take into account more terms, but we avoid
the problem of the singularity at y = 0. Using equations (1.13) and (1.15)
to replace the respective kernels we obtain:

Tr(MχZa
Mψ2(T

−1e−t∆1,hT−e−t∆1,g )) = Tr(MχZa
Mψ2(T

−1e−t∆Z,hT−e−t∆Z,g))

−
∫

M
χZa(z)ψ2(z)(ph,D(z, z, t)e

2ϕ(z) − p1,D(z, z, t))dAg(z).

From equation (1.14) and supp(ψ2) = Z5/4 it follows that:

∣∣∣∣
∫

M
ψ2(z)(ph,D(z, z, t)e

2ϕ(z) − p1,D(z, z, t))dAg(z)

∣∣∣∣

≪
∫

Z 5
4

t−1y(e−
cdh(z,∂Z)

t + e−
c′dg(z,∂Z)

t )dAg(z) ≪
∫ ∞

5
4

t−1ye−
c1 log(y)2

t
dy

y2

≤ t−1e−
c1 log(5/4)2

2t

∫ ∞

5
4

y−1e−
c1 log(y)2

2t dy ≪ e−
c1 log(5/4)2

4t .

Let us now continue with the estimation of the trace of the operator:

MχZa
Mψ2(T

−1e−t∆Z,hT − e−t∆Z,g ).
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The kernel of T−1e−t∆Z,hT − e−t∆Z,g is given by

eϕ(z)KZ,h(z, w, t)e
ϕ(w) −KZ,g(z, w, t),

and for z = w it takes the form KZ,h(z, z, t)e
2ϕ(z) −KZ,g(z, z, t). From the

usual form of Duhamel’s principle we infer:

KZ,h(z, w, t)e
2ϕ(w) −KZ,g(z, w, t) =

∫ t

0

∫

M
KZ,h(z, z

′, s)e2ϕ(z
′)(∆Z,g −∆Z,h)KZ,g(z

′, w, t− s)dAg(z
′) ds.

Then taking z = w in the equation above and using the transformation of
the Laplacian we obtain:

Tr(MχZa
Mψ2(T

−1e−t∆Z,hT − e−t∆Z,g ))

=

∫

Za

ψ2(z)

∫ t

0

∫

Z

{
KZ,h(z, z

′, s)e2ϕ(z
′)(1− e−2ϕ(z′))

∆Z,gKZ,g(z
′, z, t− s)

}
dAg(z

′) ds dAg(z).

Recall that supp(ψ2) = Z5/4, let us first assume that a > 5/4, so 4a/5 > 1.
Split the integral as the sum of the following terms:

(1) J1 =
∫ t
0

∫
Za

∫
[1, 4a

5
]×S1 · dAg(z′)dAg(z)ds.

(2) J2 =
∫ t/2
0

∫
Za

∫
Z 4a

5

· dAg(z′)dAg(z)ds.

(3) J3 =
∫ t
t/2

∫
Za

∫
Z 4a

5

· dAg(z′)dAg(z)ds.

In this part, we only describe the main lines of the proof. The proof of
the estimation of each integral is given in the Appendix. The methods are
very similar to the ones used to prove Theorem 2.1.

Let k ≥ 1 and suppose that ϕ(y, x) = O(y−k) as y → ∞. Then so are

ψ = 1− e−2ϕ and ψ̃ = e2ϕ − 1. Thus for J1 we have:

(3.18) J1 =

∫ t

0

∫

Za

∫

[1, 4a
5
]×S1

ψ2(z)(K1,h(z, z
′, s) + ph,D(z, z

′, s))e2ϕ(z
′)

ψ(z′)∆Z,g(K1,g(z
′, z, t− s) + p1,D(z

′, z, t − s)) dAg(z
′) dAg(z) ds.

On this region a ≤ y <∞ and 1 ≤ y′ ≤ 4a
5 . Thus 1 <

5
4 ≤ y

y′ , so log(y/y′)
is bounded away from 0. Using the estimates of the heat kernels we obtain:

|J1| ≪ ae−
c′

t ,

for some constants c′ > 0.
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For J2, let us use that the variable z
′ ∈ Z 4a

5
to multiply the inside integral

by the characteristic function χZ 4a
5

(z′). Then,

J2 =

∫ t/2

0

∫

Za

∫

Z 4a
5

ψ2(z)KZ,h(z, z
′, s)e2ϕ(z

′)

χZ 4a
5

(z′)ψ(z′)∆Z,gKZ,g(z
′, z, t− s)dAg(z

′)dAg(z)ds.

Writing this integral in terms of traces of the corresponding operators we
infer:

|J2| =
∣∣∣∣∣

∫ t/2

0
Tr(Mψ2e

−s∆Z,hMe2ϕMχZ 4a
5

Mψ∆Z,ge
−(t−s)∆Z,g )ds

∣∣∣∣∣

≪
∫ t/2

0
‖MχZ 4a

5

Mψ∆Z,ge
−(t−s)∆Z,g‖1ds =

∫ t

t/2
‖MχZ 4a

5

Mψ∆Z,ge
−s∆Z,g‖1ds.

To obtain a bound, we use a similar method as in Section 2.1. Let φ be the
auxiliary function defined by equation (2.2) with β = 1/2. Then the trace
norm of the operator MχZ 4a

5

Mψ∆Z,ge
−s∆Z,g satisfies:

‖MχZ 4a
5

Mψ∆Z,ge
−s∆Z,g‖1 ≤ ‖MχZ 4a

5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖2‖Mφe
−s/2∆Z,g‖2.

The terms on the right-hand side can be estimated in a similar way as before
to obtain:

‖MχZ 4a
5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖2 ≪ s−7/4(a−k + a−k+1/2),

‖Mφe
−s/2∆Z,g‖2 ≪ s−3/4.

It follows that:

|J2| ≪
∫ t

t/2
s−7/4(a−k + a−k+1/2) · s−3/4ds≪ a−k+1/2t−3/2.

Now, for J3 we proceed in a similar way as for J2 to obtain:

|J3| ≪
∫ t

t/2
a−k+1/2s−7/4s−3/4ds≪ a−k+1/2t−3/2,

see the Appendix for all the details. From all the equations above we obtain:

|Tr(Mψ2(T
−1e−t∆Z,hT − e−t∆Z,g ))| ≪ a−k+1/2t−3/2 + ae−c

′/t ≪ a−k+1/2t−3/2,

for 0 < t < 1. �

Theorem 3.6. Let ν ≥ 1. Write z ∈ Z as z = (y, x). Let ϕ|Z(z), ∆gϕ|Z(z),
and |∇gϕ|g|Z(z) be O(y−k) as y → ∞ with k ≥ 5ν + 8. In addition, if

ν ≥ 3 we require for 2 ≤ ℓ ≤ ν that |∇ℓϕ|g|Z(z) = O(y−k) with k ≥
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5(ν−2)−1.Then under these conditions, there is an expansion of the relative
heat trace of the form:

(3.19) Tr(T−1e−t∆hT − e−t∆g) = t−1
ν∑

i=0

ait
i +O(tν), as t→ 0.

Proof. The argument of the proof started above. To complete the proof we
need to put together the proofs of Proposition 3.4 and 3.5 in a consistent
manner. First of all, we need to make all our estimates independent of a. In
particular, the estimate of equation (3.12). This particular estimate is going
to determine our result. In equation (3.12) the right-hand side is estimated

by t−1ae−
c2
a4t . Taking a = t−1/5, we get a4t = t1/5. Therefore equation

(3.12) becomes:

∫ t−1/5

1

∫ 1

0
|ψ̃2(z̃)

∑

m6=0

(kh(z̃, z̃ +m, t)e2ϕ̂(z̃+m) − kg(z̃, z̃ +m, t))| dAĝ(z̃)

≪ e
− c2

2t1/5 .

The next step is to make sure that the asymptotic expansion in equation
(3.15) is kept when we pass to the limit as t → 0. Before we continue
with the asymptotics of I1(t), let us consider again the estimate of I2(t) and
replace a = t−1/5 in equation (3.17). In order to have

(3.20) |Tr(Mψ2(T
−1e−t∆Z,hT − e−t∆Z,g ))| ≪ (t−1/5)−k+1/2t−3/2 ≪ tν

with ν ≥ 1/2 we need that k
5 − 1

10− 3
2 ≥ ν. Thus, k should satisfy k ≥ 5ν+8.

This condition applies to the conformal factor and its derivatives up to
second order.

Now, let us go back to the asymptotics of I1(t). Let ν ≥ 1. Replacing

a = t−1/5 in equation (3.15), Ĩ1(t) becomes:

Ĩ1(t) = t−1

∫ t−1/5

1

∫ 1

0
ψ̃2(z̃)

ν∑

j=0

tj(e2ϕ̂aj(ĥ, z̃)− aj(ĝ, z̃))dAĝ(z̃)(3.21)

+

∫ t−1/5

1

∫ 1

0
ψ̃2(z̃)(e

2ϕ̂Rν(ĥ, z̃, t)−Rν(ĝ, z̃, t))dAĝ(z̃).

The integral of the remainder terms was estimated in equation (3.16), in-

dependently of t and a. In what follows we set ψ̃2 = 1 and drop the hat
in ϕ̂. To deal with the convergence of the integrals in the first term on the
right-hand side in equation (3.21) we fix j and split each integral as follows:

∫ t−1/5

1

∫ 1

0
(e2ϕaj(ĥ)− aj(ĝ))dAĝ =

∫ ∞

1

∫ 1

0
(e2ϕaj(ĥ)− aj(ĝ))dAĝ

−
∫ ∞

t−1/5

∫ 1

0
(e2ϕaj(ĥ)− aj(ĝ))dAĝ
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Our goal is to prove that for each j the integral over [1,∞)× [0, 1] converges

and that the integral over [t−
1
5 ,∞)× [0, 1] can be suitably estimated.

First of all, note that the region of integration [1,∞) × [0, 1] has finite

area respect to both metrics ĝ and ĥ. Since ĝ is the hyperbolic metric on

H
2, the functions ak(ĝ, z̃) are bounded, therefore integrable. Let us describe

the general picture. Our goal is to prove the following equation:

Ĩ1(t) = t−1
ν∑

j=0

tj
∫ ∞

1

∫ 1

0
(e2ϕaj(ĥ, z̃)− aj(ĝ, z̃))dAĝ(z̃)

+ t−1
ν∑

j=0

tj
∫ ∞

t−1/5

∫ 1

0
(e2ϕaj(ĥ, z̃)− aj(ĝ, z̃))dAĝ(z̃) +O(tν)

=
ν∑

j=0

(t−1tj ãj +O(tν)) +O(tν) =
ν∑

j=0

t−1tj ãj +O(tν),(3.22)

where the coefficients ãj are given by:

ãj =

∫ ∞

1

∫ 1

0
(e2ϕ̂aj(ĥ, z̃)− aj(ĝ, z̃))dAĝ(z̃).

For each j with 0 ≤ j ≤ ν we find conditions on the decay of ϕ, on the
number of derivatives that should decay, and on the order of that decay
such that the corresponding integral converges or is suitably estimated. At
the end, we impose the strongest condition on ϕ and its derivatives coming
from all the terms together.

At each level j (the sub-index of the heat invariant) we assume that ϕ
and its derivatives (we will see each time how many derivatives we need)
decay as y−k at infinity, then we find k in terms of ν and j.

Let us proceed with the analysis of the heat invariants. We analyze the
convergence and estimation of the integrals simultaneously.

For a0 we have:
∫ ∞

1

∫ 1

0
(e2ϕ − 1)dAĝ = Aĥ([1,∞) × [0, 1]) − 1

and

t−1

∫ ∞

t−1/5

∫ 1

0
|e2ϕ − 1|dAĝ ≪

∫ ∞

t−1/5
y−k

dy

y−2
= t−1 1

k + 1
t
k+1
5

In order to have t−1t
k+1
5 ≤ tν we need ϕ to decay as k ≥ 5ν + 4.

For a1 the integrals are:

∫ ∞

1

∫ 1

0
(e2ϕRĥ −Rĝ)dAĝ =

∫ ∞

1

∫ 1

0
((∆ĝϕ+Rĝ)−Rĝ)dAĝ

=

∫ ∞

1

∫ 1

0
∆ĝϕ dAĝ ≪ 1
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and ∫ ∞

t−1/5

∫ 1

0
|e2ϕ∆ĝϕ|dAĝ ≪

∫ ∞

t−1/5

y−k
dy

y−2
=

1

k + 1
t
k+1
5 .

Here we need ∆ĝϕ to decay as k ≥ 5ν − 1.
The second heat invariant a2 is given in [18] as a2 =

π
60

∫
M R2dA. In our

case we obtain:

∫ ∞

1

∫ 1

0
(e2ϕR2

ĥ
−R2

ĝ)dAĝ =

∫ ∞

1

∫ 1

0
e−2ϕ(∆ĝϕ+Rĝ)

2 −R2
ĝ dAĝ

=

∫ ∞

1

∫ 1

0
e−2ϕ(∆ĝϕ)

2 + e−2ϕ(∆ĝϕ)Rĝ dAĝ ≪ 1.

For integral over [t−1/5,∞)× [0, 1] we have:

t

∫ ∞

t−1/5

∫ 1

0
|e−2ϕ(∆ĝϕ)

2 + e−2ϕ(∆ĝϕ)Rĝ dAĝ| ≪ t
2k+1

5
+1

2k + 1
+

t
k+1
5

+1

k + 1

The left-hand side is bounded by tν if k+1
5 +1 ≥ ν, i.e if k ≥ 5ν − 6. In this

case ν ≥ 2, and we need two derivatives.
Now, let us go one step forward and consider the third heat invariant as

it is given in [20]:

a3 =
1

4π

∫

M
−9|∇R|2 + 4R3dA

Before we proceed, let us perform some computations:

∇ĥRĥ = −2e−2ϕ(∆ĝϕ− 1)(∇ĥϕ) + e−2ϕ∇ĥ(∆ĝϕ)

|∇ĥRĥ|
2
ĥ

= 4e−4ϕ(∆ĝϕ− 1)2|∇ĥϕ|
2
ĥ
− 4e−4ϕ(∆ĝϕ− 1)〈∇ĥϕ,∇ĥ(∆ĝϕ)〉ĥ

+ e−4ϕ|∇ĥ(∆ĝϕ)|2ĥ
R3
ĥ

= e−6ϕ(∆ĝϕ+Rĝ)
3 = e−6ϕ((∆ĝϕ)

3 − 3(∆ĝϕ)
2 + 3(∆ĝϕ)− 1)

Plugging the expressions above in the integrals under consideration we
obtain:

∫ ∞

1

∫ 1

0
e2ϕ(−9|∇ĥRĥ|

2
ĥ
+ 4R3

ĥ
)− (−9|∇Rĝ|2 + 4R3

ĝ)dAĝ

= 4

∫ ∞

1

∫ 1

0
e−4ϕ((∆ĝϕ)

3 − 3(∆ĝϕ)
2 + 3(∆ĝϕ)) + (1− e−4ϕ) dAĝ

−9

∫ ∞

1

∫ 1

0
e−4ϕ{4(∆ĝϕ−1)2|∇ϕ|2−4(∆ĝϕ−1)〈∇ϕ,∇(∆ĝϕ)〉+|∇(∆ĝϕ)|2} dAĝ

Since |∇ĥϕ|2ĥ = e−2ϕ|∇ĝϕ|2ĝ and we drop the subindice when we consider

the metric ĝ. In the first integral of the last equality, all functions decay
at infinity. For convergence of the second integral, it is enough to require
boundedness of the integrand, i.e. |∇(∆ϕ)| ≪ 1.
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Now, we estimate the integrals on the region [t−
1
5 ,∞)× [0, 1]. As above,

let us assume that |∇ℓ
ĝϕ| = O(y−k), for 0 ≤ ℓ ≤ 3 then |∆ĝϕ − 1| ≪ 1,

e−4ϕ − 1 = O(y−k), and

t2
∫ ∞

t−1/5

∫ 1

0
|e2ϕ(−9|∇Rĥ|

2 + 4R3
ĥ
)− (−9|∇Rĝ|2 + 4R3

ĝ)|dAĝ

≪ t2
∫ ∞

t−1/5

∫ 1

0

(
|∆ĝϕ|3 + |∆ĝϕ|2 + |∆ĝϕ|+ |1− e−4ϕ|

+|∇ϕ|2 + |∇ϕ||∇(∆ĝϕ)|+ |∇(∆ĝϕ)|2
)
dAĝ

≪ t2
∫ ∞

t−1/5

(
y−3k + y−2k + y−k

) dy

y2

=
t
3k+1

5
+2

3k + 1
+
t
2k+1

5
+2

2k + 1
+
t
k+1
5

+2

k + 1
.

In the same way as in the previous case we need that k+1
5 + 2 ≥ ν. This is

achieved if k ≥ 5ν − 11, (ν ≥ 3).
General formulas for the coefficients in the expansion of the heat kernel are

very complicated and only known explicitly for few of them. However, it is
known that the functions ak(ĥ, z̃) are polynomials of degree 2k in the scalar
curvature (2Rĥ) and half powers of the Laplacian. The leading coefficients
of this polynomials are described in [18] and in a more explicit form by
Branson, Gilkey and Ørsted in [3]. We refer to Lemma 1.3 and (1.4) in [3].

aj(∆) =

∫

M
(j(j − 1)cj)|∇j−2R|2 + polynomial(R,∇R, . . .∇j−3R),

for j ≥ 3. These are the heat coefficients for a closed Riemann surface (in
[3] R denotes the scalar curvature). Applying this to our case, we require at

least |∇j−2

ĥ
Rĥ| to be bounded for 0 ≤ ℓ ≤ j − 2. In terms of the conformal

factor, this condition translates to |∇ℓϕ| ≪ 1 for 2 ≤ ℓ ≤ j. Under these
requirements, the integrals defining the coefficients ãj converge.

Now let us estimate the integral over [t−1/5,∞) × [0, 1], assuming that
|∇ℓϕ| = O(y−k) for 2 ≤ ℓ ≤ j:

(3.23)

∫ ∞

t−1/5

∫ 1

0
(j(j − 1)cj)(e

2ϕ|∇j−2

ĥ
Rĥ|

2 − |∇j−2
ĝ Rĝ|2)

+ e2ϕpolynomial(Rĥ,∇ĥRĥ, . . .∇
j−3

ĥ
Rĥ)

− polynomial(Rĝ,∇ĝRĝ, . . .∇j−3
ĝ Rĝ) dAĝ(z̃)

If j ≥ 3, ∇j−2
ĝ Rĝ = 0, therefore the leading term is of the form |∇j−2

ĥ
Rĥ|2 =

O(y−2k). Now, let us consider the terms involved in the polynomial. For
that, we assume that the polynomial is of the form:

p2j(x1, . . . , xr) =
∑

ai1...irx
i1
1 · · · xirr ,
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then we have terms of the form:

e2ϕai1...irR
i1
ĥ
(∇ĥRĥ)

i2 · · · (∇j−3

ĥ
Rĥ)

ir − ai1...irR
i1
ĝ (∇ĝRĝ)

i2 · · · (∇j−3
ĝ Rĝ)

ir

If ij 6= 0 for some j > 1, the second term vanishes. So we are left only
with:

e2ϕai1...irR
i1
ĥ
(∇ĥRĥ)

i2 · · · (∇j−3

ĥ
Rĥ)

ir

that involve at least one derivative of Rĥ: ∇ℓ
ĥ
Rĥ = (∇ℓ

ĥ
(∆ϕ + Rĝ))

ij =

(∇ℓ
ĥ
(∆ϕ))ij = O(y−k·ij).

If ij = 0 for all j > 1, we have terms of the form:

ai1...ir(e
2ϕRi1

ĥ
−Ri1ĝ ) = ai1...ir(e

2(1−i1)ϕ(∆ϕ+Rĝ)
i1 −Ri1ĝ )

= ai1...ir(e
2(1−i1)ϕ

i1∑

ℓ=0

(
i1
ℓ

)
(∆ϕ)ℓ(Rĝ)

i1−ℓ −Ri1ĝ )

|ai1...ir(e2ϕRi1ĥ −Ri1ĝ )| ≪
(

i1∑

ℓ=1

y−kℓ
)

+ (e2(1−i1)ϕ − 1)Ri1ĝ ,

and recall that 1− e−2ℓϕ = O(y−k). Therefore:

tj−1

∫ ∞

t−1/5

∫ 1

0
(e2ϕaj(ĥ)− aj(ĝ))dAĝ ≪ tj−1t

k+1
5 ,

the last term is bounded by tν if k ≥ 5ν − 5(j − 1) − 1. We have finished
the proof of equation (3.22).

It is interesting to see how, as we want to have more terms in the ex-
pansion, although more derivatives need to be considered, the conditions
on their decay become weaker. However, this fact does not have any impli-
cation on our purposes of defining relative determinants. We could try to
further refine the requirements to minimize conditions on ϕ but that will
imply a deeper analysis of the heat invariants that is beyond the purpose of
this article. �

Corollary 3.7. If the conformal factor ϕ and all its derivatives decay at
infinity to infinite order, then there is a complete asymptotic expansion of
the relative heat trace as t→ 0:

Tr(T−1e−t∆hT − e−t∆g ) = t−1
∞∑

j=0

ajt
j.

Corollary 3.8. Let h = e2ϕg with ϕ|Z(z), ∆gϕ|Z(z), and |∇gϕ|g|Z(z) be

O(y−k) as y → ∞ with k ≥ 11. Then the relative heat trace has an expansion
of the form:

(3.24) Tr(T−1e−t∆hT − e−t∆g ) = a0t
−1 + a1 +O(

√
t) as t→ 0.

We will see in Section 4.1 that this condition is sufficient to define the
relative determinant.
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Proof. The condition k ≥ 11 comes from taking ν = 1/2 in equation (3.20).

In the part corresponding to Ĩ1(t) we take ν = 1. The heat invariants a0
and a1 require ϕ to decay at least as k = 9 and ∆ϕ to decay as k = 4. The
strongest condition is then determined by I2. �

To compute the coefficients in the expansion (3.19) we use that the co-
efficients in the local expansion of the heat kernels are given by universal
functions. Taking ν = 2, we have that:

(3.25) Tr(T−1e−t∆hT − e−t∆g ) =
t−1

4π
(Ah −Ag)

+ t
π

60

(∫

M
R2
h(z)dAh(z)−

∫

M
R2
g(z)dAg(z)

)
+O(t2), as t → 0,

where the constant term vanishes due to Gauss-Bonnet’s theorem. Equation
(3.24) becomes:

(3.26) Tr(T−1e−t∆hT − e−t∆g) =
t−1

4π
(Ah −Ag) +O(

√
t), as t→ 0,

3.2. Asymptotics of other relative heat traces. Let us consider again
surfaces with several cusps. Let (M,g) be a swc of genus p and with m
cusps. Assume that M can be decomposed as M = M0 ∪ Za1 ∪ · · ·Zam ,
where ai ≥ 1 for 1 ≤ i ≤ m. Let ∆̄a,0 be the direct sum ⊕m

j=1∆aj ,0 of the
Dirichlet Laplacians ∆aj ,0 defined in Definition 1.1.

Proposition 6.4 in [13] establishes that the operator e−t∆g − e−t∆̄a,0 is
trace class and its trace has the following asymptotic expansion as t→ 0:

(3.27)

Tr(e−t∆g − e−t∆̄a,0) =
Ag
4π
t−1 + (

γm

2
+

m∑

j=1

log(aj))
1√
4πt

+
m

2

log(t)√
4πt

+
χ(M)

6
+
m

4
+O(

√
t),

where γ is the Euler constant. A close examination of the proof of equa-

tion (3.27) in [13] shows that the term
∑m

j=1
log(aj)√

4πt
can be replaced by

e−t/4
∑m

j=1
log(aj )√

4πt
.

In particular, we can consider the relative determinant of the pair (∆g, ∆̄1,0).

To that purpose we consider the trace Tr(e−t∆g − e−t∆̄1,0), where the trace
is taken in an extended L2 space that is given by:

(3.28) L2(M,dAg)⊕⊕m
j=1L

2([1, aj ], y
−2dy)

= L2(M0, dAg)⊕⊕m
j=1(L

2
0(Zaj )⊕ L2([1,∞), y−2dy)).
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Thus, using Proposition 2.5 and equations (2.6) and (3.27) we obtain the
following asymptotic expansion as t→ 0:

(3.29)

Tr(e−t∆g − e−t∆̄1,0) =
Ag
4π
t−1 +

γm

2

1√
4πt

+
m

2

log(t)√
4πt

+
χ(M)

6
+
m

4
+O(

√
t).

Together with equation (3.26) this gives:

(3.30)

Tr(T−1e−t∆hT − e−t∆̄1,0) =
Ah
4π
t−1 +

γm

2

1√
4πt

+
m

2

log(t)√
4πt

+
χ(M)

6
+
m

4
+O(

√
t),

where the transformation T is the identity in the space⊕m
j=1L

2([1, aj ], y
−2dy).

4. Relative determinants on surfaces with asymptotically cusp

ends

4.1. Definition. The relative determinant on a surface with hyperbolic
cusps was already considered by W. Müller in [15]. Therefore, we restrict
our attention to the definition and properties of the relative determinant on
asymptotically hyperbolic surfaces. Let (M,g) be a swc and let h = e2ϕg. In
order to define the relative determinant of the pairs (∆h,∆g), and (∆h,∆1,0),
we need to verify that the conditions given in Section 1.1 are satisfied. Let
k ≥ 1, let us define the following set of functions:

Fk := {ψ ∈ C∞(M)| ψ(z), |∇gψ|(z) and ∆gψ(z)

are O(i(z)−k) as y = i(z) → ∞}.
Sections 2.2 and 3 establish that the first and second conditions are ful-

filled provided that ϕ ∈ F1 and ϕ ∈ F11, respectively.
The third condition in Section 1.1 is about the behavior of the relative

heat trace for big values t. The trace class property together with the fact
that σac(∆1,0) = [1/4,∞) and Lemma 2.22 in [15] give the existence of a
constant C1 > 0 such that:

(4.1) Tr(T−1e−t∆hT − e−t∆1,0) = 1 +O(e−C1t), as t → ∞,

where the value 1 on the right-hand side comes from dimker∆h−dimker∆1,0

and the trace is taken in L2(M,dAg). This condition is satisfied even when
ϕ ∈ F1.

Let us prove that the condition ϕ ∈ F11 suffices to define the relative de-
terminant of (∆h,∆1,0). The relative zeta function ζ(s;∆h,∆1,0) converges
on Re(s) > 1. It follows from the asymptotic expansions (3.30) and (4.1)
that the function ζ(s;∆h,∆1,0) has a meromorphic continuation to the com-
plex plane, that it is regular at s = 0. This continuation is denoted again
by ζ. The proof of the existence of the continuation and regularity at s = 0
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is classical in the literature. However we include it here to remark that it is
enough to have a truncated asymptotic expansion.

For the sake of simplicity, let us take m = 1 and let us fix the notation in
equation (3.30) above:

a0 =
Ah
4π

a10 =
γ

4
√
π
, a11 =

1

4
√
π
, a2 =

χ(M)

6
+

1

4
.

Now, let us write ζ(s;∆h,∆1,0) as ζ1(s) + ζ2(s) with

ζ1(s) :=
1

Γ(s)

∫ 1

0
ts−1(Tr(T−1e−t∆hT − e−t∆1,0)− 1)dt and

ζ2(s) :=
1

Γ(s)

∫ ∞

1
ts−1(Tr(T−1e−t∆hT − e−t∆1,0)− 1)dt.

Equation (4.1) implies that ζ2(s) is analytic at s = 0. As for ζ1(s) and
Re(s) > 1, we have that:

ζ1(s) =
1

Γ(s)

∫ 1

0
ts−1(a0t

−1 + (a10 + a11 log t)t
−1/2 + a2 − 1 + ϑ(t))dt

=
1

Γ(s)

(
a0
s− 1

+
a10

s− 1/2
− a11

(s− 1/2)2
+
a2 − 1

s
+ ϑ1(s)

)

,

where ϑ(t) = O(
√
t)) and ϑ1(s) is a function that is analytic at s = 0.

Therefore, we can define the (regularized) relative determinant of (∆h,∆1,0)
as in Section 1.1:

det(∆h,∆1,0) = exp

(
− d

ds
ζ(s;∆h,∆1,0)

∣∣∣
s=0

)
.

Note that we only need to require that the function ϕ and its derivatives
up to order two, have a decay of order 11 at infinity. The definition of
det(∆h,∆g) is done in the same way.

4.2. Polyakov’s formula for the relative determinant. Extremals.

In [17] the authors proved that on compact surfaces, with and without
boundary and under suitable restrictions, the regularized determinant of
the Laplace operator has an extremum. In this section we discuss the gene-
ralization of the extremal property of determinants given by OPS to certain
cases of surfaces with asymptotically cusp ends. The main tool to study
extremal properties of determinants is Polyakov’s formula that relates the
determinant of a given metric to the determinant of a conformal perturba-
tion of it. The formula obtained here for relative determinants is the same
as the one for regularized determinants on compact surfaces given in [17].
The proofs of the variational formula and of Polyakov’s formula follow the
main lines of the corresponding proofs in [17] but we focus in the technical
details that allow us to perform each step in the main proof.
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4.2.1. Polyakov’s formula. In this section we first consider ϕ,ψ ∈ Fk with
k ≥ 11 and u ∈ R, let us define the family of metrics:

hu := e2(ϕ+uψ)g = e2uψh.

The corresponding Laplace operators and area elements are given by the
equations:

∆u := ∆hu = e−2uψ∆h, dAu := dAhu = e2uψdAh.

Let us consider the family of unitary maps given by:

Tu : L2(M,dAu) → L2(M,dAh), f 7→ feuψ,

and the following functional:

F : Fk → C, ψ 7→ Fs(ϕ+ uψ) := ζ(s;∆u,∆1,0),

ζ(s;∆u,∆1,0) =
1

Γ(s)

∫ ∞

0
ts−1(Tr(Tue

−t∆uT−1
u − Te−t∆1,0T−1)− 1)dt,

where the trace is taken in L2(M,dAh). The variation of ζ at ϕ in the
direction of ψ is defined as:

δζ

δψ
(s;∆h,∆1,0) :=

∂

∂u
Fs(ϕ+ uψ)

∣∣∣∣
u=0

.

In order to proceed with the computation of the derivative in the equation
above, we need the following lemma:

Lemma 4.1.

d

du
Tr(Tue

−t∆uT−1
u − Te−t∆1,0T−1)

∣∣∣∣
u=0

= −tTr(∆̇he
−t∆h),

where ∆̇h ≡ ∂
∂u ∆u

∣∣
u=0

= −2ψ∆h.

Proof. Let Hu = Tu∆uT
−1
u . Then Hu is a family of self-adjoint operators

acting on L2(M,dAh). Note that e
−tHu = Tue

−t∆uT−1
u . It is also clear that:

d

du
Tr(Tue

−t∆uT−1
u − Te−t∆1,0T−1) = Tr

(
d

du
e−tHu

)
.

Let u1, u2 > 0, with u1 > u2. Let us apply Duhamel’s principle in terms of
the operators:

e−tHu1 − e−tHu2 =

∫ t

0
−e−sHu1Hu1e

−(t−s)Hu2 + e−sHu1Hu2e
−(t−s)Hu2 ds.

Dividing by u1 − u2 the previous equation and letting u2 → u1, we obtain:

d

du
e−tHu

∣∣∣∣
u=u1

= −
∫ t

0
e−sHu1

(
d

du
Hu

∣∣∣∣
u=u1

)
e−(t−s)Hu1 ds.

Therefore we get:

(4.2)
d

du
Tr(Tue

−t∆uT−1
u − Te−t∆1,0T−1) = −tTr

(
Ḣue

−tHu

)
.
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Let us compute the derivative Ḣu:

d

du
Hu = ψTu∆uT

−1
u + Tu

(
d

du
∆u

)
T−1
u − Tu∆uψT

−1
u .

Thus we get

Tr
(
Ḣue

−tHu

)
= Tr

(
ψ∆ue

−t∆u
)
+Tr

(
∆̇ue

−t∆u

)
− Tr

(
∆uψe

−t∆u
)
.

From the rate of decay assumed for ψ and ∆gψ we have that the operators
ψe−t∆u and ∆uψe

−t∆u are trace class. Using in addition that e−t∆u∆u is
bounded for all t > 0 we obtain:

Tr
(
∆uψe

−t∆u
)
= Tr

(
e−

t
2
∆u∆uψe

− t
2
∆u

)
= Tr

(
ψe−t∆u∆u

)
= Tr

(
ψ∆ue

−t∆u
)
.

In this way we get:

Tr
(
Ḣue

−tHu

)
= Tr

(
∆̇ue

−t∆u

)
= −2Tr

(
ψ∆ue

−t∆u
)
.

Taking u = 0 in the previous equation together with equation (4.2) implies
the statement of the lemma. �

We are ready to compute the variation of the relative zeta function:

δζ

δψ
(s;∆h,∆1,0)

=
1

Γ(s)

∫ ∞

0
ts−1 d

du
(Tr(Tue

−t∆uT−1
u − Te−t∆1,0T−1)− 1)

∣∣∣∣
u=0

dt

=
−1

Γ(s)

∫ ∞

0
tsTr((−2ψ∆he

−t∆h)dt =
−2

Γ(s)

∫ ∞

0
ts
∂

∂t
Tr(ψe−t∆h)dt,

Since
∂

∂t
ψe−t∆h =

∂

∂t
ψ(e−t∆h − Pker(∆h)),

we have that

(4.3)
δζ

δψ
(s;∆h,∆1,0) =

−2

Γ(s)

∫ ∞

0
ts
∂

∂t
Tr(ψ(e−t∆h − Pker(∆h)))dt.

In the classical proof of the variational formula of the spectral zeta func-
tion, the next step is to do integration by parts in equation (4.3). Before we
do that, we have to verify the good decay of Tr(ψ(e−t∆h −Pker(∆h))) for big
and small values of t. In addition, we need to make sure that we can obtain
an expansion of the trace, for small values of t, whose remainder term can
be integrated. We accomplish that in the following two lemmas:

Lemma 4.2. There exists a constant c > 0 such that:

Tr(ψ(e−t∆h − Pker(∆h))) = O(e−ct), as t→ ∞.
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Proof. Let t > 1 and let us write:

ψ(e−t∆h − Pker(∆h)) = ψe−
1
2
∆h(e−(t− 1

2
)∆h − Pker(∆h)),

where we used that e−
1
2
∆hPker(∆h) = Pker(∆h). By Corollary 2.3 we have

that ψe−
1
2
∆h is trace class. On the other hand, for f ∈ L2(M,dAh) the

spectral theorem implies that:

e−t∆hf − Pker(∆h)f = e−t(∆h−Pker(∆h))f.

Note that σess(∆h) = [1/4,∞) implies that 0 is an isolated eigenvalue of ∆h

and σ(∆h − Pker(∆h)) ⊆ [c1,∞) for some c1 ∈ (0, 1/4]. Thus

‖e−t(∆h−Pker(∆h))‖L2(M,h) ≤ e−c1t

for any t > 0. If t > 1, t − 1
2 > 0; therefore the trace satisfies the desired

estimate:

|Tr(ψ(e−t∆h − Pker(∆h)))| ≤ ‖ψe− 1
2
∆h(e−(t− 1

2
)∆h − Pker(∆h))‖1

≤ ‖ψe− 1
2
∆h‖1‖e−(t− 1

2
)(∆h−Pker(∆h))‖L2(M,h) ≪ e−c1t.

This proves Lemma 4.2. �

Lemma 4.3. For 0 < t ≤ 1 the trace of the operator ψ(e−t∆h − Pker(∆h))
has the following expansion:

Tr(ψ(e−t∆h − Pker(∆h))) =

∫

M
ψ(z)

(
1

4πt
+
Rh(z)

12π
− 1

Ah

)
dAh +O(t)

as t→ 0.

Proof. In order to prove Lemma 4.3 we use a method similar to the one used
in Section 3.1 to prove the existence of the expansion of the relative heat
trace Tr(e−t∆h − e−t∆g ) for small t. We start by considering the parametrix
kernel Qh(z, z

′, t) defined by equation (3.2):

Qh(z, w, t) = ϕ1(z)KW,h(z, w, t)ψ1(w) + ϕ2(z)K1,h(z, w, t)ψ2(w),

where the functions ϕi and ψi, i = 1, 2, are defined in Section 3.1. From
Lemma 3.3, we can restrict our attention to

∫
M ψ(z)(Qh(z, z, t)− 1

Ah
)dAh(z)

and split the integral as the sum of the following two terms:

L1(t) =

∫

M2

ψ(z)ψ1(z)(KW,h(z, z, t) −
1

Ah
)dAh(z)

L2(t) =

∫

Z 5
4

ψ(z)ψ2(z)(K1,h(z, z, t) −
1

Ah
)dAh(z).

Using the asymptotic expansion of the kernel KW,h(z, z, t) we obtain:

(4.4) L1(t) =

∫

M2

ψ(z)ψ1(z)

(
1

4πt
+
Rh(z)

12π
− 1

Ah
+R1(z, t)

)
dAh(z).
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For L2(t), we use the same construction and notation as in the proof of
Proposition 3.4. Now, let a > 5/4 and let us split the integral L2(t) as the

sum L2 = J̃1(t) + J̃2(t) + J̃3(t), where the J̃i, i = 1, 2, 3, are given by:

J̃1(t) =

∫ ∞

5
4

∫ 1

0
ψ̂(z̃)ψ̂2(z̃)(kh(z̃, z̃, t)−

1

Ah
)dAĥ(z̃),

J̃2(t) =

∫ a

5
4

∫ 1

0
ψ̂(z̃)ψ̂2(z̃)

∑

m6=0

kh(z̃, z̃ +m, t)dAĥ(z̃),

J̃3(t) =

∫ ∞

a

∫ 1

0
ψ̂(z̃)ψ̂2(z̃)

∑

m6=0

kh(z̃, z̃ +m, t)dAĥ(z̃).

For J̃1 we use the local asymptotic expansion of the heat kernel kh(z̃, z̃, t),
whose remainder term is uniformly bounded, see [8]:

(4.5) J̃1(t) =

∫ ∞

5
4

∫ 1

0
ψ̂(z̃)ψ̂2(z̃)

(
1

4πt
+
Rĥ(z̃)

12π
− 1

Ah
+R1,1(z̃, t)

)
dAĥ(z̃)

For J̃2(t), in the same way as in the proof of Proposition 3.4, we can estimate
the series as in equation (3.10). Then we estimate the integral in the same
way as in equations (3.11) and (3.12):

(4.6) J̃2(t) ≪
∫ a

5
4

y−11e−
c2
a4t

∑

m6=0

e−
c1 log(1+ m2

2a2
)2

2t
dy

y2

≪ e−
c2
a4t

∫ a

5
4

y−11

∫ ∞

1
e−

c1 log(1+ u2

2a2
)2

2t du
dy

y2
≪ ae−

c2
a4t .

The integral J̃3 can be bounded as:

(4.7) J̃3(t) ≤
∫

Za

ψ(z)ψ2(z)K1,h(z, z, t)dAh(z)

≪ t−1

∫ ∞

a
y−12dy ≪ t−1a−11.

Taking a = t−1/5 in the same way as we did in the proof of Theorem 3.6
and putting equations (4.4) (4.5) (4.6) and (4.7) together we obtain:

Tr(ψ(e−t∆h − Pker(∆h)))

=

∫

M2

ψ(z)ψ1(z)

(
1

4πt
+
Rh(z)

12π
− 1

Ah
+R1(z, t)

)
dAh(z)

+

∫ ∞

5
4

∫ 1

0
ψ̂(z̃)ψ̂2(z̃)

(
1

4πt
+
Rĥ(z̃)

12π
− 1

Ah
+R1,1(z̃, t)

)
dAĥ(z̃) +O(t),

where O(t) is clearly independent of z. Now we know that |R1(z, t)| ≪ t
and |R1,1(z̃, t)| ≪ t uniformly in z. Therefore we can make the following
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estimate:
∫

M2

ψ(z)ψ1(z)R1(z, t)dAh(z) +

∫ ∞

5
4

∫ 1

0
ψ̂(z̃)ψ̂2(z̃)R1,1(z̃, t)dAĥ(z̃) ≪ t.

This finishes the proof of Lemma 4.3. �

The rest of the proof now follows the same lines as in [17]. Let us men-
tion the main steps of it. Going back to the variation of the relative zeta
function, we may now apply integration by parts in equation (4.3) to obtain
for Re(s) > 0:

δζ

δψ
(s;∆h,∆1,0) =

2s

Γ(s)

∫ ∞

0
ts−1Tr(ψ(e−t∆h − Pker(∆h)))dt.

We split this integral as:

(4.8)
δζ

δψ
(s;∆h,∆1,0) =

2s

Γ(s)

(∫ 1

0
ts−1Tr(ψ(e−t∆h − Pker(∆h)))dt

+

∫ ∞

1
ts−1Tr(ψ(e−t∆h − Pker(∆h)))dt

)
.

From Lemma 4.2, the integral in second term on the right-hand side of
equation (4.8) is an entire function of s. Since Γ(s)−1 ∼ s, it follows that:

d

ds

2s

Γ(s)

∫ ∞

1
ts−1Tr(ψ(e−t∆h − Pker(∆h)))dt

∣∣∣
s=0

= 0

Using Lemma 4.3, the first term on the right-hand side of (4.8), becomes:

2s

Γ(s)

∫ 1

0
ts−1Tr(ψ(e−t∆h − Pker(∆h)))dt

=
2s

Γ(s)

{
1

s

∫

M
ψ(z)(

Rh(z)

12π
− 1

Ah
)dAh + analytic in s near 0

}
.

The next step is to take the derivative with respect to s at s = 0. Using
1

Γ(s) = s+O(s2), we have:

d

ds

2s

Γ(s)

∫ 1

0
ts−1Tr(ψ(e−t∆h − Pker(∆h)))dt

∣∣∣
s=0

=

∫

M
2ψ(z)

(
Rh(z)

12π
− 1

Ah

)
dAh.

Thus,

(4.9)
δ

δψ
log det(∆h,∆1,0) = − δ

δψ

d

ds
ζ(s;∆h,∆0)

∣∣
s=0

= − 1

6π

∫

M
ψ(∆gϕ+Rg) dAg +

δ

δψ
logAh.
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Finally, it is very easy to show that any ψ in the domain of F satisfies:

1

2

∂

∂u

∫

M
|∇g(ϕ+ uψ)|2 dAg

∣∣∣∣
u=0

= 〈ψ,∆gϕ〉,

∂

∂u

∫

M
Rg (ϕ+ uψ) dAg

∣∣∣∣
u=0

=

∫

M
Rg ψ dAg,

Integrating (4.9) we obtain:

log det(∆h,∆1,0) = − 1

12π

∫

M
|∇gϕ|2 dAg −

1

6π

∫

M
Rg ϕ dAg + logAh + C.

Notice that if ϕ = 0, ∆h = ∆g. Therefore the last equation implies C =
log det(∆g,∆1,0). In this way, we have proved Polyakov’s formula:

Theorem 4.4. Let (M,g) be a surface with cusps and let h = e2ϕg be a
conformal transformation of g with ϕ ∈ F11. For the corresponding relative
determinants we have the following formula:

(4.10) log det(∆h,∆1,0) = − 1

12π

∫

M
|∇gϕ|2 dAg −

1

6π

∫

M
Rg ϕ dAg

+ logAh + log det(∆g,∆1,0).

4.2.2. Extremal properties of the relative determinant. Given Polyakov’s for-
mula for the relative determinant, the study of the extremal properties of it
is exactly the same as in OPS [17] for the case when χ(M) < 0. We assume
now that χ(M) < 0. Let us recall the analysis in [17] as we adapt it to our
case. On F11 consider the following functional:

(4.11) Φ(ϕ) =
1

2

∫

M
|∇gϕ|2 dAg+

∫

M
Rg ϕ dAg−πχ(M) log

(∫

M
e2ϕdAg

)
.

It is straightforward that Φ is translation invariant and that minimizing Φ is
the same as maximizing log det(∆h,∆1,0) for metrics of constant area. Since
we are considering χ(M) < 0, we have that Φ is convex. In the same way
as in [17], we have that

Φ(ϕ) = −6π log det(∆h,∆1,0) + π(6− χ(M)) log(Ah).

Let us drop the constraint Ah = 1. Then, if ϕ is a minimizer of Φ the
equation δΦ

δψ (ϕ) = 0 holds for all ψ ∈ F11. This implies that:

Rh = e−2ϕ(∆gϕ+Rg) =
2πχ(M)∫
M e2ϕdAg

,

i.e. Rh should be constant. If Ah = 2π(2p+m−2), it follows that Rh = −1,
where p is the genus of M and m is the number of cusps.
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On the other hand if Rh = constant we have that:

δΦ

δψ
(ϕ) =

∫

M
e2ϕψRhdAg −

πχ(M)

Ah

∫

M
2ψe2ϕdAg

=

∫

M

e2ϕψ

Ah
(RhAh − 2πχ(M))dAg = 0,

because of Gauss-Bonnet theorem. Thus, the critical points of Φ are the
metrics of constant curvature. The convexity of Φ assures that the critical
points are minima.

Our problem is to find a maximizer of the relative determinant among
metrics inside the following conformal class:

Conf1,11(g) = {h|h = e2ψg, with ψ ∈ F11 and Ah = 2π(2p +m− 2)}.
If the initial metric g onM is a metric of negative constant curvature g = τ

with Rτ = −1, and we take the conformal class Conf1,11(τ), τ itself is the
maximizer of the relative determinant and τ ∈ Conf1,11(τ). The maximizer
trivially exists inside the conformal class. However, if the starting metric
g on M is a metric that is hyperbolic only in the cusps, the differential
equation for the curvature on the cusps is:

−e2ϕ = ∆gϕ− 1.

This implies that in the cusps the function ϕ should decay at infinity as y−1.
In this case the function ϕ is outside the conformal class under consideration.
Therefore in order to have a maximizer of the relative determinant inside
the conformal class we need to be able to define the relative determinant for
Laplacians whose metrics have conformal factors e2ϕ with ϕ having a decay
as y−1 at infinity.

As it was mentioned in the introduction, in [1] P. Albin, F. Rochon and
the author consider renormalized determinants on Laplace operator on more
general surfaces that also include swac. In that case the authors use Vai-
llant’s results in [21] to have an asymptotic expansion of the renormalized
trace. The conditions on the conformal factor imposed by Vaillant are diffe-
rent to ours, but conformal factors that decay as y−1 at infinity are included.
Then Ricci flow is used to prove existence of the maximizer.

We could use the fact that if an operator is trace class, its trace coincides
with its renormalized trace. Thus we could use Vaillant’s result to define
our relative determinant in terms of the renormalized determinant of the
Laplacian and of the one of our model operator. However, in the Ricci flow
proof in [1] two different rescalings take place. When we consider relative
determinants, re-scaling implies to modify the model operator as well. This
is an interesting open problem.

Appendix A.

In this appendix we give the proof of Lemma 1.4. We prove the estimate
of K1,h. The estimate of Kh then follows by a standard gluing parametrix
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construction. We use the notation introduced in Section 3.1 and Proposition
3.4. Let us recall equation (3.7):

K1,h(z, w, t) =
∑

m∈Z
kh(z̃, w̃ +m, t),

where π(z̃) = z, π(w̃) = w, and z̃ = (x1, y1) and w̃ = (x2, y2) can be chosen
so that 0 ≤ xi ≤ 1.

We know that dh(z, w) = infm∈Z dĥ(z̃, w̃ + m) ≤ dĥ(z̃, w̃ + m) for all
m ∈ Z. Then using the estimate in equation (3.6) with constant c1 > 0
corresponding to the metric h, we obtain:

K1,h(z, w, t) ≪ t−1
∑

m∈Z
exp

(
−
c1d

2
ĥ
(z̃, w̃ +m)

t

)

≤ t−1e−
c1d

2
h(z,w)

2t

∑

m∈Z
e−

c1d
2
ĥ
(z̃,w̃+m)

2t

≤ t−1e−
c1d

2
h(z,w)

2t


e−

c2d
2
ĝ(z̃,w̃)

2t +
∑

m6=0

e−
c2d

2
ĝ(z̃,w̃+m)

2t




Now we use the formula for the hyperbolic distance to estimate it; for m 6= 0
we have:

dĝ((x1, y1), (x2 +m, y2)) = cosh−1

(
1 +

(x1 − x2 −m)2 + (y1 − y2)
2

2y1y2

)

≥ log

(
1 +

(x1 − x2 −m)2

2y1y2

)
≥ log

(
1 +

(|m| − 1)2

2y1y2

)

since −1 ≤ x1 − x2 ≤ 1 and (|m| − 1)2 ≤ (x1 − x2 −m)2 ≤ (|m| + 1)2, if
|m| 6= 0. We proceed now to estimate the series in the same way as in (3.11),
but we do not need to restrict the values of y1 and y2 to [1, a] any more. We
keep the value y1y2 in the estimates instead of using the bounded a2

∑

|m|≥2

e−
c2d

2
ĝ(z̃,w̃+m)

t ≤
∑

|m|≥1

e−
c2 log(1+ m2

2y1y2
)2

2t

≪
∫ ∞

1
e−

c2 log(1+ u2

2y1y2
)2

2t du

≪ y
1/2
1 y

1/2
2 (1 +

√
tect) ≤ C(τ)y

1/2
1 y

1/2
2
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for some constant C(τ) that depends on τ , 0 < t ≤ τ . Putting all the terms
together we obtain:

K1,h(z, w, t) ≪ t−1e−
c1d

2
h(z,w)

2t


2 + e−

c2d
2
ĝ(z̃,w̃)

2t +
∑

m6=0

e−
c1 log(1+ m2

2y1y2
)2

2t




≪ t−1y
1/2
1 y

1/2
2 e−

c1d
2
h(z,w)

2t .

For the derivatives of the heat kernel we apply the results by S. Y. Cheng,
P. Li and S. T. Yau in [9], Theorems 6 and 7, to (H, ĥ) that has bounded
geometry. The fist two derivatives of the heat kernel K1,h can be estimated
in the same way as we did for the heat kernel. As the authors point out in
[9], the constant in each estimate will depend on the curvature of M and its
covariant derivatives.

Appendix B.

B.1. Observation. In the proof of Theorem 2.1, we repeatedly make use
of the following elementary facts:

(1) For any a > 0, and b, n,m ∈ R, we have that:

∫ m

n
e−ax

2−bxdx =
eb

2/4a

√
a

∫ √
a(m+ b

2a
)

√
a(n+ b

2a
)
e−v

2
dv ≤

√
πeb

2/4a

√
a

.

(2) For any c > 0, 0 < t ≤ T , k, ℓ ≥ 0 with k + ℓ > 2 we have:

(B.1)

∫ ∞

1

∫ ∞

1
y−ky′−ℓe−

c
t
log(y/y′)2dydy′ ≤

√
te(1−k)

2t/c.

(3) Let ϕ ∈ C∞(M), ψ = e−2ϕ − 1 and ψ̃ = e2ϕ − 1. If ϕ|Z(y, x),
∆gϕ|Z(y, x) and |∇gϕ|g|Z(y, x) are O(y−k) as y → ∞, then so are
ψ|Z(y, x), ∆gψ|Z(y, x), |∇gψ|g|Z(y, x) and the analogues functions

corresponding to ψ̃.

(4) For a, b, c > 0, the function f(t) = t−ae−ct
−b

is bounded on (0,∞)
and limt→0 f(t) = 0.

B.2. Proof of the bounds of the integrals J1, J2 and J3 in Proposi-

tion 3.5. Let us start with J1 that is given by equation (3.18):

J1 =

∫ t

0

∫

Za

∫

[1, 4a
5
]×S1

ψ2(z)(K1,h(z, z
′, s) + ph,D(z, z

′, s))e2ϕ(z
′)

ψ(z′)∆Z,g(K1,g(z
′, z, t− s) + p1,D(z

′, z, t − s)) dAg(z
′) dAg(z) ds.

Note that on this region a ≤ y <∞ and 1 ≤ y′ ≤ 4a
5 , log(y/y

′) is bounded
away from zero. Using the estimates of the heat kernels and their derivatives
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we obtain:

|J1| ≪
∫ t

0

∫ ∞

a

∫ 4a
5

1
s−1(t− s)−2y(e−

c log(y/y′)2

s + e−
c log(y)2

s e−
c log(y′)2

s )

y′−k+1(e−
c log(y/y′)2

t−s + e−
c log(y)2

t−s e−
c log(y′)2

t−s )
dy′

y′2
dy

y2
ds

≪ at−2

∫ t/2

0

∫ ∞

a
s−1y−1(e−

c log(5y/4a)2

s + e−
c log(y)2

s )dyds

+ at−1

∫ t

t/2

∫ ∞

a
(t− s)−2y−1(e−

c log(5y/4a)2

t−s + e−
c log(y)2

t−s )dyds.

Since y ≥ a > 5
4 we have an estimate in s:

e−
c log(5y/4a)2

s + e−
c log(y)2

s ≤ e−
c log(5/4)2

2s (e−
c log(5y/4a)2

2s + e−
c log(y)2

2s )

and
∫∞
a y−1e−

c log(5y/4a)2

2s dy =
∫∞

5
4
v−1e−

c log(v)2

2s dv ≪ √
s. We get a similar

estimate for t− s, and together these give:

|J1| ≪ at−2

∫ t/2

0
s−1e−

c log(5/4)2

2s

∫ ∞

5
4

y−1e−
c log(y)2

2s dyds

+ at−1

∫ t

t/2
(t− s)−2e

− c log(5/4)2

2(t−s)

∫ ∞

5
4

y−1e
− c log(y)2

2(t−s) dyds

≪ at−2

∫ t/2

0
s−1/2e−

c log(5/4)2

2s ds+ at−1

∫ t

t/2
(t− s)−3/2e

− c log(5/4)2

2(t−s) ds

≪ at−2e−
c log(5/4)2

4t

∫ t/2

0
ds+ at−1e−

c log(5/4)2

2t

∫ t

t/2
ds≪ a(t−1 + 1)ec1/t ≪ ae−

c′

t ,

for some constants c1, c
′ > 0, where we also used part (4) of Observation

B.1.
For J2, we had reduced the problem to the following estimate:

|J2| ≪
∫ t

t/2
‖MχZ 4a

5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖2‖Mφe
−s/2∆Z,g‖2ds.
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Now we proceed to estimate each of the HS norms appearing as integrand
on the right-hand side as follows:

‖MχZ 4a
5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖22

=

∫

Z 4a
5

∫

Z
|ψ(z)∆Z,gKZ,g(z, z

′, s/2)φ(z′)−1|2dAg(z′)dAg(z)

≪
∫ ∞

4a
5

∫ ∞

1
y−2kyy′s−4(e−

4c
s
(log(y/y′))2 + e−

4c
s
(log(yy′))2)y′

dy′

y′2
dy

y2

= s−4

∫ ∞

4a
5

∫ ∞

1
y−2k−1e−

4c
s
(log(y′/y))2 dy′dy

+ s−4

∫ ∞

4a
5

∫ ∞

1
y−2k−1e−

4c
s
(log(y′))2 dy′dy.

The first integral in the last line above can be estimated by fixing y and
making the change of variables v = log(y′/y), y′ = yev, dy′ = yevdv:

s−4

∫ ∞

4a
5

∫ ∞

− log(y)
y−2keve

−4c
s
v2 dv dy

≪ s−4e
s
4c
√
s

∫ ∞

4a
5

y−2k

∫ ∞

−∞
e−v

2
dv dy ≪ s−7/2a−2k+1e

s
4c .

As for the second integral, we obtain in a similar way:

s−4

∫ ∞

4a
5

∫ ∞

1
y−2k−1e−

4c
s
(log(y′))2 dy′ dy ≪ s−7/2e

s
4ca−2k.

Thus,

‖MχZ 4a
5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖2 ≪ s−7/4(a−k + a−k+1/2).

For the operator Mφe
−s/2∆Z,g , using equation (2.4) we have:

‖Mφe
−s/2∆Z,g‖22

≪
∫ ∞

1

∫ ∞

1
s−2y−1yy′(e−

2c
s
(log(y/y′))2 + e−

2c
s
(log(yy′))2)2

dy′

y′2
dy

y2

≪
∫ ∞

1

∫ ∞

1
s−2y′−1y−2(e−

4c
s
(log(y/y′))2 + e−

4c
s
(log(yy′))2)dy′dy

≪ s−2√ses/4c + s−2

∫ ∞

1
y′−1e−

4c
s
(log(y′))2dy′ ≪ s−3/2(1 + es/4c).

Since s ≤ t ≤ 1 we have that ‖Mφe
−s/2∆Z,g‖2 ≪ s−3/4. It follows that:

|J2| ≪
∫ t

t/2
s−7/4(a−k + a−k+1/2) · s−3/4ds≪ a−k+1/2t−3/2.
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Now, for J3 we have:

J3 =

∫ t

t/2

∫

Za

∫

Z 4a
5

ψ2(z)KZ,h(z, z
′, s)e2ϕ(z

′)χZ 4a
5

(z′)

(∆Z,g −∆Z,h)z′KZ,g(z
′, z, t− s)dAg(z

′)dAg(z)ds.

Remember that ∆Z,g−∆Z,h = (e2ϕ(z
′)−1)∆Z,h = ψ̃(z′)∆Z,h, so the previous

equation becomes:

J3 =

∫ t

t/2

∫

Za

∫

Z 4a
5

{ψ2(z)KZ,h(z, z
′, s)χZ 4a

5

(z′)ψ̃(z′)

(∆Z,hKZ,g(z
′, z, t − s))e−2ϕ(z)} dAh(z′) dAh(z) ds

=

∫ t

t/2

∫

Za

∫

Z 4a
5

{ψ2(z)(∆Z,hKZ,h(z, z
′, s)ψ̃(z′))χZ 4a

5

(z′)

KZ,g(z
′, z, t− s)e−2ϕ(z)} dAh(z′) dAh(z) ds

=

∫ t

t/2

∫

Za

∫

Z 4a
5

{ψ2(z)e
−2ϕ(z)KZ,g(z, z

′, t− s)χZ 4a
5

(z′)

(∆Z,hψ̃(z
′)KZ,h(z

′, z, s))} dAh(z′) dAh(z) ds.
Writing this in terms of the corresponding operators we obtain:

J3 =

∫ t

t/2
Tr(Mψ2Me−2ϕe−(t−s)∆Z,gMχZ 4a

5

∆Z,hMψ̃
e−s∆Z,h)ds,

|J3| ≤
∫ t

t/2
‖MχZ 4a

5

∆Z,hMψ̃
e−s∆Z,h‖1 ds.

We are now working in L2(M,dAh) therefore to simplify notation we do not
write the subindex h in the trace and the HS norms. In the same way as
above we do:

‖MχZ 4a
5

∆Z,hMψ̃
e−s∆Z,h‖1

≤ ‖MχZ 4a
5

∆Z,hMψ̃
e−s∆Z,h/2Mφ−1‖2‖Mφe

−s∆Z,h/2‖2

The kernel of the operator MχZ 4a
5

∆Z,hMψ̃
e−s∆Z,h/2Mφ−1 is

χZ 4a
5

(z′)(∆Z,h(ψ̃(z
′)KZ,h(z

′, z, s))φ(z)−1.

Using the decay assumptions on ϕ and its derivatives, we have that:

|∆Z,h(ψ̃KZ,h)|2 ≪ |ψ̃∆Z,hKZ,h|2 + |KZ,h∆Z,hψ̃|2 + 2|〈∇ψ̃,∇KZ,h〉|2

≪ y′−2k+1y(s−4 + s−2 + s−3)(e−
c
s
(log(y/y′))2 + e−

c
s
(log(yy′))2)2.
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Since for 0 < s < 1 we have that s−4 + s−2 + s−3 ≪ s−4, we can estimate
the HS norm by:

‖MχZ 4a
5

∆Z,hMψ̃
e−s∆Z,h/2Mφ−1‖22

=

∫

Z

∫

Z
|χZ 4a

5

(z′)ψ̃(z′)∆h,z′Kh(z
′, z, s/2)φ(z)−1 |2dAh(z′)dAh(z)

≪ s−4

∫ ∞

1

∫ ∞

4a
5

y2 y′−2k+1(e−
2c
s
(log(y/y′))2 + e−

2c
s
(log(yy′))2)2

dy′

y′2
dy

y2

≪ s−4

∫ ∞

4a
5

∫ ∞

1
(y′−2k−1e−

4c
s
(log(y/y′))2 + y′−2k−1e−

4c
s
(log(y))2) dy dy′

≪ (a−2k+1 + a−2k)s−7/2es/4c ≪ a−2k+1s−7/2.

We finally obtain:

‖M−1
φ e−s/2∆Z,hψ̃∆h‖2 ≤ a−k+1/2s−7/4.

For the operator e−s/2∆Z,hMφ, the proof goes in the same way as for the

operator Mφe
−s/2∆Z,g . At the end we obtain:

‖e−s∆Z,hMφ‖2 =
(∫

Z

∫

Z
|KZ,h(z, z

′, s/2)φ(z′)|2dAh(z′)dAh(z)
)1/2

≪ s−3/4.

In this way:

|J3| ≪
∫ t

t/2
a−k+1/2s−7/4s−3/4ds≪ a−k+1/2t−3/2.
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These de Doctorat, Université de Nantes, 1995.
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