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Abstract

A new method to calculate level densities for non–interacting Fermions within the constant–spacing

model with a finite number of states is developed. We show thatasymptotically (for large numbers of

particles or holes) the densities have Gaussian form. We improve on the Gaussian distribution by using

analytical expressions for moments higher than the second.Comparison with numerical results shows that

the resulting sixth–moment approximation is excellent except near the boundaries of the spectra and works

globally for all particle/hole numbers and all excitation energies.
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I. PURPOSE

Our interest in the dependence of various nuclear level densities on energy and particle number

has been triggered by recent experimental developments in laser physics. The Extreme Light

Infrastructure (ELI) [1] will open new possibilities for extremely high–intensity laser interac-

tions with fundamental quantum systems different from the traditionally considered atoms and

molecules [2]. At the Nuclear Physics Pillar of ELI under construction in Romania, efforts are

under way to generate a multi–MeV zeptosecond pulsed laser beam [3]. For medium–weight and

heavy target nuclei interacting with such a beam, photon coherence can cause multiple photon

absorption. With energies of several MeV per photon, the ensuing nuclear excitation energies may

well amount to several100 MeV. Depending on the time scale on which the excitation takes place

and on the specific nucleon-nucleon interaction rates, collective excitations may be induced, or a

compound nucleus be formed [4]. A theoretical treatment of the latter process along the lines of

precompound reaction models requires the knowledge of the total level density, of the densities of

p–particleh–hole states, and of the density of accessible states for particle/hole numbers and/or

excitation energies that go far beyond what has been considered until now. That applies not only

to the target nucleus but also to all daughter nuclei populated by induced particle emission during

the interaction time of the laser pulse.

The standard approach to level densities goes back to the pioneering work of Bethe [5] who

calculated the total level density as a function of excitation energy with the help of the Darwin–

Fowler method. Basically the same method was used in many of the later works [6–11] dealing

with the density ofp–particleh–hole states and related quantities. A beautiful review is given in

Ref. [12]. The Darwin–Fowler method yields analytical expressions involving contour integrals.

Their evaluation, although straightforward, becomes increasingly involved with increasing num-

bers of particles and holes and/or increasing excitation energy. The same is true for Refs. [13, 14]

that account for the exclusion principle by explicit counting. Moreover, without explicit numerical

calculation it is not possible within these approaches to establish general properties of particle–

hole densities like the overall dependence on excitation energy and/or particle–hole number. More

recent works use a static–path approximation (Refs. [15, 16] and papers cited therein) or account,

in addition, for the residual interaction in an approximateway (Ref. [17] and references therein).

The method of Ref. [18] avoids contour integrals and determines (again numerically) the level

densities directly as coefficients of polynomials. The order of these rises rapidly, too, with en-

ergy and particle/hole number. In none of these approaches does it seem possible to deal with the
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enormously large values of the various densities attained for medium–weight and heavy nuclei at

excitation energies of several100 MeV in a practicable way. That is why we develop a different

approach in the present work.

In this Letter we present an analytical approximation to theglobal dependence of partial and

total level densities that takes full account of the exclusion principle, that is valid for a finite num-

ber of single–particle states, and that holds for all excitation energies and particle/hole numbers.

We prove analytically that the level density for particles or holes is for a constant–spacing model

asymptotically Gaussian. We improve on the Gaussian using analytical results for the low mo-

ments of the distribution higher than the second. Comparison with numerical results shows that

the resulting sixth–moment approximation is very precise except near the boundaries of the spec-

trum (where numerical evaluation is easy). Particle–hole densities follow by convolution. The

attained analytical form of the global dependence of level densities on excitation energy and parti-

cle number extends our understanding of characteristic nuclear properties into uncharted territory.

Moreover, we expect our results to be an indispensable tool in the calculation of laser–induced

nuclear reactions mentioned in the first paragraph.

We calculate the various densities in the framework of a constant–spacing model for spinless

non–interacting Fermions. To justify our choice we consider by way of example the partial level

densityρp(E, J, π) for p particles andp holes, a function of excitation energyE, total spinJ , and

parity π, for a system of non–interacting Fermions in three dimensions. For other densities the

reasoning is the same. The partial level density is given by [11]

ρp(E, J, π) = (1/2)ρp(E)
2J + 1

2
√
2π σ3

2p

× exp

{

− [J + (1/2)]2

2σ2
2p

}

. (1)

The factor1/2 accounts for parity. The last two terms of the product give the spin dependence,

with σ2p the spin–cutoff factor. With spin and parity being accounted for, ρp(E) is defined as

the level density of spinless non–interacting Fermions that carry no angular momentum. We note

that in preequilibrium theories, the interactions betweenFermions neglected here are taken into

account as agents for equilibration. In our model, the non–interacting Fermions are distributed

over a set of single–particle states. Each subshell with spin j of the three-dimensional shell model

contributes(2j+1) states to the set. For large excitation energy or particle–hole numbers, we must

take into account the exclusion principle exactly. It is equally important to account for the finite

binding energy of particles and for the finite size of the energy interval available for holes. Both

3



strongly affect the various level densities at large excitation energies. We do so using a single–

particle model with a finite number of states. Moreover, we calculate the various densities using

a constant–spacing model for the single–particle states. It is clear from the shell model that the

model is not realistic at the high excitation energies of interest. Taking into account the multiplicity

(2j + 1) of the subshells, we note that the single–particle level density of the shell model strongly

increases with energy. We return to this point at the end of Section V.

II. APPROACH

We considerf spinless Fermions in a single–particle model with constantlevel spacingd and

with a finite numberu of bound single–particle states. In the ground state all single–particle states

from the lowest (energyd) up to a maximum level (energyF = fd with F for Fermi energy) are

occupied. The remainingb = B/d levels (withB for binding energy) are empty. Heref andb are

integers, and we haveu = f + b. Excited states are described asp–particleh–hole states, withp

counting the number of particles in single–particle stateswith energy larger thanF and not larger

thanB+F , and correspondinglyh counting the number of holes with energy less thanF . For non–

closed shell compound nuclei and/or nuclear reactions induced by composite particles, the number

of hole statesh may differ from p. We calculate various many–body level densities for non–

interacting particles:ρB(p, E) is the level density versus energyE for p particles confined to an

energy interval of lengthB, ρF (h,E) is the level density forh holes confined to an energy interval

of lengthF , ρFB(p, h, E) is the particle–hole state density defined analogously, andρU(A,E) is

the total level density forA particles distributed over an energy interval of lengthU = F+B. With

ε = E/d andε integer we define the dimensionless densityωb(p, ε) = ρB(p, E) d and analogously

for ωf(h, ε), ωfb(p, h, ε), andωu(A, ε). All densities denoted byω are integers.

We describe the method of calculation forωb(p, ε), assuming for simplicity of notation that

b is odd and shifting the energy such that the ground state of the p–particle system has energy

(1/2)p(p+ 1). The maximum energy isbp− (1/2)p(p− 1), and the center of the spectrum is at

ε
(0)
b (p) =

1

2
p(b+ 1) . (2)

The level densityωb(p, ε) is defined as the number of ways in whichp Fermions can be distributed

over theb available single–particle states such that the total energy equalsε, i.e.,

ωb(p, ε) =
∑

1≤n1<n2<...<np≤b

δn1+n2+...+np, ε . (3)
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The calculation ofωb(p, ε) poses a purely combinatorial problem. Withβ = (1/2)(b − 1) we

define new summation variableskl = nl− (1/2)(b+1), l = 1, 2, . . . , p that range from−β to+β.

With ε′ = ε− ε0(p) that gives

ωb(p, ε
′) =

∑

−β≤k1<k2<...<kp≤β

δk1+k2+...+kp, ε′ . (4)

We determineωb(p, ε
′) in terms of its low moments. Changing the signs of all summation variables

in Eq. (4) one can easily show thatωb(p, ε
′) = ωb(p,−ε′) is even inε′, so that all odd moments

vanish. For the2mth moment withm = 0, 1, 2, . . . we have

mb(p, 2m) =
∑

ε′

(ε′)2mωb(p, ε
′)

=
∑

−β≤k1<k2<...<kp≤β

(

∑

l

kl

)2m

. (5)

Following Ref. [7] we adopt an occupation–number representation for Fermionic many–body

states. We represent each set{kl} of integers in Eq. (4) as ab–dimensional vector{ν1, ν2, . . . , νb}
with entriesνj that take values zero and one. The set{kl} is represented by choosingνj = 1

in the p positionskl and zero otherwise. The sum over all{kl} is replaced by the sum over all

b–dimensional vectors, i.e., over all choices ofνj subject to the constraint
∑

j νj = p. Thus,

mb(p, 2m) =
∑

ν1,ν2,...,νb

δp,ν1+ν2+...+νb

(

∑

j

jνj

)2m

=
∂2m

∂σ2m

∑

ν1,ν2,...,νb

δp,ν1+ν2+...+νb exp{σ
∑

j

jνj}
∣

∣

∣

∣

σ=0

. (6)

We multiply Eq. (6) withexp{pα}, sum overp, and carry out the summations over theνj. This

gives the partition function

Zb(α, 2m) =
∂2m

∂σ2m

β
∏

j=−β

(1 + exp{α + σj})
∣

∣

∣

∣

σ=0

. (7)

The momentmb(p, 2m) is the coefficient multiplyingexp{αp} in an expansion ofZb(α, 2m) in

powers ofexp{α}. Form = 0 we findmb(p, 0) =
(

b

p

)

, the correct result. Form = 1, 2 we obtain

mb(p, 2) =

( β
∑

j=−β

j2
)(

b− 2

p− 1

)

,

mb(p, 4) =

( β
∑

j=−β

j4
)[(

b− 4

p− 1

)

− 4

(

b− 4

p− 2

)

+

(

b− 4

p− 3

)]

+3

( β
∑

j=−β

j2
)2(

b− 4

p− 2

)

. (8)

5



From Eqs. (8) we obtain the normalized moments

Mb(p, 2m) =
mb(p, 2m)

mb(p, 0)
. (9)

III. ASYMPTOTICALLY GAUSSIAN DISTRIBUTION

Eqs. (8) suggest that asymptotically (b ≫ 1, p ≫ 1) ωb(p, ε
′) approaches a Gaussian distribu-

tion. (Here, with1 ≤ p ≤ b andb ≫ 1, we considerp ≫ 1 equivalent top ≈ b/2. Particle–hole

symmetry connects the casesp ≈ b andp ≈ 1). We recall that for a Gaussian distribution, the

normalized fourth moment (see Eq. (9)) equals three times the square of the normalized second

moment. Forb ≫ 1 andp ≫ 1 that is exactly the relation implied by the values ofmb(p, 4) and

mb(p, 2) in Eq. (8). Indeed, taken by itself the last term in the expression formb(p, 4) yields a

value forMb(p, 4) which for b ≫ 1, p ≫ 1 equals three times the square ofMb(p, 2). More-

over, the term proportional to
∑

j4 in the expression formb(p, 4) is smaller by the factor1/p than

the one proportional to(
∑

j2)2. To show thatωb(p, ε
′) becomes asymptotically (b ≫ 1, p ≫ 1)

Gaussian we generalize the approach of Eqs. (6) to (8) to all moments. We define

G(σ) =

β
∏

j=−β

(1 + exp{α + σj}) = exp{H(σ)} (10)

and expandH(σ) in a Taylor series aroundσ = 0. With

f(α) =
exp{α}

1 + exp{α} (11)

andf (n) denoting thenth derivative off , we have form = 1, 2, . . .

∂m

∂σm
H(σ)

∣

∣

∣

∣

σ=0

= f (m−1)

β
∑

j=−β

jm . (12)

This shows that all odd derivatives ofH vanish. We insert the Taylor expansion forH into Eq. (10)

and obtain

G(σ) = G(0) exp

{ ∞
∑

n=1

1

(2n)!
σ2nf (2n−1)

β
∑

j=−β

j2n
}

. (13)

From here, we proceed in two steps. (i) We neglect all terms with n > 1 on the right–hand side

of Eq. (13) and show that as a result,ωb is Gaussian forb ≫ 1, p ≫ 1. (ii) We show by complete

induction that all terms withn > 1 in Eq. (13) are negligibly small in the same limit. (i) For

ωb(p, ε
′) to be Gaussian we have to show thatMb(p, 2m) = (2m − 1)!! [Mb(p, 2)]

m. Taking into
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account the term withn = 1 only, expanding the exponential, and using the result in Eqs. (10) and

(7) we obtain

Zb(α, 2m) = (2m− 1)!! G(0)(f ′)m
( β

∑

j=−β

j2
)m

. (14)

The normalized2mth momentMb(p, 2m) is the coefficient multiplyingexp{pα} in the expansion

of Zb(α, 2m) in powers ofexp{α} divided by the normalization factor
(

b

p

)

. For b ≫ 1 and

p ≫ 1 the relevant coefficient inG(0)(f ′)m
(

b

p

)−1
is ≈ [p(b − p)b−2]m. That yieldsMb(p, 2m) ≈

(2m − 1)!! [Mb(p, 2)]
m, consistent with a Gaussian form forωb(p, ε

′). In the last step of the

argument we approximate products of the formp(p − 1) . . . (p − m) by pm. For fixed p the

approximation becomes increasingly inaccurate asm increases. Our result is therefore valid only

asymptotically. (ii) We use complete induction to show thatthe contributions of the terms with

n > 1 in Eq. (13) become vanishingly small forb ≫ 1, p ≫ 1. We have shown above that

this claim holds forn = 2 (i.e., for mb(p, 4)). We assume that the claim is correct for2 ≤
n < n0, omit the corresponding terms in Eq. (13), and show that it holds for n = n0, i.e., for

Mb(p, 2n0). We have shown under (i) that the contribution toMb(p, 2n0) of the term withn = 1 is

(2n0 − 1)!! (Mb(p, 2))
n0. The contribution of the term withn = n0 is G(0)f (2n0−1)

∑

j j
2n0 . For

b ≫ 1 we have
∑

j j
m ≈ bm+1/(2m(m + 1)). From Eq. (11) we havef ′ = f − f 2. Therefore,

f (2n0−1) =
∑2n0

l=1 clf
l is a polynomial of degree2n0 in f with integer coefficientscl, and the

contribution ofG(0)f (2n0−1)
∑

j j
2n0 toMb(p, 2n0) is

(

b

p

)−1
b2n0+1

(2n0 + 1)22n0

2n0
∑

l=1

cl

(

b− 2n0

p− l

)

. (15)

For b ≫ 2n0 and p ≫ l we have
(

b−2n0

p−l

)

≈
(

b

p

)

pl/bl. The contribution (15) is, therefore, of

orderb2n0+1 while the contribution from the term withn = 1 is of orderb3n0 . This shows that the

contributions withn = 1 dominate all others. The situation differs forb ≫ 1 andp ≈ 1 or p ≈ b

whereMb(p, 2) is of orderb2 only and[Mb(p, 2)]
n0 is comparable in size to the contribution (15).

Here the Gaussian approximation cannot be expected to work well. This is consistent with the fact

that forp = 1 andp = b − 1 the densities are flat,ωb(1, ε
′) = 1 = ωb(b − 1, ε′). Furthermore,

for p = 2 andp = b − 2 the densities have a triangularly shaped maximum. Only withp = 3

andp = b − 3 does the density of states become Gaussian–shaped. The maximum atε′ = ε
(0)
b (p)

builds up only slowly asp increases from unity or decreases fromb− 1.
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IV. LOW-MOMENTS APPROXIMATION

Using the asymptotically Gaussian form ofωb(p, ε
′) we approximate that function in terms of

its low even moments. We use Eqs. (8) formb(p, 2) andmb(p, 4), calculatemb(p, 6) similarly, and

find the parametersγ2m, m = 1, 2, 3 of the normalized function

F
(6)
b (p, ε′) = C exp{−γ2(ε

′)2 − γ4(ε
′)4 − γ6(ε

′)6} (16)

that correspond to the normalized momentsMb(p, 2m) with m = 1, 2, 3 in Eq. (9). The resulting

function

ω
(6)
b (p, ε′) =

(

b

p

)

F
(6)
b (p, ε′) (17)

is referred to in the following as the sixth–moment approximation toωb(p, ε
′). Approximations

obtained by using only the second (only the second and the fourth) moment(s) are denoted by

ω
(2)
b (p, ε′) (by ω

(4)
b (p, ε′), respectively). The same approach is used forωf(h, ε

′) and forωu(A, ε).

Except for suitable changes of indices and parameters, the results are formally identical. We

mention in passing that the method is also useful for calculating the density of accessible states [10,

19] under the constraints of the exclusion principle. Details will be given elsewhere. For thep–

particleh–hole densityωbf(p, h, ε) we defineε as the total excitation energy of the Fermionic

system. Then

ωbf(p, h, ε) =
∑

εpεh

δεp+εh, εωb(p, εp)ωf(h, εh) . (18)

Hereεp = ε(0)(p) + ε′p is the total energy of thep particles, and correspondingly for holes, while

ε = εp + εh is the excitation energy of thep–particleh–hole system. Thus

ωbf(p, h, ε) =
∑

εpεh

δ
ε′p+ε′

h
, ε−ε

(0)
p −ε

(0)
h

ωb(p, ε
′
p)ωf(h, ε

′
h) . (19)

Sinceωb(p, ε
′
p) (ωf(h, ε

′
h)) is a symmetric function ofε′p (of ε′h, respectively), it follows thatωbf

is a symmetric function ofε centered atε(0) = ε
(0)
p + ε

(0)
h . Therefore we consider the function

ωbf(p, h, ε
′) with ε′ = ε − ε(0). This function is symmetric aboutε′ = 0. For the low even

moments we obtain

mbf (p, h, 0) =

(

b

p

) (

f

h

)

,

mbf (p, h, 2) = mb(p, 2) +mf(h, 2) ,

mbf (p, h, 4) = mb(p, 4) + 2mb(p, 2)mf(h, 2)

+mf (h, 4) , (20)

and correspondingly for higher moments.

8



V. NUMERICAL RESULTS

We begin with an overview of the dependence ofωb(p, ε) on bothp and ε using the sixth–

moment approximation (17). Even though we expect that approximation to work well only for

p ≈ b/2, we display in Fig. 1 the values ofω(6)
b (p, ε) for b = 51 in thep–ε plane as a coloured

contour plot for all values ofp between 3 andb − 3. For fixedp, the dimensionless energyε

takes values in the interval(1/2)p(p + 1) ≤ ε ≤ bp − (1/2)p(p − 1). This accounts for the two

nearly parabolic and sawtooth–like boundaries of the coloured domain. The parabolic dependence

on p is given by(1/2)p(p + 1) for the lower edge and bybp − (1/2)p2 + (1/2)p for the upper

edge. The contour plot is symmetric with respect to a simultaneous mirror reflection about the

vertical linep = (b − 1)/2 and about the horizontal line defined by the overall centroidenergy

ε = (1/4)(b2 − 1). This symmetry is due to the symmetry ofωb(p, ε) in ε about the centroid

energyε(0)b (p), and to particle–hole symmetry which equatesωb(p, ε) with ωb(b− p, ε) except for

a shift by the differenceε(0)b (b−p)−ε
(0)
b (p) of the centroid energies. For fixedp, ωb(p, ε) displays

a maximum atε(0)b (p) = (1/2)p(b + 1) (except for the casesp = 1 andp = b − 1 not displayed

in the Figure). The location of the maximum increases linearly with p. This fact and the parabolic

form of the boundaries cause the quasi–elliptical shape of the solid line of constantωb–values in

the colour plot. We note the enormous maximum values ofωb(p, ε
(0)
b (p)) ≈ 1012 attained for

p ≈ 25. All these features are generic (i.e., independent of the performance of the sixth–moment

approximation) and apply likewise toωf(h, ε
′) and toωu(A, ε

′), except for a rescaling of abscissa,

ordinate, and of the values of the densities.

Limitations of the sixth–moment approximation become obvious when we consider the values

of ωb(p, ε) at the boundariesε = (1/2)p(p+ 1) andε = bp− (1/2)p(p− 1) where we obviously

must haveωb(p, ε) ≈ 1. The sixth–moment approximation exceeds this value by one to two or-

ders of magnitude, see Fig. 3 below. (We should keep in mind, of course, that the values at the

boundaries predicted by the sixth–moment approximation are smaller by about10 orders of mag-

nitude than the values in the maximum. The relative accuracyof the sixth–moment approximation

is, therefore, excellent). The white dashed lines in Fig. 1 show at which values ofp andε the

sixth–moment approximation deviates by10% from the exact values. The inaccuracy affects only

the very tails of the density of states, symmetrically aboutthe centroid energyε(0)b (p). The dashed

lines thus follow the boundaries ofωb(p, ε).

We test the performance of the sixth–moment approximation in detail by a comparison with

exact numerical results. This can be done throughout the critical domain (where eitherp ≈ 1 or

9
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FIG. 1: Contour plot of the dimensionless level densityω
(6)
b (p, ε) for p particles inb = 51 equally spaced

single–particle states based on the sixth–moment approximation (17) versusp and versus dimensionless

energyε. The white dashed lines define the boundary of the region where ω
(6)
b (p, ε) deviates by10% or

more from the exact values. The full line presents the constant contourω(6)
b (p, ε) = 1011.

p ≈ b or whereε is close to the boundary of the spectrum) since this is easilyaccessible numeri-

cally. We calculate the exact values ofωb(p, ε) in two ways. (i) We directly use Eq. (4). (ii) We

use the occupation–number representation defined above Eq.(6) and sum over allb–dimensional

vectors{ν1, ν2, . . . , νb}, grouping the results according to particle numberp =
∑

j νj and energy

ε′ =
∑

j jνj . Method (i) yieldsωb(p, ε) for fixed b andp. Method (ii) yieldsωb(p, ε
′) for fixed

b and all values ofp andε′. The demand on computing time is obviously larger for method(ii).

Particle–hole densities are then obtained from Eq. (18). Our results agree with those of Ref. [10]

for the small numbers of particles and holes considered there.

For the comparison between our exact and approximate results, we restrict ourselves to a few

central features. In Fig. 2 we display the relative difference between the exact result and the sixth–

moment approximation forb = 51 and various values ofp nearb/2. Significant deviations occur

only at the boundaries of the spectrum where the values of thesixth–moment approximation are too

large. Even though the tails of the sixth–moment approximation are suppressed by many orders of
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magnitude in comparison with the value at the center, that suppression is not strong enough. This

is shown more clearly in Fig. 3 where we plot forb = 51 the values ofω(2)
b (p, ε), of ω(4)

b (p, ε),

and ofω(6)
b (p, ε) (these functions are defined in and below Eq. (17)) versusp at the boundary

of the spectrum forb = 51. With every additional moment included in the approximation, the

agreement with the correct valueωb ≈ 1 is drastically improved. However, it would obviously

take even higher moments than the sixth one to reach quantitative agreement at the boundary of the

spectrum. This can be done, although convergence may be slow. Alternatively, we may calculate

ωb(p, ε) numerically for the critical values ofp andε where the sixth–moment approximation is

not sufficiently precise. These values lie at the boundariesof the spectrum shown in Figure 1

where eitherp ≈ 1 or p ≈ b or ε ≈ (1/2)p(p + 1) or ε ≈ pb − (1/2)p(p− 1). In all these cases

the number of terms that contribute to Eq. (4) is small, and the calculation is straightforward.

Furthermore, for energies close to the spectrum boundaries, the density of states depends only on

p and not on the number of levelsb. For the lower boundary that is the case for(1/2)p(p + 1) ≤
ε ≤ (1/2)p(p − 1) + b + 1. The numerical calculation can then be performed conveniently for

a smaller number of particle statesb′ chosen such thatωb(p, ε) = ωb′(p, ε) for ε in the energy

interval of interest. For the dashed lines in Fig. 1 defining a10% deviation of our approximate

results, for instance, the exact values can be calculated numerically usingb′ ≃ p(b−p)/10+p−1.

It should also be borne in mind that in preequilibrium calculations one typically requires ratios

(and not absolute values) of densities. We expect that theseare predicted quite precisely by the

sixth–moment approximation even at the boundaries of the spectrum.

We turn to the total level densityωu(A, ε) of A particles distributed overu equally spaced

single–particle states as a function of the dimensionless excitation energyε. We have shown

thatωu(A, ε) has approximately Gaussian shape, with a peak at half the total excitation energy

(1/2)A(u+1). The original calculation ofωu(A, ε) by Bethe [5] effectively also used a constant–

spacing model but neglected the limitations due to finite particle numberA and finite numberu

of single–particle states. With energy measured in units ofthe single–particle level spacing, the

celebrated “Bethe formula” reads [5]

ωBethe(ε) =
1

ε
√
48

exp{π
√

2ε/3} . (21)

We note thatωBethe(ε) does not contain any adjustable parameters. The singularity at ε = 0 is

due to the Darwin–Fowler method. The ensuing approximationfails at and nearε = 0. Beyond

this domain the Bethe formula yields a monotonically risingfunction of excitation energy since

the underlying counting method assumes that the number of available single–particle states is
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′)]/ωb(p, ε
′) versus energyε′ for b = 51 and several values ofp. The spectral bound-

aries are indicated by the arrows on the abscissa.

unbounded. Thus, there exists an excitation energy beyond which the Bethe formula exceeds

ωu(A, ε) by an ever growing amount. This fact was qualitatively pointed out in Ref. [20]. In

Fig. 4 we compareωBethe(ε) with the exact calculation foru = 51 andA = 41 and with the

sixth–moment approximation foru = 250 andA = 200 (for the latter parameters the exact

density of state values are not available for the entire energy spectrum). The latter parameter set

mimics, very roughly, a heavy nucleus. Comparison with the exact calculation shows thatωBethe(ε)

underestimates the level density below the crossing point of both curves. We have found this to

be a systematic trend. Both parts of Fig. 4 clearly display the crossing point and the increasing

discrepancy betweenωBethe(ε) andωu(A, ε) asε increases beyond this point. We interpret the data

on the crossing points using the equilibrium distributionn(ǫ) = (1/A) 1/(1+exp{(ǫ−A)/(kT )}
for A Fermions at temperatureT with kT ≪ A and continuous single–particle energyǫ. With

kT ≈ √
ε whereε is the total excitation energy of the many–body system, we find that the crossing

points occur at an excitation energyε where the fraction of particles in states with energies> u

is of the order of a few percent. This is physically plausible. In a heavy nucleus this criterion

12
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FIG. 3: Second–, fourth–, and sixth–moment approximation to ωb(p, ε) at the lower spectrum boundary

εmin = (1/2)p(p + 1) versusp for b = 51.

corresponds to excitation energies around200 MeV.

With increasing excitation energy, the constant–spacing model becomes increasingly unreal-

istic. Indeed, the standard value [11]d ≈ 13/A MeV for the average spacing of single–particle

levels near the Fermi energy in medium–weight and heavy nuclei strongly underestimates the

single–particle level spacing in low–lying shells. We recall that every subshell with spinj con-

tributes(2j + 1) states toρp(E) in Eq. (1). As a consequence, the number of states available for

high–energy hole formation is smaller than predicted by theconstant–spacing model. Therefore,

the actual level density bends over more strongly with increasing excitation energy and terminates

at a lower maximum energy than shown in Fig. 4, and the discrepancy with the Bethe formula

is even bigger than presented there. The effect of an energy–dependent single–particle level den-

sity was previously addressed, for instance, in Refs. [21, 22] albeit under neglect of the exclusion

principle.

To account for the shortcoming of the constant–spacing model we are in the process of improv-

ing our approach to calculate nuclear level densities. We divide the energy intervalU = B + F

into several sectionsl = 1, 2, . . . with constant level spacingdl each but withdl 6= dl′ for l 6= l′.
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FIG. 4: (a) Comparison of the exact level densityωu(A, ε) for u = 51, A = 41 versus energyε with the

Bethe formula (21). (b) The same for the sixth–moment approximation andu = 250, A = 200.

Distributing p particles in all possible ways over these sections, so that there arepl particles in

sectionl, we can use our results for the constant–spacing model in each section separately. For

a fixed distribution{pl} the level density is a convolution over a product of Gaussians. The total

level density is the sum over all distributions{pl}. We note that it will no longer be a symmetric

function of energy.
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VI. CONCLUSIONS

Combining analytical and numerical methods, we have used a constant–spacing model for non–

interacting spinless Fermions to develop a global approachto various nuclear level densities. This

approach is viable also for large particle numbers and/or excitation energies where previous work

runs into difficulties. As representative example we have displayed in detail the calculation of the

particle densityωb(p, ε) as a function of particle numberp and excitation energyε. This function

is symmetric about the center of the spectrum and, except forp = 1 andp = b − 1, displays a

maximum at the center. It also possesses particle–hole symmetry. The shape of the boundaries

of the spectrum and the two symmetries are responsible for the quasi–elliptical shape of the line

of constant density in Fig. 1. Withωb(p, ε) ≈ 1 at the boundaries of the spectrum, the value of

ωb(p, ε) at the center increases dramatically with increasingb andp ≈ b/2, reaching values near

1012 already forb ≈ 50 (and even larger values asb is further increased). The decrease by12 or

more orders of magnitude from the center of the spectrum to the boundary poses a considerable

challenge to viable analytical approximations. Guided by the fact that forb ≫ 1, p ≫ 1 ωb(p, ε)

becomes asymptotically a Gaussian function of energy, we have used analytical expressions for

the low moments to determine a sixth–moment approximation to ωb(p, ε). This approximation is

excellent except for values ofp andε near the boundaries of the spectrum. These are indicated

by the white dashed lines in Fig. 1. Here the numerical calculation ofωb(p, ε) based on Eq. (4)

is easy and fast. Combining both approaches we obtain a reliable and easy–to–handle method of

calculating the overall nuclear level density andp–particleh–hole densities for medium–weight

and heavy nuclei for all particle numbers and at all excitation energies. The results should be

realistic except for limitations due to the underlying constant–spacing model. Because of shell

effects the density of single–particle levels increases towards the Fermi energy, and this fact is

not taken into account in the model. Work on a suitable generalization is under way. The Bethe

formula is seen to fail beyond an excitation energy that amounts to approximately200 MeV in

heavy nuclei.
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