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ABSTRACT

A prototype problem of a nonprecipitating convective layer growing into a layer of uniform stratification
and exponentially decreasing humidity is introduced to study the mechanism by which the cumulus-topped
boundary layer grows. The problem naturally admits the surface buoyancy flux, outer layer stratification,
and moisture scale as governing parameters. Large-eddy simulations show that many of the well-known
properties of the cumulus-topped boundary layer (including a well-mixed subcloud layer, a cloud-base
transition layer, a conditionally unstable cloud layer, and an inversion layer) emerge naturally in the
simulations. The simulations also quantify the differences between nonprecipitating moist convection and
its dry counterpart. Whereas dry penetrative convective layers grow proportionally to the square root of
time (diffusively) the cumulus layers grow proportionally to time (ballistically). The associated downward
transport of warm, dry air results in a significant decrease in the surface Bowen ratio. The linear-in-time
growth of the cloud layer is shown to result from the transport and subsequent evaporation of liquid water
into the inversion layer. This process acts as a sink of buoyancy, which acts to imbue the free troposphere
with the properties of the cloud layer. A simple model, based on this mechanism, and formulated in terms
of an effective dry buoyancy flux (which is constrained by the subcloud layer’s similarity to a dry convective
layer), is shown to provide good predictions of the growth of the layer across a wide range of governing
parameters.

1. Introduction

What sets the depth of layers of shallow cumulus
convection? The rate at which such layers deepen de-
termines the rate at which dry free-tropospheric air is
mixed to the surface, and hence the surface fluxes. The
deepening rate also helps determine the time of onset
of precipitation, which is closely tied to the depth of the
cloud layer (Byers and Hall 1955). The impact of cu-
mulus convection on surface fluxes has been shown to
significantly affect larger-scale circulations and the skill
of medium-range weather forecasts (Tiedtke 1989).
The modulating effect of cloud-layer depth on precipi-
tation may be important to the diurnal cycle of convec-
tion over land (Khairoutdinov and Randall 2006) as
well as aerosol effects on clouds (Albrecht 1989). In
addition, layers of fair-weather cumuli, such as those
found in the trades, are increasingly being recognized
as a key point of departure among models of the cli-
mate system, with much of the variance in model-based

estimates of climate sensitivity being attributed to dif-
ferences in the modeled response of layers of shallow
convection (Bony and Dufresne 2005; Wyant et al.
2006).

The question of the growth of layers of shallow, non-
precipitating, cumuli has long been phrased in terms of
the maintenance of the trade wind layer. In addressing
this very question, Riehl et al. (1951) write:

It is well known that the bases of the cumuli have a
nearly uniform height, but that the tops are very ir-
regular. Some are found within the cloud layer, many
near the inversion base, and some within the inversion
layer as active clouds penetrate the base. As shown by
visual observation and many photographs, the tops of
these clouds break off and evaporate quickly. In this
way moisture is introduced into the lower portions of
the inversion layer, and the air there situated gradu-
ally takes on the characteristics of the cloud layer.

Their findings, as embodied by this quote, helped es-
tablish the view that the cumulus-induced transport
(and subsequent evaporation) of liquid water into the
trade wind inversion layer is the principal mechanism
counteracting the drying and warming that accompa-
nies the prevailing subsidence. Riehl et al.’s point of
view, based on budget analyses of the trade winds of the
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northeast Pacific, received further support from similar
analyses of data collected as part of the Atlantic
Tradewind Experiment (ATEX; Augstein et al. 1973)
and Barbados Oceanographic and Meteorological Ex-
periments (BOMEX; Nitta and Esbensen 1974).

These ideas were put in a theoretical context by Betts
(1973), whose model of the cumulus layer was based on
the budgets of enthalpy in two sublayers: an upper,
stably stratified, inversion layer, identified with diver-
gence in the enthalpy flux, net evaporation, and cool-
ing; and a lower, conditionally unstable, cloud layer,
identified with a convergent enthalpy flux, net conden-
sation, and warming. Betts showed how this enthalpy
flux is largely carried by the transport of liquid water,
which is condensed at one level (the cloud layer), and
evaporated at another (within the inversion), thus ce-
menting the conceptual foundations of the earlier bud-
get studies.

So while it has long been appreciated, at least by
some, that the maintenance of the trades depends on
the transport of liquid water, this view is worth con-
trasting with ideas used to explain the growth, or main-
tenance, of layers maintained by other types of shallow
convective. Dry convective boundary layers are gener-
ally understood to deepen as a result of turbulent con-
vective eddies working against the stratification of the
capping layer. Simply put, the growth rate dh /dt is ex-
pressed as the ratio between the entrainment buoyancy
flux, B h, and the jump in buoyancy, �b, across the cap-
ping layer. Here B h measures the rate at which turbu-
lence energy is converted to potential energy, and �b
measures the stability of the interface. (Throughout we
use subscript h and 0 to denote inversion and surface
values of quantities that vary with height.) For idealized
situations this leads to the familiar hypothesis wherein
the rate of working against the overlying stratification
(the buoyancy flux at the top of the layer) is set to a
fixed fraction, k, of the surface driving (as measured by
the surface buoyancy flux, B 0) of the layer, that is,

B h �B 0 � k. �1�

The entrainment flux ratio, k, is taken to be a universal
constant (Ball 1960; Betts 1973; Tennekes 1973; Dear-
dorff 1974) that observations, experiments, or simula-
tions attempt to deduce, with k � �0.2 being a common
reference.

This buoyancy point of view, which emphasizes ex-
changes between turbulence kinetic and mean flow po-
tential energy, also colors our view of the growth of
stratocumulus-topped boundary layers. Most param-
eterizations strive to represent the growth of the layer
by constraining the rate of working at cloud top to the
net rate of buoyancy production, due to either radiative

cooling, or surface fluxes, within the layer (Turton and
Nicholls 1987; Stevens 2002). Such a way of thinking
about the energetics of a growing boundary layer is also
evident, at times, in discussions of layers maintained by
cumulus convection. For instance, Wyant et al. (1997)
emphasize this analogy and define an entrainment mass
flux based on the relative energetics of cumulus up-
drafts and the stability of the inversion. This results in
an entrainment law similar to (1).

In an attempt to reconcile the thermodynamic point
of view of the earlier studies, with the energetic point of
view manifest in discussions of the growth of layers
maintained by other forms of shallow convection, we
revisit the question of the growth of the trade wind
layer. Our analysis is centered around large-eddy simu-
lations of an idealized, or prototype, trade wind cumu-
lus layer. Although most studies of trade wind convec-
tion are based on abstractions of observed cases (e.g.,
Sommeria 1976; Nicholls and LeMone 1980; Siebesma
and Cuijpers 1995) we focus on an idealized case in an
effort to limit the number of parameters on the one
hand, and help extract essential phenomena on the
other. Such an approach, both common and illustrative
in studies of deep precipitating convection (Held et al.
1993; Emanuel and Bister 1996; Tompkins and Craig
1998; Pauluis and Held 2002), is beginning to be used
more often in studies of shallow convection (Grant and
Brown 1999; Grant 2001). The remainder of this paper
is organized as follows: The idealization we explore is
described in section 2, and large-eddy simulations
thereof are presented in section 3. Section 4 interprets
the energetics of the simulations. In section 5 we discuss
some of the issues raised by this analysis, including its
relation to previous work, and implications for ongoing
studies. Section 6 concludes with a brief summary of
our major findings.

2. Setup

a. Background

The initial value problem consisting of a uniformly
stratified fluid evolving under the action of a constant
surface buoyancy flux is perhaps the simplest represen-
tation of the dry convective boundary layer. It shall
serve as the basis for our study of the effects of cumulus
convection and thus merits a brief review. Other than
parameters describing the properties of the working
fluid, the only parameters in this problem are the strati-
fication, which is measured by the Brunt–Väisälä fre-
quency, N2, the surface buoyancy flux denoted by B 0,
and the time, t, since initialization. It follows dimen-
sionally that the growth law (1) describes the evolution
of a mixed layer growing at the same rate as the con-
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vective layer, so long as the evolution of the layer is
independent of the Prandtl and Reynolds number and
(tN)1/3. The latter is a nondimensional measure of the
ratio of a convective time scale to a gravity wave time
scale within the stratified layer and might be expected
to measure the importance of energy radiation by
waves in the free troposphere. In this limit, the thick-
ness of the inversion layer; that is, that layer whose
stratification is greater than the background fluid and is
often associated with the presence of penetrative con-
vection, can be shown to scale with the depth of the
convecting layer. And so the growth of boundary layer
as a whole (irrespective of whether or not is well mixed)
can be parameterized by a model consisting of only a
single length scale, for example, a simple, or zeroth-
order, mixed layer. For such a model it also follows that
the depth of the mixed layer, hm, is given for all time by

hm � �h* where h* � �2B 0t

N2 �1�2

and

� � �1 � 2k. �2�

The scale height h* is, by assumption, the only length
scale in the problem. It is determined by the external
parameters and is often called the encroachment depth
(e.g., Carson and Smith 1974; Driedonks 1982; Fedor-
ovich 1998) as it describes the growth rate of the layer
in the absence of penetrative convection and when an
inversion layer is not readily evident. For this case k �
0 equivalently � � 1. The salient aspect of (2) is that it
predicts a scaling regime in which h � t1/2.

Figure 1 shows both the initial profile and the simu-
lated boundary layer structure from a large-eddy simu-
lation for this initial value problem. Although not
shown, it turns out that the growth law (2) is well sat-
isfied by this simulation. Here the height, hm, of the
mixed layer used to scale the growth of the actual con-
vective layer is determined by matching the enthalpy of
the two layers within the warmed layer, subject to the
overall constraint of enthalpy conservation. Different
choices for the mixed layer height, such as the height of
the minimum buoyancy flux, hB , or the height of the
maximum buoyancy gradient h	, would lead to slightly
different values of k.1

b. Prototype problem

To understand how cumulus convection affects the
evolution of the developing thermal boundary layer we

extend the canonical problem of the dry convective
boundary layer to include clouds. To do so, we propose
the modified initial value problem illustrated by Fig. 2.
This figure shows a growing and moistening thermal
boundary layer at two times, before (dashed lines) and
after (dotted lines) the development of clouds. The ini-
tial conditions are shown by the solid gray lines. In
analogy to the dry convective boundary layer, the
modified problem consists of the growth of a thermo-
dynamic boundary layer into a layer whose density is
uniformly stratified over a saturated water surface. The
surface temperature is varied to maintain a constant
surface buoyancy flux, B 0, which is the only source of
driving of the flow. Given this basic framework the only
unconstrained aspect of the problem is the specification
of the initial humidity profile. Ideally, one would like a
profile that allows the cloud layer to develop over a
reasonable range of heights, and permits its develop-
ment thereafter to proceed in some statistically invari-
ant manner. The profile chosen with these ideas in
mind is the following:

qi�z� � q0,
 exp��z��� · �3�

It corresponds to a relative humidity profile that de-
creases exponentially with height. Equation (3) also en-
sures that the initial equivalent potential temperature,
	e � 	 exp[q�L /(cpT)], decreases with height. Such a
negative gradient in 	e is both a realistic representation

1 The fact that k depends on how the layer’s depth is defined
underscores the point that it does not measure the ratio of the
actual minimum buoyancy flux to the surface buoyancy flux, but
rather that value required by a mixed-layer model to match the
growth of the actual layer (cf. Deardorff et al. 1974).

FIG. 1. Development of a convective boundary layer under the
action of a constant surface enthalpy flux 
0cpQ 0. Shown are the
initial profile 	i (gray solid line); the profile calculated using LES
at t � 48 000 s (dashed line); and equivalent mixed layer profile,
	m (dark solid line). Also shown are the four heights, h*, hB , hm,
and h	, described in the text.
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of the lower tropical troposphere, as well as a necessary
condition for the growth of a conditionally unstable
cloud layer.

Our extension of the canonical problem of the
growth of the dry convective boundary layer to allow
for cumulus convection introduces three additional pa-
rameters (not including microphysical, radiative, or dif-
fusive parameters). These being the two parameters, �
and q0, introduced explicitly by (3) as well as the mois-
ture scale height

�0 �
R�cp�2

Lg
, �4�

which depends on �. The other constants have their
usual meanings and are defined in Table 1.

Our motivation for fixing B 0 is twofold: it maintains
continuity with the standard representation of the dry
convective layer, which simplifies the dynamics of the
subcloud layer; and it allows the surface fluxes to be
represented by a single parameter. This means that the
surface Bowen ratio � � cpQ 0 /(LR 0), where Q � w�	�
and R � w�q� is free to vary. We relate the surface
fluxes, Q 0 and R 0, to the near surface thermodynamic
state as

Q 0 � V��0 � �0

� and R 0 � V�q0 � q0


�. �5�

Both 	0 and q0 are determined by the surface tempera-
ture and pressure, assuming saturation to determine q0;
	0


and q0

correspond to the thermodynamic state just

above the surface; and V is a constant set to 0.01 m s�1.
Some insight into the behavior of the moist system

can be obtained by first studying how a mixed layer
would evolve if it deepened following (2). In this case,

the mixed layer profiles, 	m and qm, must evolve in a
way that satisfy their respective conservation laws,
namely,

hm�m � �
0

hm

�i dz 
 �
0

t

Q 0 dt �6�

hmqm � �
0

hm

qi dz 
 �
0

t

R 0 dt. �7�

Given qm, 	m, and the surface pressure p0 we can cal-
culate the lifting condensation level, �(t). So long as
hm � �, one would expect the mixed layer representa-
tion of the flow evolution to be qualitatively correct.
Thereafter the solutions can be expected to increasingly
depart from the actual evolution of the layer, as the
assumption of a mixed layer evolution implicit in (6)–
(7) and the growth law (2) fails to account for the ef-
fects of clouds.

The evolution of hm and �, as predicted by the mixed
layer model is shown in the left panel of Fig. 3. Because
of the temporal evolution of Q 0 and R 0 the integrals are
evaluated numerically with � � 1.3, � � 6 � 10�3 K
m�1, and B 0 � 7 � 10�4 m2 s�3. Here we note that �
equilibrates relatively quickly and hm grows steadily in
time, following the t1/2 rule as prescribed by (2). Even-
tually hm exceeds �, and clouds are predicted to de-
velop with bases near 600 m after about 8 h. These key
features, cloud-base height and cloud onset time are
shown as a function of B 0 and � in the right panel of the
same figure. Cloud onset time is most strongly deter-
mined by � through its regulation of �, while the height
at which hm � � depends on both � and B . We note that
realistic cloud-base heights (500–700 m being a good

FIG. 2. Development of a moist thermal layer under the action of a constant surface buoy-
ancy flux B 0 � 7 � 10�4 m2 s�3. Shown are the initial profiles of 	i, qi (solid); and the profiles
of 	 and q calculated using LES at t � 24 000 s (dashed) and t � 96 000 s (dotted). At the latter
time, the cloud fraction is also plotted on the left. Other parameters for this problem include
� � 1500 m, q0,
 � 0.8qs,0, and � � 6 � 10�3 K m�1.
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tropical rule of thumb) are evident over much of the
parameter space.

Because the prediction of the mixed layer model,
given by (6)–(7) with (2), does not incorporate cloud
processes, it provides a reference for measuring how
the development of the cloud layer in the large-eddy
simulations (which do incorporate cloud processes) af-
fects the evolution of the boundary layer as a whole,
and how this varies as a function of the major param-

eters of the system. Already from Fig. 2, in which the
profiles of 	 and q are taken from the large-eddy simu-
lations to be presented subsequently, one can deduce
that clouds must have some effect. Whereas (2) would
have predicted the boundary layer depth to have
doubled in the period between 24 000 and 96 000 s, its
actual depth has almost tripled. Using large-eddy simu-
lation as a proxy for the evolution of actual clouds, our
goal in the following sections is to better understand
this underlying tendency of the clouds to accelerate the
growth of the boundary layer.

3. Large-eddy simulations

a. Large-eddy simulation model

The code used to perform the large-eddy simulations
is presented in some detail in the appendix of Stevens et
al. (2005). Here we briefly summarize by noting that it
solves the anelastic equations2 of Ogura and Phillips
(1962) over three spatial dimensions. Centered differ-
ences in space and time are used to represent momen-
tum advection, and monotone-centered-slope-limited
upwinding is used for the advection of scalars. The
Smagorinsky subgrid model is employed to represent
subgrid fluxes of both scalars and momentum. The
prognostic model variables are the three components of
the velocity vector, the liquid-water potential tempera-
ture, 	l � 	 exp[�qlL /(cpT )] introduced by Betts
(1973), and the total water mixing ratio, q. Liquid wa-
ter, ql, is diagnosed assuming equilibrium conditions
and no rain is allowed to develop. As we shall discuss
later, this latter assumption becomes increasingly un-
tenable as the cloud layer deepens.

The model is initialized with a horizontally homoge-
neous mean state and no mean wind. To specify an
initial state of constant N2, 	i(z) is calculated based on
qi(z). To break the slab symmetry of the initial condi-
tions random fluctuations are added to the potential
temperature field near the surface. The model is then
stepped forward in time, with the sea surface tempera-
ture held homogeneous over the domain, but varying in
time so as to maintain B 0 at the desired mean value
given (5), with 	0


and q0

given by their values at the

first model level above the surface. Eleven simulations
are analyzed, most on a grid whose horizontal spacing is

2 The analysis of our simulations is performed in a way that
accounts for the fact that the background density varies with
height. For ease of exposition however the results have been pre-
sented in the Boussinesq limit. Throughout we have checked our
analysis to ensure that it is not qualitatively sensitive to the height
variations of the background density in the simulations.

TABLE 1. List of symbols.

a1 �	
 /�	l

a2 (R� /Rd � 1)
a3 	�1�	
 /�qql

cp Isobaric specific heat
g Gravitational acceleration
t Time
h PBL height
h* Encroachment depth
hB Height where B is a minimum
h	 Height where d	/dz is a maximum
hm Equivalent mixed layer depth
k Dry convective boundary layer entrainment/surface flux

ratio
p Pressure
q Total water specific humidity
ql Liquid water specific humidity
w Vertical velocity
z Distance from surface
za Base of cloud-top interfacial layer
zb Top of cloud-top interfacial layer
N 2 Brunt–Väisälä frequency
V Surface exchange velocity
L Enthalpy of vaporization
Rd Gas constant for dry air
R� Gas constant for water vapor
T Temperature
B Buoyancy flux
Q Kinematic flux of potential temperature
Q l Kinematic flux of liquid water potential temperature
Q� Kinematic flux of 	


Q̃ 
 Equivalent flux of 	


R Total water specific humidity flux
R l Liquid water specific humidity flux
� Surface Bowen ratio
� Cloud-base height
� Nondimensional entrainment of cumulus-topped PBL
� Moisture length scale for initial profile
�0 Moisture scale height
� Potential temperature at z � 0, t � 0 (also basic state

value of 	)
	 Potential temperature
	e Equivalent potential temperature
	s Saturated equivalent potential temperature
	l Liquid water potential temperature
	
 Density potential temperature
�	 Difference in 	 (or perhaps other variable) across the

inversion
� d	
 /dz in free troposphere
�c d	
 /dz in cloud layer
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75 m and whose vertical grid is 5 m near the surface and
stretched by a constant factor of 2.5% per grid interval.
This stretching results in a grid spacing of about 30 m
near z � 1200 m and 120 m near the model top at 4750
m. The standard horizontal domain consists of 96 points
in the horizontal and 131 points in the vertical. Simu-
lations on grids twice as large, or twice as fine, suggest
that the results we center our analysis around are not
especially sensitive to modest changes in the calculation
grid, although the larger-domain simulations do yield
more reliable statistics at late times in situations when
the cloud layer is relatively deep and the finer resolu-
tion simulations are more robust at very early times;
that is, when h � 200 m.

b. Time evolution

In Fig. 4 we show the time evolution of distinguished
layers (Fig. 4a) and cloud fractions (Fig. 4b) from a
simulation of the prototype problem with the SST cho-
sen so that cp
0�g�1B 0 � 25 W m�2, � � 1500 m, � �
6 K km�1, and q0 � 0.8qs,0. Figure 5 shows the evolu-
tion of the sea surface temperature (SST) and surface
fluxes from this same simulation.

Two regimes are clearly evident: a cloud-free regime
at early times (t � t1 � 8.4 h), and a regime with ap-
proximately constant cloud fraction at later times (t �
t2 � 13 h). The times t1 and t2 are defined when the
cloud first exceeds 1% of its value averaged over the
final 2 h of the simulation, while t2 corresponds to the
time at which the cloud fraction first exceeds 90% of
that value. The time of cloud onset, t1 � 8.4 h is pre-
dicted relatively well by the mixed layer equations
(which predicted hm � � at 8.3 h). Subsequent to t2, �
tracks hB (the height of the minimum buoyancy flux)

indicating that the latter effectively measures the depth
of the subcloud layer at late times. For comparison, we
note that the profiles in Fig. 2 are taken from the base
simulation at t � 8 and t � 30 h, respectively.

At early times, that is, t � t1, the boundary layer
grows with the square root of time. This is true irre-

FIG. 4. (a) Time series of distinguished heights for the base
simulation described in Fig. 2. A gray dotted line (which is effec-
tively overlaid by other lines) shows the fit to h	 for t � 8.4 h and
t � 13 h, respectively. The early time fit is proportional to t 1/2 and
the late time fit is proportional to t. Also shown by the dashed line
is the lifting condensation level � based on the average value of 	
and q over a layer from 0 to 0.2hB . (b) Time series of cloud
fraction, defined as the percent of columns with condensate.

FIG. 3. (left) Time series of hm (solid) and � (dashed) for a mixed layer growing into a layer
with the same initial conditions and surface buoyancy flux as shown in Fig. 2. (right) Cloud-
base height, �, (solid contours) and cloud onset time in h (dashed) as a function of B 0 and �
for k � 1.3.
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spective of how one measures the boundary layer
depth, with h* � hB � hm � h	 each existing in fixed
ratio with respect to one another, especially toward the
latter part of the early period when the boundary layer
depth is much larger than the grid mesh over which it is
represented, that is, h k �x. By any measure of the
layer’s depth, h � h*, hence penetrative convection is
contributing to the growth of the layer. The signature of
penetrative convection is also evident in the develop-
ment of a thin layer, centered near hB , in which 	 � 	i.
This implies the development of stronger temperature
and moisture gradients than were initially present, and
is often referred to as an inversion layer because the
stratification is sometimes sufficient for the tempera-
ture to actually be increasing at h	. Because such a layer
emerges spontaneously, treating it as a controlling pa-
rameter that should be specified externally, as is com-
mon practice (e.g., Nieuwstadt et al. 1991; Sullivan et al.
1998), only adds unnecessary complication.

The surface buoyancy flux is calculated as

B 0 �
�0

g �1 
 a2

cpT

�L �V��0 � �0

�, where

a2 �
R�

Rd
� 1 � 0.608. �8�

For fixed � (Bowen ratio) and B 0, the SST (equiva-
lently 	0) should increase as 	0


(equivalently 	m), that
is, also proportional to t1/2. In Fig. 5 we see that � is
decreasing with time, indicating that the SST must in-
crease slightly less rapidly than t1/2. The actual time rate

of change of the SST and the surface fluxes is predicted
by the bulk model to within a constant offset (0.15 K,
�9.5 W m�2, and 0.5 W m�2 to the SSTs, latent and
sensible heat fluxes, respectively), which arises as a re-
sult of a surface layer in the simulations. The emer-
gence of such a layer (the precise characteristics of
which likely are sensitive to the grid) results in a slightly
larger SST and a larger surface Bowen ratio than pre-
dicted by (6)–(7) with 	m and qm substituted for 	0


and
q0


in the calculation of the surface fluxes.
At late time, that is, t � t2, the boundary layer enters

a qualitatively different scaling regime, wherein we wit-
ness the emergence of a cloud layer whose top, h, grows
linearly with time, t. This is evident irrespective of how
one measures the depth of the layer. At late time the
cloud fraction is stationary at about 10% and the SSTs
and surface fluxes increasingly depart from what would
have been expected had the solutions remained cloud
free. In this late time regime, the SST has to increase
more markedly to maintain the same buoyancy flux,
and the surface Bowen ratio tends to decrease more
strongly. The latter is not unlike the evolution of the
Bowen ratio along trajectories of low-level winds in the
trades (e.g., Riehl et al. 1951) and suggests that our
specification of a constant surface buoyancy flux is not
unduly artificial. For those readers who are concerned
that the rate of increase in the SST in Fig. 5 is unreal-
istic we note that (i) the actual rate of SST increase, and
hence surface buoyancy flux, ends up being immaterial
to the arguments we are making; (ii) because we study
the problem in the absence of radiative cooling in the
atmosphere, for which 2 K day�1 is a typical value, it is
necessary to increase the surface temperature more
rapidly to maintain the same rate of driving of the flow;
and (iii) the rate of SST increase implied by the pre-
scribed surface buoyancy flux is varied later in this
study thereby substantiating our first point.

The cloud layer at late times (Fig. 2) consists of a
deepening layer that has been both cooled and humidi-
fied relative to the initial sounding. Cloud fraction
peaks at the base of this layer and decreases through
the depth of the cooled zone. The capping inversion is
now much more pronounced than it was previously and
caps a cooled layer that is no longer a well-mixed ex-
tension of the lower boundary layer, but follows a con-
ditionally unstable lapse rate, �c � 0.0022 K m�1. The
maximum of cloud fraction near the base of the cloud
layer, and the secondary maximum in the gradient of q
near 900 m are signatures of a cloud-base transition
layer. All of these features are quite realistic, and in
accord with the growing body of literature on trade-
cumulus convection (see Siebesma 1998; Stevens 2005,
for recent reviews). These results also suggest that

FIG. 5. Time series of (a) sea surface temperature, (b) surface
latent enthalpy flux, and (c) surface dry enthalpy flux. Dotted
lines are estimates based on bulk model (6)–(7) adjusted to ac-
count for the lack of a surface layer in the bulk model, and with
hm given by (2).
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properties such as the trade inversion, the cloud-base
transition layer, and the level of conditional instability
in the cloud layer, should be viewed as emergent prop-
erties of the simulation, rather than parameters, or
boundary conditions, to be specified externally. The
merit of this distinction becomes evident when deciding
what parameters to use to describe the asymptotic be-
havior of the layer.

On the basis of this analysis alone, one can begin to
glimpse how shallow moist convection changes the
world. Trade winds admitting only dry convection
would be shallower, and surface heat fluxes would be
less, leading to less cooling of the surface ocean, and
less charging (moistening) of the atmosphere in antici-
pation of deep convection (see also Tiedtke 1989; Mc-
Caa and Bretherton 2004; Zhu and Bretherton 2004, for
similar conclusions). In the next section we will try to
put these changes in the theoretical framework
sketched out in the introduction.

4. The energetics of the growing cloud layer

Although not shown, the flow visualization suggests
that evaporative cooling at the top of the cloud layer
may play an important role in the anomalous (t versus
t1/2) growth of the cloud layer. These images show the
now familiar tendency (e.g., Reuter and Yau 1987;
Zhao and Austin 2005a,b) of the cumuli to become
enveloped, or crowned, by a downdraft sheath as they
penetrate and evaporate into the inversion layer. To
emphasize the differences between the scaling regimes
at early (cloud free) and late times, we borrow from the
terminology of stochastic processes and refer to the
former as a diffusive, and the latter as a ballistic, growth
regime. In this section we focus on the question as to
the extent to which the ballistic growth regime is analo-
gous to the growth of dry convective layers, whose

anomalous (nonencroachment) growth is supported by
the conversion of turbulence kinetic energy into mean-
flow potential energy.

a. The energetics of ballistic growth

We begin by considering the budget of buoyancy as
measured by the density potential temperature 	
,
which following Emanuel (1994) we write as

�� � ��1 
 �R�

Rd
� 1�q �

R�

Rd
ql�. �9�

This differs from the definition of density potential
temperature used by Betts and Bartlo (1991), corre-
sponding instead to what they (and others) call the vir-
tual potential temperature for cloudy air. We adopt the
Emanuel terminology because the literature is ambigu-
ous as to whether liquid water effects should be in-
cluded in the virtual temperature, and because 	


makes an explicit reference to the density, differences
in which underlies all convection.

The profile of 	
 is shown at two different times in
Fig. 6. The evolution of the layer is marked by 	
 in-
creasing with time in the subcloud and cloud layers, and
decreasing with time at the top of the cloud layer: thus
defining an inversion layer, which like for the dry con-
vective boundary layer, cools as it deepens. Quantita-
tively the rate of increase in 	
 is remarkably constant
through the cloud and subcloud layers (Fig. 6, middle
panel). Moreover, as we shall soon show, the rate of
warming is commensurate with what one would expect
had the subcloud layer been evolving without the sub-
sequent development of clouds.

From (9) and the definition of 	l, fluctuations in 	


can be linearly related to fluctuations in 	l, q, and ql as
follows:

�	� � a1�	l 
 a2�q	 
 a3�q	l, �10�

FIG. 6. Density potential temperature, 	
 budget: (left) Profiles at 33 h (solid) and 36 h (dashed), and an idealized
bulk profile (dotted) based on the average between 33 and 36 h; (middle) difference in 	
 between hours 36 and
33; and (right) average of effective 	
 flux during 33–36 h.
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where a1, a2, and a3 are thermodynamic parameters,
with a2 given by (8). If we neglect fluctuations among
thermodynamic perturbations, then a1 and a3 can also
be expressed as effective constants:

a1 � ���

�l
��1 


qlL

cpT��1

and

a3 � a1��l

� � L

cpT
�

R�

Rd
, �11�

where �
, �l, ql, and T are taken to be some fixed value
representative of the cloud layer. In cumulus layers ql �
1 � 10�5 kg kg�1, so for �l � �
, a1 � 1 and a3 �
L /(cpT) � R� /Rd � 7. At this level of approximation
perturbations in 	
 are indistinguishable from pertur-
bations in 	�,l the liquid-water virtual potential tem-
perature (e.g., Emanuel 1994).

Equation (10) provides a basis for studying the bud-
get of buoyancy. By correlating fluctuations in 	
 with
fluctuations in w it follows that

Q � � w	�	� � a1Q l 
 a2�R 
 a3�R l , �12�

where Q l and R l denote the vertical kinematic flux of 	l

and ql, respectively. This defines the buoyancy flux B �
(g/�)Q 
, which measures the exchange between turbu-
lence kinetic and mean-flow potential energy.

To see how the divergence of the buoyancy flux re-
lates to the temporal evolution of buoyancy we recog-
nize that in horizontally homogeneous layers, for which
there exist no sources of 	l or q (i.e., in the absence of
radiation and precipitation), then


t�l � �
zQ l, 
tq � �
zR and 
tql � �
zR l 
 C ,

�13�

where C is the net rate of condensation. Associating
fluctuations in (10) with changes in time, it follows from
above that


t�� � �
zQ � 
 a3�C . �14�

This equation emphasizes that in saturated flows, buoy-
ancy is not conserved—condensation acts as a source
term in the buoyancy budget. However, in the case
when


tql � �
zR l 
 C K
a1

a3�

zQ l , �15�

which in the limit corresponds to ql being stationary
(the case of unsaturated layers being the trivial case),
then


t�� � a1
t�l 
 a2�
tq , �16�

which is conserved. Hence, in the stationary limit of ql,
	
 evolves according to


t�� � �
zQ̃ � where Q̃ � � a1Q l 
 a2�R . �17�

It turns out that this flux, Q̃ 
, proves central to un-
derstanding the energetics of the cloud-layer growth.
From (14) and (17) we note that

Q̃ � � Q � � a3�R l , �18�

which defines Q̃ 
, to be proportional to that part of the
buoyancy flux not associated with perturbations in ql.
This equation emphasizes the fact that in unsaturated
layers Q̃ 
, � Q 
 � (�/g)B . At a level of approximation
commensurate with our determination of the constants
a1 and a3, Q 
 is equivalent to the flux of liquid-water
virtual static energy (e.g., Bretherton and Wyant 1997;
Bretherton and Park 2007, manuscript submitted to J.
Atmos. Sci.), while Q̃ 
 is what Lewellen and Lewellen
(2002) call the “dry” virtual potential temperature flux.

To the extent that the evolution of the cloud layer is
well described by (17), which as we show below turns
out to be the case, then quasi steadiness3 implies


t�
z��� � �
zzQ̃ � � 0. �19�

In other words, Q̃ 
 must be linear. This condition is
reasonably well satisfied below the level za for the
simulation analyzed in Fig. 6. The profile of Q̃ 
 in this
figure makes two further points: (i) its slope is more or
less the same in the cloud and subcloud layer, as we
would expect from the fact that the cloud and subcloud
layer are warming (as measured by 	�
) at the same rate;
and (ii) in the subcloud layer Q̃ 
 is indistinguishable
from the shape it would assume in the absence of an
overlying cloud layer. This latter point is the foundation
of almost all models of cumulus convection (e.g., Betts
1973). To the extent that clouds merely act to equili-
brate the density of the cloud layer to that of the sub-
cloud layer, which itself evolves according to (1), then

Q̃ ��z� � Q̃ �,0�1 � �1 � k�
z

�� for z � za , �20�

which follows from simple linear extrapolation of Q̃ 


given its surface value Q̃ 
,0, and its value, kQ̃ 
,0, at the
top of the subcloud layer.

Equation (20) helps explain why the cumulus-topped
layer grows more efficiently than the cloud-free con-
vective boundary layer. For both, the divergence of Q̃ 


3 Recall that in the context of turbulent boundary layers this
term refers to the condition that the shape of the profile of a
particular quantity does not change in time, that is, stationary
gradients.
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at z � h drives the growth of the layer. However in
cloud-free convective layers Q̃ 
 � B , and thus is ener-
getically constrained to be some fraction of the surface
buoyancy flux B 0. This leads to constraints of the form
(1). For cloudy layers this energetic constraint is re-
laxed, for example, Eq. (18), and increasingly negative
Q̃ 
 can be supported by the transport of liquid water in
the clouds, thus allowing Q̃ 
 at h to scale with h, thereby
supporting a different (ballistic) scaling regime for the
evolution of the layer depth.

These relationships are illustrated in Fig. 7, where we
plot the three terms in (18) in buoyancy units. Through-
out the cloud layer, B is nearly constant and signifi-
cantly smaller than ga3R l. In the inversion (between zb

and za) B is nearly zero, and so the divergence of g/�Q̃ 


is supported almost entirely by the convergence of the
liquid water flux at these levels. This helps quantify the
discussion in the introduction, showing that, at least in
this prototype problem, the growth of the layer is best
interpreted as resulting from the enthalpy of vaporiza-
tion driving an increase in mean flow potential energy.
Unlike in dry layers, the turbulence kinetic energy
plays at most an indirect role, in that it supports the
circulations that deposit the liquid water in the inver-
sion, and the subsequent mixing that leads to its evapo-
ration.

b. Detailed budget

To better quantify these ideas, in this section we ex-
amine the budget of the inversion layer in more detail,
thus addressing the question as to what role the inver-
sion layer thickness, and the character of the buoyancy
jump at cloud top, play in the evolution of the layer.

In the limit where ql is stationary following the layer,
the weak form of the conservation law (14) is given by
the integral of (17) between za and zb. Assuming to a
first approximation that za and zb evolve at the same
rate, so that dh/dt � dza /dt � dzb /dt yields

d

dt �zz�t�

zb�t�

�� dz �
dh

dt
����zb� � ���za�� � Q̃ ��za� � Q̃ ��zb�.

�21�

This equation is the basis for linking flux laws of the
form (1) to growth laws of the form (2), but for layers
of finite thickness (cf. Sullivan et al. 1998). An analysis
of our baseline large-eddy simulation (LES) shows that
(21) is satisfied to within 1%, indicating the validity of
the assumptions used in its derivation. Assuming that
Q̃ 
(zb) is negligible compared to Q̃ 
(za) and that both
terms on the lhs of (21) are proportional to one an-
other; that is,

d

dt �za�t�

zb�t�

�� dz �
dh

dt
����zb� � ���za�� 
 ����

dh

dt
,

�22�

allows us to express (21) as

����

dh

dt

 Q̃ ��za�. �23�

In the dry convective boundary layer, the assumption of
a single length scale implies that �	
 � �h and Q̃ 
(za) �
constant, in which case by (23) hdh � dt or h � t1/2 so
long as (22) prevails. In contrast, if Q̃ 
(za) � h, as we
found to be the case for the cumulus-topped boundary
layer, then (23) implies that h � t so long as �	
 con-
tinues to scale with h.

To further develop these ideas we explore a similar-
ity hypothesis analogous to that used to scale the dry
convective boundary layer. Specifically, we hypothesize
that an equivalent (bulk) cloud-topped layer of some
depth h, consisting of a well-mixed subcloud layer, a
cloud layer whose lapse rate �c is constant, and an in-
finitesimally thin inversion layer4 deepening under the
action of an equivalent 	
 flux, Q̃ 
 � (h � �), can scale

4 This fundamentally amounts to assuming that the inversion
layer does not introduce a new length scale.

FIG. 7. Fluxes of liquid water (dotted), buoyancy (dashed), and
equivalent buoyancy (solid) in buoyancy units for base simulation.
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the growth of the actual cloud-topped boundary layer
as represented by our simulations. An example of such
a layer, constructed from the 33–36-h mean profiles of
	
 is given by the dotted line in Fig. 6. For such a layer

��� � ��,0 
 �h � ��̂� 
 �c�h � ��� where

�̂� �
1
� �

0

�

�� dz . �24�

By conservation of enthalpy

�̂� 

�c

2 ��h � ��2

h �� ��,0 
 h
�

2

 Q̃ �,0

t

h
, �25�

which given �c defines 	̂
. Substituting (20) and (24)
into (23) leads to an expression for the growth rate of
the cumulus layer,

dh

dt
� �� Q̃ �,0�1 � �1 � k�

h

��
��,0 
 �h � ��̂� 
 �c�h � ���

� , �26�

where �, the nondimensional deepening rate, is a con-
stant that carries the proportionality in (23). An aspect
of (26) worth drawing attention to is that the moisture
scale height � in the initial profiles does not appear
explicitly in the growth rate. It is implicit in that it helps
determine � and may determine the extent to which our
assumption (15) remains valid. This suggests that, to the
extent (26) adequately describes the growth of the
cloud layer, once � is set the amount of moisture in the
free troposphere has little effect on the rate of growth
of the cloud layer (insofar as precipitation remains un-
important), even if it may end up being important to the
ensuing structure of that layer. Numerical integration
of (26), with � and k fixed, 	̂
 given by (25) with �c �
2.2 K km�1, and h � � as an initial conditions, yields
values of h that increase linearly at late times (after a

few hours). This result is commensurate with Fig. 4 and
suggests that (26) is at least qualitatively correct.

As a quantitative test, we evaluate whether (26) can
scale the actual growth rate from a range of simulations
chosen to sample the parameter space of the prototype
problem, details of which are summarized in Table 2. In
Fig. 8 we plot (26) versus the actual deepening rate
dh	 /dt as determined by the best-fit linear slope to h	

for the period t � t2, which corresponds to the period of
stationary cloud fraction in Fig. 4. In evaluating (26) we
take k � �0.3 from our simulations for the dry convec-
tive boundary layer. Figure 8 shows that the actual
growth rate of the cloud layer is well predicted (scaled)

FIG. 8. Predicted vs actual growth rate for simulations in Table
2. The three simulations solved using different numerical formu-
lations (grids) are shown by the open squares. Simulations in
which W is calculated using the actual cloud lapse from each
simulation rather than a fixed constant are shown by gray points.

TABLE 2. Summary of simulations.

(cp
�g�1)B 0

(W m�2) � (K km�1) � (m)
Analysis
time (h) h	 (m) � (m) �c (K km�1)

dh	 /dt
(cm s�1) Note

5 6 1500 26 643 324 1.96 0.62
15 6 1500 26 1121 578 2.04 1.10
25 6 1500 26 1452 771 2.04 1.38
25 6 1500 26 1456 748 2.18 1.42 2Nx, �x/2
25 6 1500 34 1905 820 2.35 1.48 2Nx

40 6 1500 22 1647 899 2.18 1.87
25 8 1500 26 1159 680 2.53 1.05
25 4 1500 22 1826 846 1.92 2.31
25 6 500 34 1400 926 1.85 1.05
25 6 1000 26 1298 796 1.99 1.23
25 6 2000 22 1378 702 2.39 1.38
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by (26) given a nondimensional growth rate of � � 0.8.
The dispersion in k among simulations is only about
10% over a nearly fourfold change in dh	 /dt. Also evi-
dent in this figure is that much of the scatter can be
associated with the use of a single value for �c. The
lapse rates in the cloud layer vary slightly, but system-
atically, among the simulations (see Table 2), and un-
accounted for variations in �c account for a significant
amount of the scatter in the predicted versus the actual
growth rates. The variation of � for the same case, but
simulated using different grids and evaluated at differ-
ent times (marked by open squares), is similar to the
variation of � among simulations with different param-
eter sets. This suggests that the simulations probably do
not sufficiently sample the flow to provide more quan-
titative information about systematic variations in
quantities like the lapse rate or the inversion layer
thickness and their effect on the growth of the layer.

In summary, the growth of the cloud layer in this
prototype problem is well described by assuming that
(i) changes in the cloud water field at a given level
contribute negligibly to the evolution of 	
; (ii) the in-
crease in 	
 in the cloud layer tracks changes in the
subcloud layer; and (iii) the energetics of the subcloud
layer are, to leading order, indistinguishable from those
of a dry convective boundary layer. The last assumption
requires the cloud-base buoyancy flux to be a fixed
fraction of its value at the surface, and the first two
require the equivalent 	
 flux at the top of the cloud
layer to scale with the depth of the cloud layer follow-
ing (20).

5. Discussion

Based on the above, some issues emerge that warrant
further discussion. One is why the cloud-layer value of

	
 so closely tracks the value in the subcloud layer.
Another is how our ideas relate to the significant body
of earlier literature that addresses similar topics, and
the last is what implications our findings have for on-
going research.

a. Thermodynamic constraints

The first question can be posed formally as follows:

Why does 
t�� |��z�za
� 
t�� |z��? �27�

In words: why does the density potential temperature in
the cloud layer so closely track its value in the subcloud
layer? Perhaps to preserve the stability of the cloud
layer with respect to unsaturated perturbations from
the subcloud layer? Maintaining the cloud layer at neu-
tral buoyancy with respect to saturated perturbations
from the subcloud layer requires that 	s (the saturated
value of 	e) in the cloud-layer track 	e in the subcloud
layer; that is,


t�e |��z�za
� 
t�s |z��. �28�

Figure 9 shows that this constraint is also satisfied by
the simulation. Satisfying both the unsaturated (27) and
saturated (28) constraints, and assuming that the cloud
and subcloud layer are moistening at the same rate,
effectively partitions the moisture and heat flux diver-
gences such that


zR �
qL

R�T
2 
zQ l , �29�

which upon integrating allows one to differentiate be-
tween the heat and moisture fluxes themselves.

b. Relation to previous work

With a little scrutiny the thread of the ideas pre-
sented above is apparent in the fabric of much previous
work, beginning with that of Betts (1973). While Betts

FIG. 9. (left) Profiles of 	e and 	s from the base simulation as presented in Fig. 6, and
(right) the change in time of 	e and 	s.
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framed his study around the enthalpy budget of an ex-
isting cloud layer, his ideas encapsulate much of the
behavior of our prototype problem of a developing con-
vective layer under the action of a fixed surface buoy-
ancy flux. Of the many similarities, his invocation of the
assumption that the liquid water is stationary, and the
way in which he formulates the problem as an extension
of the development of the cloud-free convective bound-
ary layer are especially important. His results also an-
ticipate the linear growth regime, which we highlight in
the present work. In particular, the unnumbered equa-
tion following his Eq. (62) implies that the cloud layer
will grow linearly with time in the case when the inver-
sion layer thickness scales with the depth of the cloud
layer as a whole. Although Betts only addresses the
stability and energetics of the system as a way to ad-
dress the question of the inversion layer thickness,
some of the similarities in the two studies follow from
the fact that the effective buoyancy flux around which
we center our analysis so closely tracks the flux of 	l

around which Betts centers his analysis. This follows
largely from (17) and (29), which together imply that


zQ̃ � � �1 

a2�Lq

R�T
2 �
zQ l � 1.1
zQ l . �30�

In other words, to a first approximation the divergence
of the enthalpy (as measured by cp	l) flux is a good
approximation to the divergence of the density flux.
These similarities necessarily carry over to the finding
of Betts (1973, 1975), that the liquid water flux, R l, is a
dominant contributor to the flux of 	l, and our finding
that the R l term (e.g., Fig. 7) supports the large down-
ward flux of buoyancy in the cloud layer. The similarity
between Q̃ 
 and Q l also explains why the scaling of
Moeng (2000), which was also based on an analysis of
the budget of 	l, so effectively scaled the growth of the
stratocumulus layers she studied.

In their study of different shallow cloud regimes,
Lewellen and Lewellen (2002) do focus on the energet-
ics of deepening cloud layers, and in so doing suggest a
constraint [their Eq. (10)] essentially identical to our
(20) but phrased in terms of what they call D, the buoy-
ancy flux for dry layers. They show its appropriateness
for shallow cumulus layers, particularly in so far as they
rise into an upper layer of stratocumulus. From this
perspective we are simply arguing for the more general
validity of their result. In so doing we provide an argu-
ment for its interpretation and energetic support (the
liquid water flux) especially in layers where the cloud
layer is far from uniform (i.e., in situations that violate
their assumption 2).

c. Implications for ongoing work

While the linear growth law of the cloud layer will
only be realized in the limit of a constant surface buoy-
ancy flux and uniform outer layer stratification, our
understanding of why this regime is manifest should
also help us understand the behavior of cumulus-
topped layers more generally. In particular, because 	


evolves under the divergence of the flux Q̃ 
, which is
closely related to Q l , both of which must be linear5 for
the quasi-steady evolution of the layer, it is not surpris-
ing that arguments based on the enthalpy budget are so
successful in describing the boundary layer evolution.
More importantly, this suggests that simple models that
treat the evolution of the enthalpy budget consistently
should be able to well represent the rate of deepening
of cloud-topped boundary layers. That said, because
the parameter complexity of simple parameterizations
(in terms of dimensional constants) often exceeds that
of the underlying flow, it is less clear that parameter-
izations forced under the conditions of this simple prob-
lem recover the simple scaling of (26). As such the
prototype problem we propose here might prove to be
a useful benchmark for parameterization schemes.

A better understanding of the mechanism by which
cumulus-topped layers deepen is also useful when
thinking about processes that may arrest the ballistic
growth of the trade wind layer. These include large-
scale subsidence, precipitation, and unfavorable gradi-
ents in 	e. As the cloud layer deepens, precipitation can
be expected to become increasingly efficient at deplet-
ing the liquid-water flux, and thus arresting the growth
of the layer. Preliminary simulations of our prototype
case with a simple microphysical scheme (to be dis-
cussed further in a subsequent paper) indeed show that
as the precipitation rate increases the cloud layer ceases
to deepen. These simulations also show that �c,, which
is approximately fixed in the nonprecipitating regimes,
increases markedly as precipitation increases. Because
the depth of the cloud layer necessary to produce a
precipitation flux large enough to balance the upward
flux of liquid water depends on the ambient concentra-
tion of condensation nuclei this suggests yet another
mechanism whereby the chemical state of the atmo-
sphere (as measured by the atmospheric aerosol) may
affect the structure of larger-scale circulations, and
hence climate. The ability of precipitation to quench
the growth of the cloud layer may also help explain
simulations of stratocumulus whereby increasing pre-

5 If other sources such as radiation are active, then the linearity
constraint of quasi steadiness applies to the sum of the radiative
and turbulent fluxes.
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cipitation, or sedimentation, fluxes appear to reduce
the entrainment rate (e.g., Stevens et al. 1998; Acker-
man et al. 2004; Bretherton et al. 2007).

Last, the mechanisms we discuss here suggest a new
twist on how we usually view the role of large-scale 	e

gradients (cf. Squires 1958; Randall 1980; Deardorff
1980). For negative 	e gradients, the ballistic (water in-
jection) growth mechanism provides an efficient means
for deepening the boundary layer. In unfavorable 	e

gradients the injection of water into the inversion layer
can lessen, but not obliterate, unfavorable density gra-
dients. In the latter case, the rate of working against the
outer-layer stratification, by a negative buoyancy flux,
is essential to sustain boundary layer growth. Because
doing work on the outer-layer stratification proves to
be an inefficient way to grow a boundary layer, such
situations would appear to be more favorable for moist-
ening the cloud layer and the development of a layer of
stratiform clouds at its top.

6. Summary

We have constructed an idealized representation of a
shallow cumulus layer to explore how the development
of cumulus clouds affects the growth of the PBL. We
pose the problem as one of a thermal boundary layer
growing into a uniformly stratified layer whose specific
humidity decays exponentially. The growth is main-
tained by the action of a constant surface buoyancy
flux, which is specified by assuming a fixed wind speed
and a saturated lower boundary whose temperature is
allowed to evolve in time.

In the period before clouds develop, the problem is
identical to that of a dry convective boundary layer, for
which the layer deepens self-similarly with the square
root of time. When clouds develop they quickly equili-
brate to maintain a constant cloud fraction near 10%,
after which the boundary layer deepens at a rate that
increases linearly with time (ballistically). The more
rapid deepening of the boundary layer enhances the
downward mixing of heat and dry air, which by the
surface specification implies enhanced moisture fluxes,
and diminished surface sensible heat fluxes. Many char-
acteristics of shallow cumulus layers are apparent in
this prototype problem. These include a well-mixed
subcloud layer, a transition layer (most evident in mois-
ture gradients), a conditionally unstable cloud layer,
and an inversion layer into which clouds penetrate and
detrain.

The tendency of the cloud layer to grow linearly in
time is explained in terms of a mechanism that is fun-
damentally different than that used to support the

growth of dry convective boundary layers. In the cloud-
topped layers, the convective clouds penetrate into a
conditionally unstable capping layer and detrain (in-
ject) their liquid water there. The subsequent evapora-
tion of which imbues the capping layer with the prop-
erties of the cloud layer. This injection mechanism is
best measured by what we call the equivalent flux of
density potential temperature. Its value at the top of the
cloud layer is constrained by the subcloud layer ener-
getics (which are isomorphic to that of a dry convective
boundary layer) and the tendency for the cloud layer
values of 	
 to change commensurately with the values
in the subcloud layer. The development of a simple
bulk model based on these concepts is shown to provide
a satisfactory prediction of the growth rate for a suite of
large-eddy simulations configured to sample a wide
span of the problem’s parameter space.

While we have made progress in understanding a
highly idealized problem, one could argue that many of
our idealizations are untenable: even shallow clouds
can readily develop precipitation, radiative cooling can-
not be ignored, nor can the vertical shear in the hori-
zontal wind. And while the trade wind layer tends to
advect over steadily warming water, with progressively
decreasing Bowen ratios, they probably do not do so at
a rate that maintains a constant surface buoyancy flux.
As such one might rightly inquire as to the relevance of
our arguments. Notwithstanding the simplifications
made in framing the problem, to the extent the simu-
lations we describe behave like a real cumulus-topped
layer would in a similar situation, we believe that the
present study makes a number of fundamental contri-
butions. Foremost, it provides a framework for thinking
about more realistic problems, in so doing it clarifies
the link between the evolution of the density and en-
thalpy fields, the latter being the basis of many past
studies of trade–cumulus layers. Finally, it defines a
useful test problem, and a rich set of constraints that
can be used to evaluate and improve more general
models (or parameterizations) of shallow convection.
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