Chapter 3

Tandem duplications and genomic
correlations

In this chapter, we study the statistical features of sequences evolving by mutational
processes. Models that include mechanisms of local sequence randomization and seg-
mental tandem duplication are found to constitute a universality class of non-equilibrium
1D expansion-randomization systems with generic stationary long-range correlations in a
regime of growing sequence length. We analytically calculate the two-point correlation
function of the sequence composition and the distribution function of the composition
bias in sequences of finite length. The characteristic exponent of these quantities is de-
termined by the ratio of two effective rates. It is calculated explicitly for several specific
sequence evolution dynamics of the universality class. We also discuss the non-stationary
build-up and decay of correlations, as well as more complex evolutionary scenarios with
varying rates of the processes in time and space. At the end of this chapter, we address
the question whether the observed correlations in eukaryotic genomes can indeed result
from the mutational processes of our evolutionary model.

Our comparative genomics analysis of DNA insertions in the human lineage revealed
that tandem duplication is the predominant mechanisms to generate insertions of
short DNA segments in the genome during recent evolution. More than 90% of all
identified insertions of single nucleotides, for example, were found to be consistent
with tandem duplication events. This would only have been expected in approxi-
mately half of the cases under the assumption that inserted nucleotides were drawn
randomly from the four different bases. Moreover, a prevalence of tandem duplica-
tions among insertions of DNA segments was observed on all length scales investigated
in our analysis (1-100 bp), and the odds of observing a tandem duplication by chance
vanish rapidly with increasing segment length. Although the duplication process does
not seem to be perfect in a sense that newly inserted segments resemble exact copies
of juxtapositional sequence (especially for longer segments), almost all insertions still
show high sequence similarity to their direct vicinity.

The observed predominance of tandem duplication insertions substantially disagrees
with the characteristics of indels in conventional models of sequence evolution, where
DNA insertions are typically modeled as segments of independently drawn random
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Figure 3.1: The four elementary processes of local sequence evolution incorporated in
our dynamical model: (a) Single nucleotide mutations lead to an exchange between a GC
and an AT base pair and occur at rate u. Notice that in our binary model we do not need
to consider A—T and G—C mutations. (b) Segmental duplications insert a new copy of a
randomly chosen existing sequence segment of length ¢ next to it at rate d;. (c) Deletions
of existing sequence segments occur at rate 7, , respectively. (d) New segments composed
of randomly chosen letters are inserted at rate fyj.

nucleotides. In the light of our findings, it remains questionable whether this simpli-
fication is still applicable when aiming for a realistic description of genome evolution
and the resulting statistical properties of genomic sequences. In this chapter, we
want to address this question by an in-depth analysis of the effects of tandem dupli-
cation processes on elementary statistical features of genome sequences. Our analysis
will thereby shed light on the contributions of tandem duplications to a particularly
interesting class of statistical sequence characteristics in genomes related to spatial
long-range correlations and large fluctuations in genomic base composition. From a
more conceptual perspective, our findings will also serve us to establish a powerful
concept of statistical physics — universality classes — for the first time in the context
of evolutionary biology.

3.1 Dynamical model of sequence evolution

We want to study a “minimal” stochastic model of genome evolution that incorporates
the major local stochastic processes assumed to be acting on genomic DNA sequences
during evolution [58], including tandem duplications of sequence segments. The focus
of our analysis lies in the analytic calculation of general statistical properties of the
sequences evolving under the evolutionary model. In particular, we are interested in
magnitude and spatial structure of fluctuations in genomic base composition. Aiming
primarily at large-scale characteristics, we can effectively simplify our analysis by
making use of complementary strand symmetry, which has been shown to hold in
eukaryotic genomes for first and also higher-order symmetries if investigated length
scales are large enough [16]. Genome sequences § = (sy,...,sy) of variable length
N(t) can therefore be modeled as binary sequences with letters s, = %1, where
sk = +1 denotes a GC Watson-Crick pair and s, = —1 represents an AT pair.

Model definition The elementary evolutionary steps of our dynamical model are
single site mutations, deletions and tandem duplications of existing sequence segments
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3.1 Dynamical model of sequence evolution

of arbitrary lengths, and insertion of random segments (see Fig.|3.1). Formally, the
dynamics of the processes can be defined by

(«r,8,-) — (e, —8ee) mutation rate p

oo () ) = (e () (8)es ) duplication rates d; (3.1)
(o8 00) — (s (), ) insertion rates ;" '
(- s (8)ey ) — () deletion rates v, ,

where (s), denotes an existing sequence segment of length ¢ > 1, and (z), is a seg-
ment of length ¢ with uniformly distributed random letters z; = £1. Note that by
convention we do not allow insertion of random segments prior to the first sequence
element. Duplication and insertion events introduce a new sequence segment next
to an existing one and shift all subsequent letters ¢ positions to the right, thereby
increasing the sequence length by ¢. Conversely, deletions shorten the length by ¢.
We will restrict all processes to a maximum range .y, i-e., all rates dy, 7, and 7,
are zero for ¢ > (... Repeatedly running the processes over a time ¢ produces a sta-
tistical ensemble of sequences; the corresponding averages are denoted by (-)(¢). This
ensemble is characterized by the rates of the processes and by the initial sequence.

The statistical properties of sequences generated by our dynamical model have al-
ready been investigated for the special case of /., = 1, i. e. for a restricted set of
evolutionary processes only incorporating single site duplications, single site duplica-
tions and deletions, and insertions of single random nucleotides [IT1]. In this analysis,
it has analytically been shown that the restricted model generates long-range corre-
lations in the composition of letters along the sequences. We will recall some of the
major results of [IT1] later in this chapter, as they form an obvious special case of
our more general dynamics defined in .

At first glance, the vast number of parameters in our general segmental dynamics
might seem daunting in comparison to the simple single letter model of [TT1]. How-
ever, besides an obvious biological motivation arising from the fact that in molecular
evolution insertions and deletions are not restricted to single base pairs, a careful
treatment of the general model will also allow us to elucidate the emergence of uni-
versality in a broad class of one-dimensional dynamical systems, so-called expansion-
randomization systems [I14]. The concept of universality generally refers to the
observation that “macroscopic” properties of a large class of systems are essentially
independent of the “microscopic” dynamical details [I50]. In our case, individual rates
and characteristics of the local evolutionary processes constitute the microscopic de-
tails of the system. Macroscopic properties correspond to the statistical features of
the generated sequences on length scales much larger than £,,,.. It will turn out that
these macroscopic properties are determined by just two effective parameters, the
asymptotic growth rate A\ and the effective mutation rate pg, defined by

A = Gt + Vi — Y (3.2)
1
et = 11+ 5 Vet (3.3)
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Chapter 3 Tandem duplications and genomic correlations

Both are simple functions of the cumulative rates of the microscopic processes,

max max Lmax
Oeft = 26(5@, Ve = ZMZ, and 5 = Zﬁ’y[. (3.4)
=1 =1 =1

A numerical implementation of this dynamics is described at the end of Section
We use the simulations to verify analytic results of the following sections.

Statistical properties of interest For a systematic analysis of the statistical
features of sequences generated by our dynamical model we start from the most simple
statistical properties and then gradually advance the complexity of the measures
under investigation. In a field-theoretic framework, the simplest non-trivial quantity
of a one-dimensional system is its sequence length (N}, also called the system’s zero-
point function. Ascending one step on the ladder of complexity, the one-point function
of the system measures the composition bias (sy) at a single position & of the sequence.
Consequently, the two-point function measures the correlations in the composition of
two different sequence positions, often specified as a function of the distance between
the two sites along the sequence. In a natural manner, n-point functions with n > 2
are then defined as higher-order correlations between n different points along the
sequence. All of these quantities are in fact specified by distributions of measured
values in single sequence realizations over the full dynamical ensemble. Thus, for each
n-point function, there are also different levels of complexity depending on whether
we are interested in the distribution, or only in some of its elementary features, for
example its mean. For many cases, the latter is obviously far easier to obtain than
the full distribution.

We first shortly recall known results of the average sequence length in the next sec-
tion and will then present a detailed analysis of the average sequence composition
bias. In Section stationary solutions for the two-point function will be derived.
The full distribution function of the average composition bias in sequences of finite
length will be calculated in Section [3.4] In Section [3.5], we will investigate extensions
of the model to biased insertion rates and asymmetric mutation rates and discuss
the universality of our model. Technical details and numerical implementation of the
measurement of correlation functions and finite-size composition bias distribution are
described at the end of Section [3.5] A recapitulation of the non-stationary build-up
and decay of correlations in more complicated scenarios of dynamical process rates
will be presented in Section [3.6] The general four-letter model and the web service
CorGen are described in Section [3.7 We will conclude this chapter with the discus-
sion of a possible causal connection between the observed correlations in eukaryotic
genomes and the mutational processes of our evolutionary model in Section [3.8]

3.2 Sequence growth and average composition

Average sequence length  Running the processes defined in (3.1)) on sequences
will change their lengths N(¢). The dynamics of (N)(¢) averaged over an ensemble
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3.2 Sequence growth and average composition

of sequences is determined by the following differential equation

(N)(1) o
%W”: Y o =)+ D | (N)(0). (3.5)
=1 (=1

The finite size correction factor 0 = 1 — (¢ — 1)/(N)(¢) accounts for the fact that
in a sequence of length N(t) there are only N(t) — ¢ + 1 possibilities to duplicate or
delete a segment of length ¢. Using the initial condition N (¢ = 0) = Ny, the solution
of in the asymptotic regime (N)(t) > lpax is then given by

(N)(t) = Nyexp(\t) (3.6)

with the asymptotic growth rate A, as defined in Eq. (3.2). The distribution of
sequence lengths in the ensemble can be obtained by mapping our dynamical model
on a standard branching process. For a detailed discussion, see e. g. [53, [106].

Average composition bias  The average composition of a sequence element s,
is measured by the expectation value (si)(t), and in the following we will show that
any initial bias decays due to mutations and random insertions. In our binary model,
(sk)(t) can be written as the difference

(s)(t) = B (1) = B (). (3.7)

P (t) and P, (t) denote the probabilities of finding s, = +1 or s, = —1 at time ¢.
The Master equations for P (t) of the first sequence site s; are

0 o
apli(t) = u[PF = P+ ) v [P5, - P (3.8)
(=1

The first term on the right hand side specifies the rate of change of P due to mutation
of the first site. The second term results from deletions of segments (sy,...,s),
which will cause s;,, to become the new first site of the sequence. Omitting deletion
(7, = 0) and starting with a single site §(t = 0) = (+1), we obtain

(s1)(t) = exp(—2put). (3.9)
If one additionally allows deletions, any initial bias of s; will decay even faster.

Sequence sites s at positions k£ > 1 are also affected by duplications and insertions,
and the Master equations for the probabilities P;"(¢) take the form

0 Qma _
GO = BIEE - PET Y min(e - 1057 (12 )
k—2 k—1

+ S k—1-1)~ [PE, - PE+S (k1) 6 [PE, - P

=1 1

~
~
Il

~
3]

+ ) kv [PE - B (3.10)
=1

®

~
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Figure 3.2: lllustration of the different mechanisms contributing to 8P,f(t)/8t.

The different mechanisms contributing to P (t)/0t are illustrated in Fig. [3.2] Any
bias at site s is again diminished due to single-site mutations, as specified by the
first term on the r.h.s. of Eq. , but also by insertions of random segments
(i, . .., Tiye—1) of length £ at positions i = k— €+ 1,..., k, which effectively random-
ize sj (second term). In addition, there is a “shift” of composition bias from pre-
ceding sequence positions s;_, due to insertions of random segments (z;, ..., Ty, 1)
of length ¢ at positions i = 2,...,k — ¢ (third term), or duplications of existing se-
quence segments (8;, ..., S;1¢—1) withi = 1,... k—/ (fourth term). Transport of bias
from sites sgi¢ to sg, on the other hand, occurs due to deletion of existing segments
(Siy-w-ySipe—1) With i =1,... &k (last term).

In order to reveal the large-distance asymptotics of this dynamics for k > /., and in
large sequences with N (t) > l1,.x, we carry out a continuum limit of Eq. , ie.,
we replace the discrete index k by a continuous variable and write (s(k,t)) = (sg)(¢) .
Using Eq. we obtain a differential equation describing the asymptotic dynamics,

%@(k,t» = —2pe(s(k, 1)) — Ak%(s(k,t)), (3.11)

with the asymptotic growth rate A and the effective mutation rate p.g defined in
Eq. and Eq. (3.3]). The transport of composition bias due to the net exponential
expansion of the sequences thereby gets incorporated in a dilatation operator of the
functional form k0d/0k; all finite size effects vanish in this regime. Eq. has a
solution of the form

(s(k,t)) = e et S (ke ). (3.12)
S(z) is a scaling function. This solution describes two different regimes of the ex-

pectation value, depending on the boundary condition chosen. (a) With fixed initial
condition s;(t = 0) = 1, we have for any fixed k

(s(k,t)) o< exp(—2pest), (3.13)

as shown in Fig. [3.3| (a) for different values of k£ and a given set of process rates.
Thus, (s(k,t)) = 0 for all k£ in the limit ¢ — oco. (b) With fixed boundary condition
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Figure 3.3: Average composition bias (sy)(t): (a) Decay of (s)(t) in time for k =
1,2,5,10. Rates of the processes are: u = 1.0,6; = 4.0,75 02 = 0.5. The
red line is the analytic upper bound on the rate of convergence (b) Statlonary (sk)
with fixed (s1) = +1 at different rates of the elementary processes: (1) pu = 1.0,03 =
15.0,v) = 1.0,v; = 1.0; (2) p = 1.0,8; = 16.0,75 = 1.0,7; = 2.0; (3) p = 10,62 =
6.0,75 = 2.0,7, = 0.5; (4) u = 1.0,6; = 4.0,75 = 1.0,7, = 0.5. Red lines denote
the corresponding analytic asymptotics (3.14). All ensemble averages were obtained by
averaging over 10 simulated sequences.

(s1) = +1 for all ¢ (i.e., suppressing mutations of the first element), we obtain a
power-law decay of the composition bias along the sequence,

2
(s(k)) oc k=% with x = lj\eﬁn. (3.14)

Numerical verification of the asymptotics (3.14]) for this type of dynamics is presented
in Fig. (b), where we show the measured (s;) in ensembles of sequences with
different sets of rates using the simulation algorithm described in Section [3.5]

3.3 Stationary two-point correlations

Master equation  The dynamics of the two-point composition correlation function
C(k,r,t) = (skSk+r)(t) between two sequence positions s and sgi, can be derived
by writing it as

C(k,r,t) = Poy(k,r,t) — Pop(k,7,t). (3.15)
Pegjop(k,7,t) denote the joint probabilities of simultaneously finding two equal or
opposite symbols, respectively, at sequence positions £ and k£ + r and time ¢. For

simplicity, we start with a restricted sequence evolution model where all processes
are limited to single sequence sites ({ax = 1). The Master equation for Pu,(k,7,1t)
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Chapter 3 Tandem duplications and genomic correlations

in the single-site model takes the form

%Peq(km t) = 2u[FPop(k,r) = Peg(k,7)] (3.16a)
+ 1/29F [Pop(k, 1) — Peq(k,7)] (3.16b)
+ 129 [Poyp(k = 1,7) = Peg(k = 1,7)] (3.16¢)
+ 1/29] [Peg(k — 1,7) = Peg(k, 7)) (3.16d)
+ [(r—1)yf +761] ] eq(k r—1) — Poy(k,7)] (3.16e)
+ My [Pea(k,m+ 1) = Peg(k,7)] (3.16¢)
+ (k=209 + (k— 1)61] [Peg(k — 1,7) — Peg(k,7)]  (3.16g)
+ kyp [Peg(k+1,71) = Peg(k, 7)]. (3.16h)

The different mechanisms contributing to 0P.,(k,r,t)/0t are illustrated in Fig.
and will now be discussed in order. The term (3.16al) describes the change in
Peo(k,r,t) due to mutation of any of the two sites (therefore two possibilities) in
a pair of equal or opposite symbols at positions k& and k + r. Term (3.16b)) treats
the insertion of a random site at position k 4+ r, which in half of the cases will switch
a pair of equal symbols s, = si4, to opposing symbols s, = —siy,, whereas two
opposing symbols might be switched to equal symbols accordingly. A similar contri-
bution arises from a random insertion at position k. However, such an event can be
regarded as duplication of s;_; with a successional mutation of the newly introduced
element s; in half of the cases. If such a mutation occurs, the event is equivalent to
term ((3.16b)) with the difference that contributions of this processes to 0Py (k, 7, t)/0t
do now depend on the joint probabilities Peq/op(k — 1,7,1) (3.16¢). In the other half
of the cases, where the newly inserted random element s;, is equal to si_1, the process
causes a shift of joint probability from Py (k—1,7,t) to Peq(k,7,t) (3.16d). Transport
of joint probability at distance r — 1 to such at distance r takes place if a random
site is inserted at sequence positions k+1,...,k+r — 1, or if any site s, ..., Sgir_1
is duplicated . On the other hand, deletion of any siy1,..., Sk, produces a
transport of joint probability from distance r + 1 to r . Despite this “expan-
sion” and “contraction” transport of joint probability from distances r + 1 or r — 1
to r at fixed k, there is also a “horizontal” shift along the sequence: insertion of
a random site at positions 2,...,k — 1 or duplication of any site si,...,s,_1 shifts
joint probability Pe (k — 1,7, t) to Pey(k,r, 1) . Deletion of an s1, ..., s; shifts
Peoo(k+1,r,t) to Poy(k,r,t) (3.16h).

Notice that in contrast to [I11], the Master equation stated above is exact and does
not yet make use of specific sequence-inherent symmetries, e. g. translational invari-
ance of P.y/op(k,7,t) along the sequence. Thus, in its general form it also holds for
position-dependent rates if products of the form rates x distances in —
are substituted by integrals over the corresponding intervals.

Because we are interested in a stationary solution of this dynamics, we have to con-
sider the limit ¢ — oo. It has already been shown in Section [3.2] that asymptotically
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Figure 3.4: lllustration of the different mechanisms contributing to the dynamics of

Pey(k,r,t). Effectively mutational events are those that randomize either sy, or Sii,.
“Expansion” or “contraction” transport of joint probability from Poq(k,r £ 1) to Peq(k,7)
occurs due to duplication, insertion, or deletion events at sequence positions between sy,
and spy,. “Horizontal” shift from Po(k & 1,7) to Peq(k, ) takes place if a duplication,
insertion, or deletion occurs at sequence positions prior to s.

(sg)(t) — 0 for large t at all k. Furthermore, all processes are acting homogeneously
along the sequence, and therefore we expect the joint probabilities to be also inde-
pendent of £ in the long-time limit, i.e., Poq/op(k,7) = Peq/op(k £ 1,7) (verification is
given by our numerical simulations). Eq. then simplifies to

— Poq(r)]
+ [(r = 1)y 4 181] [Pag(r — 1) — Pog(7)] (3.17)
+ [Peq(r + 1) — P (T)]

O Palrit) = (2ut47) [Poplr)

By exchanglng P., and P,,, we can state an equivalent equation for P,,(r,t). Us-
ing (B.17)), we obtaln the dynamics of the correlation function C(r,t) for large ¢

Tt = —(u+ 297 C0)
+ [(r=1)vf +76,] [C(r —1) = C(r)] (3.18)
b [0+ 1)~ O]

This equation for the dynamics of C(r,t) in the single-letter model ({0 = 1) is
valid for all distances r in the limit ¢ — oco. A corresponding dynamics can, in
principle, be obtained analogously for the general model with /.., > 1, although
it will be more complicated due to finite size effects coming into play for r < f.x.
However, for large distances r > (.., these finite size effects can be neglected, and
the asymptotic dynamics of C'(r, t) in the general segmental model is then given by

9
EC(T t) = _4Meff O(T)
Lmax
£ Y = 9+ = L DB [Cr - ) - O] (3.09)
S g (O + ) O]
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Chapter 3 Tandem duplications and genomic correlations

with the effective mutation rate peg, as defined in Eq. (3.3). Note that the dynam-
ics ([3.18]) of the single-letter model is a special case of the general dynamics (3.19)
with e = 1.

Stationary solutions In the following, we will derive analytic solutions of the
stationary correlations C'(r) in our model. We start by shortly recapitulating the
analytic results derived in [IT1I] for the instructive special case of only single-site
duplications and mutations (u,d; > 0, all other rates are zero). In this case, the
solution of the dynamics in the stationary state, dC(r,t)/0t = 0, obeys the
recursion equation

r 4

C(r) = g C(r—1) with a= 5 (3.20)

Using C'(0) = 1, the recursion can easily be solved, yielding

ot =11 - Z - (3.21)

Introducing the gamma function and the beta function, defined by

Ay L)l (y)
['(z :/ e 't de, B(z,y) = ——%, 3.22
@ = | (@) = T (3.22)
C(r) can finally be rewritten in the form
r HI'(1
oy~ DI+ p 0. (3.23)

I'(r+1+a)

To investigate the asymptotic regime, we evaluate the asymptotic behavior of B(r, «)
for r > 1 which, in general, is given by

B(r,a) « T(a) r— {1 - O‘(O‘Q—;l) (1 +0 (%))] . (3.24)

Applying this asymptotics to Eq. (3.23)) we obtain
C(r) occr™. (3.25)

Hence, we have proven the existence of long-range correlations in the simplified single-
site duplication-mutation model. The exponent « is determined by a simple balance
between the randomization processes (mutations) and the expansion processes (du-
plications) which create correlations between neighboring sites and transport these
correlations to larger distances due to an overall expansion of the system.

We have performed extensive Monte Carlo simulations of this model using the al-
gorithm presented at the end of Section . Fig. 3.5 (a) shows the numerical C(r)
for the duplication-mutation dynamics with various rates of §; and p, which is in
excellent agreement with the analytic expression ([3.23]).
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Figure 3.5: Single-site duplication-mutation model: (a) Stationary composition correla-
tions C'(r) at different rates of the elementary processes; numerical results (circles) and the
analytic form ([3.23)) (lines) for u = 1.0, &; varying. C(r) is averaged along the sequence.
(b) Power spectra of simulated sequences for ;n = 1.0 and d; varying: numerical results (cir-
cles) with the analytically predicted P(f) oc f=7 in those cases where §; > 5 (lines). The
dynamics of the sequences was simulated until they reached a length of N = 227 ~ 10%.
All data sets were obtained by averaging over 100 runs. Plots taken from [106].

For reasons of comparability with former studies [90, O1], we also calculated power
spectra of the simulated sequences. In the stationary state, the power spectrum
P(f) is the Fourier transform of the correlation function C(r). In our case, the
large distance asymptotics of the correlation function is given by C(r) o< r~¢, and
the power spectrum will therefore also decay algebraically, i.e., P(f) oc f=° with
exponent 3 = 1 — « [I51]. The resulting data is shown in Fig. (b). Due to the
fact that C(r) oc ¥~ does only hold in the limit » > 1, the analytically estimated
scaling P(f) oc f=” is present at lower frequencies, but crosses over to a different
behavior at higher ones. At values a > 1, C'(r) decays below the fluctuation threshold
AC = 1/4/N(t) [I73] before the scaling gets established, obviating the appearance
of positive exponents 3. In those cases, we measure a flat power spectrum in the
low frequency part as one expects for random sequences. The finite size deviations of
C(r) at very large r show up in the low frequency part of the power spectra, too.

Obviously one cannot expect the stationary C(r) of the general model to be described
by a similar simple expression as has been obtained for the single-site duplication-
mutation dynamics in . Consider, for example, a segmental duplication process,
copying segments of length ¢; = 50. In case this is the only duplication process
present, it will introduce a peak in C(r) at a distance corresponding to its segment
length r» = ¢;. If there is an additional duplication processes present, e.g. one with
Uy = 1, the peak in C(r) established by the first duplication process will be shifted
to larger distances by the second process. The functional form of C(r) will thus
show complex behavior on short scales reflecting the “microscopic” details of the
elementary processes (see Fig . But what about the large-distance asymptotics
of C(r) for r > fl.x? In this regime, the dynamics of C(r,t) is determined by
Eq. (3.19). Carrying out a continuum limit, the difference equation can again
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Figure 3.6: Stationary C(r) for different rates of the elementary processes in the general
model with various segmental processes present: numerical results (circles) coincide accu-
rately with the analytic asymptotics (3.27)) (lines) in the large distance regime. Mutations
occurred at rate ;4 = 1.0. Rates not specified in the plot are zero.

be written as a simple differential equation,

0 0
EO(T, t) = —4pegC(r,t) — )\TEC(T, t). (3.26)

The stationary solution of Eq. (3.26)) immediately yields the power-law decay

4,ueff

C(r)cr™ with a=2y= 3

(3.27)
Hence, on macroscopic distances r > £,,., our model universally produces long-range
correlations in the sequences, irrespectively of the microscopic details of the individ-
ual processes. The decay exponent oo depends on only two effective parameters, which
are simple functions of the rates of the processes. Using these analytic results we can
furthermore qualitatively classify the four different types of processes according to
whether they increase «, or decrease it. Duplications are the only processes with
Oa /04, < 0 because they increase the growth rate A, but have no effectively muta-
tional influence on large scales. All other processes, in contrast, will lead to larger
values of a and thus to faster decaying correlations by increasing their rates.

To verify these analytic results, we show the measured correlation functions C'(r) of
simulated sequences with all sorts of different processes present in Fig. 3.6l Whereas
on short scales the correlations reveal the microscopic details of the particular pro-
cesses, in the asymptotic regime long-range correlations are ubiquitous. Their func-
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3.4 Finite-size distribution of the composition bias

tional form is accurately described by our analytics (3.27) with the effective rates

defined in Eq. (3.2) and Eq. (3.3).

3.4 Finite-size distribution of the composition bias

Up to this point, we have discussed correlation functions, which were defined as
averages over an ensemble of sequences generated by the same stochastic dynamics.
What can we say about the data of a single sequence, i.e., a single realization of the
stochastic process? To address this question, we now consider the distribution of the

composition bias evaluated in finite sequence intervals k, ...,k + L — 1 of length L,
| FELl

Generalizing Eq. (3.11)) and (3.26)), we obtain the following differential equation for
the distribution function P(m, L,t),

9 pm L) = — AL(%P(m, L.t (3.29)

ot
2:ueff 82
L 0Om?

0
+ 2,Lteffa_m[mp(m, Lat)] + P(m7L7t)7

which is valid again in a continuum approximation for L > 1. The three terms on the
r.h.s. describe, in order, the transport of the composition bias due to the exponential
dilatation of the sequence, its dissipative decay, and its stochastic fluctuations. Notice
that the last two terms are caused by the same basic mutation process and are
therefore both proportional to fieg.

We limit ourselves here to evaluating the equilibrium distribution P(m, L) asymptot-
ically for large values of L. The solution of Eq. (3.29) defines two different parameter
regimes with transition point x = 1/2:

1. Strong-correlation regime (y < 1/2): The large-L asymptotics is deter-
mined by balancing dilatation and deterministic decay, i.e., the first two terms
on the r.h.s. of Eq. (3.29)). For this regime, we obtain

P(m,L) = L¥P,(z) with x=mL¥X, (3.30)

where P, (z) is a scaling function (whose form is determined by the stochastic
dynamics on smaller scales). We can verify the consistency of the solution (3.30))
by checking that the third term on the r.h.s. of gives a contribution
which is subleading by a factor L?X~! for large L. This result is also verified by
our numerics, as shown in Fig. (a,b), where we present measured distribu-
tions P(m, L) and the collapse into one scaling function P, (z). The scaling of
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Figure 3.7: Numerically measured distribution functions P(m, L) and the corresponding
scaling functions P(z) for L = 10%,10%,10%. (a,b) Regime 1. with x = 0.1 and P(z) =
L=%1P(L=%12 L). (c,d) Regime 2. with y = 1.0 and the Gaussian scaling function
P(x) = L~Y2P(L~'/?z,L). The deviations for I = 10% for both regimes are due to
the fact that the analytic asymptotics is only valid for large L. The ensemble averages
were obtained by averaging over 107 sequence realizations for each parameter setting with
random initial conditions, resulting in symmetric distributions (only positive values shown).

P(m, L) also determines the scaling of its moments (m*)(L) = [ m*P(m, L)dm,

(m")(L) oc L7FX, (3.31)

This is consistent with the scaling of the one-point and two-point functions,
obtained in Eq. (3.14) and (3.27)).

2. Weak-correlation regime (x > 1/2): Eq. (3.29) has an exact solution of
Gaussian form,

B L ox _(m—mOL*X)2L
Plm. L) = \ 27¢(x) p[ 2¢(x) (3:32)

with £(x) = x/(x — 1/2). This solution has the expectation value
(m)(L) = moL™X (3.33)
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Figure 3.8: A single sequence of length N = 400 generated by the expansion-
randomization process from an initial letter +1. (a) Strong-correlation regime (1 = 0.5,
01 = 10.0, i.e. x = 0.1 < 1/2): The sequence retains a net composition bias towards +1 in
its entire length, i.e., the initial composition bias is detectable. Minority islands of —1 are
found on all scales. (b) Weak-correlation regime (= 0.5, ;1 = 1.0, i.e. x = 1.0 > 1/2):
The sequence consists of strongly correlated islands of length & ~ 5 but looks random on
larger scales. The initial composition bias is not detectable.

(with the coefficient m( determined by the initial condition) and the variance

m?) (1) — (m2(2) = £, (3.34)

It is thus of similar form as the fluctuation-dissipation equilibrium exp[—m?/2L]
for A = 0, obtained from the last two terms on the r.h.s. of (3.29). The trans-
port term generates an additional length scale £ because individual sites are
not completely independent of each other but are strongly correlated on scales
smaller than £ due to duplications. This reduces the number of effectively inde-
pendent fluctuating sequence segments to L/€. Numerical measurements of the
distribution P(m, L) in this regime for random initial conditions (my = 0) and
the corresponding scaling function P, (z) o< exp[—22/2¢(x)] with 2 = mLY/?
are shown in Fig|3.7] (c,d).

3. Transition point (x = 1/2): The solution is still of Gaussian form,

L (m — oL )L (3.35)
———exp |— . .
2mlog L P 2log L

P(m,L) =

The existence of two different scaling regimes has direct consequences for the de-
tectability of correlations from data of a single sequence on large scales. In the

S7



Chapter 3 Tandem duplications and genomic correlations

strong-correlation regime (x < 1/2), the composition bias on arbitrary large scales
L is determined primarily by the ancestral bias, while the mutational fluctuations
can be neglected asymptotically. In the weak-correlation regime, the ancestral bias
can only be detected on scales L < L*. The mutational noise is dominant on larger
scales. The scale L* can be estimated by equating the average (m)(L*) with the root

mean square deviation [((m — (m))?)(L*)]'/? from Eq. ( and -

The difference between the strong- and weak-correlation regime is illustrated in
Fig. 3.8 where we show two single sequences generated from an ancestor letter +1.
In the strong-correlation regime (a), the entire sequence has a detectable bias to-
wards +1, with islands of —1 tracing back to their ancestors generated by mutation
events. In the weak-correlation regime (b), the sequence is seen to consist of strongly
correlated segments of length ¢ &~ 5, but it looks random on larger scales.

We stress again that the existence of two different scaling regimes with a transition
at x = 1/2 is a feature of the full distribution P(m, L) in the asymptotic regime
L > 1. Expectation values such as the composition bias and the correlation
function have a universal form in both regimes and no transition at y = 1/2.

3.5 Symmetry breaking and universality

Biased insertions In the following, we will investigate generalizations of the
dynamical model and thereby demonstrate the universality of our approach. For
simplicity, we again start with a single-letter model (£, = 1). In contrast to the
original model of Section [3.1] where random insertions were defined as insertions
of random letters x = +1 at position k& + 1 independent of the preceding sequence
element s, we now want to consider biased insertions. This extension is biologically
well motivated. There is ample evidence by now that the rates of segmental insertions
into the genome, e.g. those of interspersed repeats, are biased by the local GC-content
of the genomic region [68]. Formally, the biased insertion process in our model is
defined by

(oo y8,00)  — (- syls] ) insertion rate 7, (3.36)

where y[s] denotes a randomly chosen letters y[s] = 1 with an average bias depend-
ing on the value of the preceding sequence element s,

(y[s]) = vs, vel-1,1]. (3.37)

The degree of dependence can be tuned by a parameter v. In fact, the random
insertions of the original model are the special case of this generalized process using
v =0, v =1 corresponds to duplications.

The contributions of this process to the dynamics of the joint-probabilities Py /op (7, t)
can still be calculated exactly. Terms ([3.16a]) and (3.16€])-(3.16h) will not be affected
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3.5 Symmetry breaking and universality

because the biased insertion process will neither change the effect of single-site mu-
tations, nor the “shift” and “transport” of joint-probability. However, an additional
multiplicative factor (1 — v) has to be incorporated in terms and (3.164).
Effects on ([3.16d)) are described by an additional factor (1 + v). Concerning the
Master equation for C(r) in the continuum limit (3.26]), this biased insertion process
does therefore not affect the asymptotic growth rate A. The effective mutation rate
though, is now given by

1
per = pu+ (1= v, (3.38)
We want to mention that the biased insertion of single letters can generically be
extended to the biased insertion of segments (y[s]), at a rate n, with an average bias
of their elements (y;[s]) = v¢s. In this case, one might actually have v, = v({), and
asymptotically for the effective mutation rate we obtain

emax
1
Heff = U+ 5 ;(1 — Vg)T]g. (339)

Symmetry breaking  The model considered so far was symmetric concerning
Sgp — —Sg. It is known that this symmetry is not granted for genomic evolution. Dis-
tinct mutation rates of different nucleotides, for example, lead to unequal frequencies
of the four different nucleotides along genomic DNA [12]. In the following, we will
show that the restriction to symmetric processes is not crucial for the emergence of
long-range correlations and the universal scaling of our model. A simple scenario
breaking the model’s Zy symmetry is the choice of asymmetric mutation rates,

(o, 41,0) — (e, =1, rate 1" (3.40)
. 7_|_17...) rate p~, (341)

—~
|
\.)—‘
-
!

with p* # p~. In this scenario, the Master equations of the probabilities P (t) are

a _ gmax )
S = = PEFptPE+ ) min(k—1,0) 5 (1/2 - BY)
/=1
émax
+0 ( > PE,- P,;'E) : (3.42)
Ez_gmax

and we have already shown in Section that P,;t is asymptotically independent of
k if all sequence sites s are allowed to mutate. Thus, for the asymptotic stationary
average composition bias (s;) = Pt — P~ in the asymmetric model we obtain

(50) p =t

k) — = +M+ —{—ny;cf (343)
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Chapter 3 Tandem duplications and genomic correlations

Concerning the dynamics of the joint probabilities Peq/op(7,t), the introduction of
asymmetric mutation rates will only change the mutational term. The contribu-
tions of duplications, random insertions, and deletions will not be affected. In the
asymmetric model, the Master equations for Pq/op(r,t) are now given by

O Pl ) = (" 417 Poy(r) — 2" PFH 1) = 20 P () 4 Qualrt) (344
O Pl t) = —(* + p) Poplr) + 20" PHH(r) + 207 P~(r) + Qo). (3.45)

ot

where P*+/=(r) are the joint probabilities of simultaneously finding s; = sg4r = +1

and s; = sp, = —1, respectively. Qeq(r,t) denotes the terms (3.16b))-(3.16h) with
the k-dependence of Poq/op(r,t) already dropped. Qop(r,t) is obtained by exchanging
P., and P,,. The dynamics of C(r,t) in the asymmetric model is therefore

%C(T t) = =2(p" + 1~ +98) [C(r) + (s1)*] + [Qeq(r,8) — Qop(r, 1)), (3.46)

where we used (3.43) and (sx) = PT—P~ = PTH(r)+PT(r)— P " (r)— P~ (r) with
Pt~ (r) = P~ (r). Defining the effective mutation rate of the asymmetric model,

. 1 _
fler = = (1" 4+ 17 4+ 7). (3.47)

2

the stationary solution of this dynamics in the continuum limit is now given by

4,aef'f

C(r) ocr™® + (s)? with o =2y = ;) (3.48)
The magnitude of the segmental composition bias (3.28)) scales as
(Im(L)|) oc L™ + (sg). (3.49)

Hence, breaking the Zy symmetry by introducing asymmetric mutation rates will
not change the long-range correlations and the general scaling of the model. It is
obvious from Eq. and that the scaling still holds for the connected
correlation function C¢(r) = (spspy,) — (sx)? and the shifted segmental composition

bias (1/L| S5 s l) — (s1).

Universality = The structure of Eq. reveals the basic mechanisms generat-
ing long-range correlations in a very general class of expansion-randomization systems
that share three fundamental characteristics of their dynamics. The first feature is an
overall exponential expansion of the system transporting correlations from shorter to
larger sequence distances (combined effects of duplications, insertions, and deletions
in our model). Mathematically this transport is described by a dilatation operator
rd/0r (second term on the r.h.s. of (3.26)). On the other hand, all correlations are
counteracted by local processes randomizing the sequence (mutations + random in-
sertions) and therefore trying to diminish C(r) (first term of (3.26))). The competition
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3.5 Symmetry breaking and universality

between expansion and randomization results in an algebraically decaying C(r) oc 7~

in the stationary state with a determined by a simple ratio of effective growth rate
to effective mutation rate. Calculation of these two fundamental parameters for any
set of processes constituting such systems determines the large-distance asymptotics
of the correlations in the generated sequences. However, C'(r) = 0 for all r, is also
a stationary solution of Eq. . For long-range correlations to be established, a
third necessary feature of the dynamics is hence the presence of a mechanism contin-
uously producing correlations on short scales. They serve as an ongoing reservoir for
the transport of correlations to larger sequence distances and ensure the existence of
a non-zero value C'(rg) > 0 for a specific ry > 1 (in our model, these initial correla-
tions on short-scales are produced by duplications). As an intuitive example for the
necessity of this third condition, consider an expansion-randomization system with
mutations and insertions of single random letters, but no duplications. This system
features exponential expansion, as well as local randomization. But the insertion pro-
cess is not capable of producing C(1) > 0, and therefore no long-range correlations
can be established in the generated sequences.

As expected from standard scaling theory, the decay of the two-point function has
twice the exponent as the corresponding decay of the one-point function. The value x
can be interpreted as the scaling dimension of the variable s; in this universality class.
There is a one-parameter family of decay exponents as, for example, in the Gaussian
model in two dimensions. This universal behavior is unaffected by the breakdown
of the Zy symmetry, which manifests itself only in the non-universal constants in

Eq. (F00) and (09,

Numerical implementation  Numerical simulation of the stochastic sequence
dynamics (3.1)) was implemented using a Monte Carlo procedure. During each discrete
time step

At=e-[(u+Y [+ +7 DN@] (3.50)

with a tunable parameter ¢ < 1, we choose a random site and randomly let a process
act on it. The probability p, of a process a being executed on the drawn site is

Do = rate(a) - At. (3.51)
The overall probability of executing any process on the drawn site therefore depends
on the parameter €. Choosing € = 1 assures exactly one process being executed. For

small € < 1, on he other hand, no process will be chosen to act on the drawn sites in
most of the cases. We use ¢ = 0.1 for our numerical simulations.

For a single realization of the stochastic dynamics, the average segmental composition
bias and the correlation function are well approximated by sequence averages,
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1 V=L Lo
L ~ — ’ . 2
(1) ~ —= 3 7> . (352)
k=1 k'=k
1 N-—r
Clr) = x— 2 SkSkir (3.53)

if values of » and L are sufficiently small to allow efficient averaging. Averages
over 100 sequence realizations reduce the noise further and produce very accurate
measurements of (|m/|)(L) and C(r).

If the dynamics obeys Z; symmetry, we can directly infer the decay exponent a from
these measurements, according to Eq. and (3.25). However, if the Z, symmetry
is violated, these power laws have to be disentangled from the additional constants
(si) respectively (sp)?, see Eq. and (3.48). If the microscopic processes are
known, these non-universal constants can be calculated. A numerical problem arises
though in the analysis of genomic DNA sequences, where the Z, symmetry is broken
by an unknown amount. In that case, we can self-consistently fit the data to the
form (|m|)(L) = aL X+ c and C(r) = br—2X + ¢*. Hence, the link between the finite-
size scaling of (|m|)(L) and the scaling of the correlation function C(r) dictated
by universality is of practical importance for data analysis. In particular, it is not
justified in general to approximate the constant ¢ by 1/N 25:1 si for sequences of
finite length N in the strong correlation regime y < 1/2, as it is often done in the
literature. Furthermore, we can check consistency with the exponent g =1 — 2y of
the GC power spectrum. Power spectra can easily be obtained using the Fast Fourier
Transform algorithm [133].

3.6 Dynamical correlations

Up to now, results for the correlations C'(r) in our model have only been obtained for
the stationary state reached in the limit ¢ — oo. In this section, we want to focus ex-
plicitly on the dynamical behavior of C'(r,t) if process rates in our sequence evolution
model are time-dependent. All results we are going to present in this section have
already been established in [106], but a thorough understanding of the mechanisms
of correlation build-up in growing sequences and decay of previously established cor-
relations in sequences of constant length due to mutations will turn out to be crucial
in Section for investigating a possible connection between the theoretical results
derived so far, and long-range correlations in real genomic sequences.

Correlation build-up  When starting our sequence evolution model ({3.1)) with an
initial sequence S(t = 0) = (x), where x = £1 denotes a uniformly distributed ran-
dom letter, correlations are found to be present right from the beginning. Fig.[3.9 (a)
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Figure 3.9: Time-dependent correlations C'(r,t). (a) Build-up of long-range correlations by
stationary growth. Measured C(r,t) at various intermediate lengths N () = 102, 10%, 106
(symbols) together with the stationary form for p = 1.0, 01 = 8.0 (line). (b)
Correlation build-up from a random sequence of length Ny = 10*. At t = 0 the processes
started acting on the sequence with rates y = 1.0, §; = 10.0. C(r,t) (symbols) was
measured in simulated sequences after various times ¢ (averages over 100 realizations).
Black crosses denote the corresponding analytic cutoff sizes 7*(t) = exp(At). Correlations
have been established in the sequences according to their analytic stationary form (red line)
in the regime r < r*(t), whereas they vanish for r > r*(¢).

gives examples for C'(r) measured along short single sequence realizations of length
N(t) =102, 10*, and 10°.

However, correlations cannot be present on all scales right away if we use a sequence
S(t =0) = (s1,...,8n,) with length Ny > 1 as initial condition, whose letters are
randomly chosen (and thus uncorrelated). All the processes of our model are local
processes. A single step can introduce correlations only up to a microscopic length-
scale yax. There will be a cutoff-length r*(¢) up to which correlations can have been
established at time ¢t > 0. It is determined by the average distance, two copies of a
duplication event at t = 0 are separated from each other along the sequence at time t,

r*(t) = exp (). (3.54)

Fig 3.9 (b) shows that 7*(¢) marks the range where C(r) will start to deviate signifi-
cantly from its stationary form.

Distinct dynamical regimes and correlation decay  There is ample evidence
that the rates of local evolutionary processes are not constant in time [12]. We
mimic this non-stationarity of the individual process rates by the succession of several
distinct dynamical phases. For each individual phase n, the rates of the elementary
processes are constant during the time interval ¢,,_; < t < t,, and result in specific

values of A(™ and ,u,(s?f) for that particular phase. Between different phases, however,
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the complete set of rates may change,

phase 1: (M, 6V ..)  for to<t <t

phase 2: (u@, 5%2), o) for t1 <t <ty

; : ; (3.55)
phase n:  (u™, 6™ ) for .y <t <ty

Using the findings derived above, we can generalize our dynamics with respect to
varying rates during sequence evolution. We start with the following simple two-
stage scenario: sequence growth with rate A > 0 for 0 < ¢ < t;, followed by a
second phase with A® = 0 and therefore (N)(t) = N for ¢ > t;. It is obvious
from Eq. that stationary long-range correlations only emerge as long as the
sequence grows, i.e. for A > 0. The time-dependent solution of Eq. (3.26)) for the
asymptotics of C(r) during the second phase (¢ > t;) then takes the form

Clr,t) = Or,ty) e Wail A o =il A0 il A (3.56)

with At =t —t;. The long-range tails of the correlations established during the first
phase are preserved in the second phase, but their amplitude decays exponentially

with a characteristic time scale 7 = (4u£2))_1.

In the short range part, correlations may still be present depending on the particular

set of process rates chosen to assure A? = 0. If, for example, all rates 5§2), 7;(2),

Yo @) are zero in the second phase, the only process acting will be mutation which
exponentially destroys correlations uniformly along the sequence, and thus the am-
plitude of C(r) will decay according to Eq. for all lengths r. The situation
becomes more complex if A?) = 0 is accomplished in the presence of duplications by
a compensatory increase of the deletion rate. In this case, the duplication process
will keep correlations present at short lengths because there is always a finite prob-
ability that a site sy recently originated by a duplication of s;_; (which again might
be a duplication of s;_5, and so on.) and was not yet affected by a mutation event.
Numerical results for this type of two-phase dynamics are shown in Fig. [3.10 (a),
verifying the exponential decay of the long-range tail, predicted by Eq. (3.56]).

In a general evolutionary scenario, with several distinct dynamical phases and arbi-
trary values of A\(® and ui?f) for each particular phase, the functional characteristics
of the correlations in the generated sequences will be shaped by a combination of
correlation build-up and decay, according to the mechanisms which have been re-
vealed above. During phase n with A > 0, correlations will be established with
a = 4,ugff) /A™ . They will approximately range over a length scale r = 1, ..., Tmax
With 7max = exp(A™AL,). The correlations already present from the previous phases
will be transported to larger sequence distances. If they ranged across an interval
r=1,...,N(t,—1) at the end of phase n — 1, they will be shifted to the interval
r=N(t,_1),...,N(t,) during phase n. The long-range tails, however, will still obey
the same exponent corresponding to the effective rates of the original growth phase

64



3.6 Dynamical correlations

]_OO T L L T T L ]_OO\" T T T T T T T
— o 4uAt=0.0 N
o 4pAt=1.0 1 10 -
10t . 4uAt=2.0| i
« 4pA=4.0 102 .
. 4uAt=80 | i
2 -3

correlation C(r)
5
correlation C(r)
'_\
(@]

regime 1:

10 i 5 2.8
. 10°F 5,"=100, =10 - : gg
0%0 ogoz 5 o $ 0%0
-4 (a) L. o? o o, C1%o 2 fery o -6-(.b) L L L L |oo. A b
10, o 1 2 3 4 5 5 10, o 1 2 3 2 5 5 7 3
10 10 10 10 10 10 10 100 100 100 100 100 100 100 10 10
length r length r

Figure 3.10: (a) Decay of correlations during sequence evolution at stationary length
No = 10%. Measured C(r,t) at various times At (symbols) together with the analytic
decay of the long-range tail given by Eq. . In the previous growth phase for ¢ < g,
correlations have been established by a single-letter duplication-mutation dynamics with
p = 1.0 and §; = 8.0 until the sequences reached the length Ny = 10%. For At = t—t; > 0,
a single-letter deletion process with 7;" = 8.0 was introduced. Note that the correlations
on short scales are preserved during the second phase. (b) C(r) with two scaling regimes
1 and 2 (symbols). Process rates are: u() = 1.0, 551) =10.0 and p® = 1.0, (552) = 2.0.
The dashed red line is the analytical C(r,t) for the parameters of phase 1. The second
phase lasted over a period of time that on average allowed the sequences to increase their
length by a factor of 100. For each scaling regime (n = 1,2), C(r) obeys the predicted
algebraic decay with exponent (™) = 4/1,,&?/)\("). The transition between both regimes is
sharp and its position agrees with the value predicted by Eq. .

they have originated from. Additionally, they are at the mercy of mutations. Their
amplitude will therefore decay exponentially on all scales according to Eq. with
the effective mutation rate ui?f). A numerical example of a two-stage dynamics with
two distinct scaling regimes is shown in Fig. (b).

Given the chronology of the rates for all phases, we thus can in principle predict
the different scaling regimes of C(r). Furthermore, given the measured C(r) of a
sequence generated under the influence of our processes, we might be able to recon-
struct the chronology of the ratio of the effective rates A and peg back throughout its
evolutionary history. In practice, however, such an attempt will be confined by two
major constraints: First, all of the above statements only apply to the long-range
tails of C(r). In order to perspicuously identify the decay exponent a of a certain
rate regime, the net expansion during that regime must hence have been sufficiently
large. Moreover, the ratio \/ueg of the succeeding phases should be high, because
correlations of the previous phases decay exponentially on a time-scale 7 = (4fieg) "
Otherwise previously established correlations will rapidly decay below the fluctuation
threshold AC' =1/4/N(t), and thus cannot be measured any longer.

65



Chapter 3 Tandem duplications and genomic correlations

3.7 General four-letter model and web service CorGen

The general four-letter model  Our sequence evolution model defined in (i3.1))
operates on sequences with letters taken from a binary alphabet s, = +1. This
simplification was originally motivated by the presumption of complementary strand
symmetry, which has been shown to hold in genomes for first and also higher-order
symmetries if investigated length scales are large enough [16]. Initially, we adopted
an even stronger assumption by postulating Z5 symmetry, meaning that the rates of
all processes in our model are independent of s,. However, breaking this symmetry
does not change the general scaling features of the two-letter model as has been
shown in Section When it comes to a quantitative application of our results to
genomic sequences, we have to generalize our findings to a full four-letter model with
sk € {A,C,G,T}. Furthermore, we need to allow for arbitrary 4 x 4 mutation rate
matrices. In the following, we will demonstrate how this can be accomplished in a
systematic manner and thereby prove the emergence of long-range correlations in a
generalized four-letter model with tunable GC-content.

By generalizing Eq. (3.17) in a continuum limit, we obtain Master equations for
the 16 two-point functions P;;(r), which measure the joint probabilities of finding
nucleotides 7 and j at a distance of r base pairs along the genome

iPo0) = Sl Polr) + am Pal)] = P (357)

To reveal the basic principles of our approach we will start with a simplified HKY-
type [64] mutation matrix that has a tunable stationary GC-content g. A generaliza-
tion to arbitrary 4 x 4 rate matrices is straightforward and will be discussed below.
Here we define mutation rates p;_.; by the matrix

Pr—A HC—A HG—A - 1l=g 1-9g 1—yg
. . = n 1 — . 1—¢g 1—
HA—C HT—C : HG—C 2 g g : g
Ha—G HT—G HCe—G : 9 9 9
Elements on the diagonal are negative sums over columns, q; = — > i Qgi- For our

choice of q, symmetry still holds for the rates pas.r = pr—4 and pe—_g = pe—c,
whereas rates pa_.c, pia—q, ir—c, hr—c, are different from those of the backward
processes. To solve Eq. (3.57) in the stationary state, we use a power-law Ansatz:

(1—-9)/2 x=AT

02 S (3.59)

Pij(r) = py r* +mm;, where 7, = {

denote stationary single nucleotide frequencies with respect to the rate matrix q.
Products m;7; are hence joint-probabilities for the uncorrelated case, and we expect
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pi#; < 0 and p; > 0 in accordance with the two-letter model. For convenience, we
can combine all P;;(r) in a 16-dimensional vector of the form

]3(7’) = (Paa, Par, Pac, Pac, Pra, Prr,- -+, Pac, Pag) "
= pre+h. (3.60)

Due to extensive structural symmetries in Eq. (3.57)) and our choice of q there are
various dependencies between the components of P(r). In particular, we have

Paa = Prr, Poc = Paa, Par = Pra, Pce = Pac
Pac = Pag = Prc¢ = Prqg = Pca = Por = Poa = Por. (3.61)

Furthermore, it has to hold that i P;=> i Pj; = m; for all 7, which also assures

that P(r) is a valid probability vector with >_i;j Pij = 1. This leaves 3 independent
parameters for p. To solve the system of differential equations (3.57)) with power-law
Ansatz (3.60)), we define a 16 x 16 matrix Q by

Q:I4®q+q®I4, (362)

where I, is the 4 x 4 identity matrix and ® denote Kronecker products. All 16 Master
equations (3.57) can then be combined in a matrix equation:

0 =
EP(T)

— —

QP(r) — ATEP(T)
= Qpr+iapr (3.63)

The last identity holds due to QP, = 0. In the stationary state, we have 8]3(7°) /Ot =0
and obtain the Eigenvalue equation

Qp=—a\j (3.64)

Spectral decomposition of Q yields eigenvalues (—2u, —p, 0) and three corresponding
sets of eigenvectors spanning the orthogonal subspaces M_y,, M_,, and M,. How-
ever, for admissible vectors 7 = r*[P(r) — Py] meaning that P(r) fulfills all conditions
in Eq. and is also a valid probability vector, we have always p'€ M_,,. Hence,
all feasible solutions of Eq. have Eigenvalue —2u, resulting in o = 2u/A. If
we use definition ([1.5) of the general two-point correlation function for nucleotide
sequences, 1. e. C(r) = Y ,[Py(r) — m7], we again obtain algebraically decaying long-

range correlations in the asymptotic regime,

Cry=r""¢ (Z pu) with o = QT'LL (3.65)

As expected from universality, long-range correlations are generic in the four-letter
model too. The characteristic decay-exponent v does not depend on the GC-content g.
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Notice however that « in the four-letter model differs from the two-letter case by a
factor of two. The reason for this disparity becomes obvious when reducing our four-
letter rate matrix to the binary case by grouping together C'/G to +1, and
AJ/T to —1. Transitions +1 — —1 then occur at rate pu(1 — g) in the four-letter
model. For the symmetric case g = 1/2, we thus have py . =pu__.. = u/2.

Our approach can be extended to more general rate matrices in a straightforward
manner. The only requirement we demand from the mutational dynamics is station-
arity, which is crucial for Eq. (3.64). In its most general form, stationarity is fulfilled
if q(ma, ™, e, mq)" = 0 holds for the mutation matrix q and the corresponding
single nucleotide distribution. From Eq. one can then construct a 16 x 16
matrix Q according to with its elements constituted by simple functions of the
elements of q. Solving the resulting eigenvalue equation and thereby taking
into account all constraints resulting from symmetries in the chosen rate matrix q
and the probability nature of 15(7’), will yield o and the solution space for p.

The web server CorGen In computational biology one often requires an ap-
propriate null model of DNA sequences, reflecting our assumptions about the “back-
ground” statistical features of the sequence under consideration. The need for a
realistic null model arises from the fact that the statistical significance of a com-
putational prediction derived by bioinformatics methods is often characterized by a
p-value, which specifies the likelihood that the prediction could have arisen by chance.
Popular null models are random sequences with letters drawn independently from an
identical distribution, or kth order Markov models specifying the transition proba-
bilities P(S;41]Si—k+1," - ,S;) in a genomic sequence [48]. However, both models are
incapable of incorporating long-range correlations in the sequence composition.

The widespread presence of long-range correlations in eukaryotic genomes raises the
question whether they should be incorporated in a realistic null model of DNA.
For example, we will show in Chapter |4| that such correlations substantially change
the p-values of sequence alignment scores if the the standard iid model is replaced
by a null model with long-range correlated sequences. To establish a realistic null
model that incorporates long-range correlations in the sequences we need to spec-
ify its precise correlation parameters (amplitude and decay exponent «) reflecting
the values measured in the genomic sequence. Often one also wants to have an en-
semble of random sequence realizations from the null model, for example in those
cases, where p-values can only be calculated by numerical simulations. For these
purposes we developed the web server CorGen [109], which can measure long-range
correlations in DNA sequences and generate random sequences with the same (or
user-specified) correlation and composition parameters. CorGen is publicly available
at http://corgen.molgen.mpg.de.

The generation of random DNA sequences with long-range correlated nucleotide
composition has long been regarded as quite intricate. However, we have shown
in this chapter that such sequences can efficiently be generated by simple dynam-
ical models of sequence evolution including tandem duplication and mutation pro-
cesses. In contrast to previously proposed methods to produce long-range correlated
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sequences [103], 164, [39], the duplication-mutation model combines the following ad-
vantages: (a) exact analytic results for the correlation function of the generated
sequences have been derived; (b) the method allows to generate sequences with any
user-defined value of the decay exponent o > 0, desired GC-content 0 < g < 1, and
length N; (c) the correlation amplitude is high enough to keep up with strong ge-
nomic correlations and can easily be reduced; (d) the dynamics can be implemented
by a simple algorithm with runtime O(N); (e) duplication and mutation processes
are well known processes of molecular evolution.

In CorGen, we use a simple single-site duplication-mutation algorithm to generate
long-range correlated sequences. We start with a sequence of one random nucleotide.
The dynamics is defined by a single-site duplication process occurring at rate v, =
1.0, and mutations specified by a rate matrix with tunable GC-content g and
rate-parameter p. No other processes are acting on the sequence. As derived in
Eq. , this dynamics generates sequences with correlations

C(r) = %aB(r +1,a) (3.66)
The additional factor 3/4 compared to Eq. results from extending the two-letter
model of Section to a four-letter model here. Asymptotically we have long-range
correlations C(r) oc r~—¢ for large r. The decay exponent is determined by o = 2y,
as derived in Eq. using A = v, = 1. By varying the mutation parameter p we
can hence tune a to any desired positive value.

The correlations C'(r) of the generated sequences define the maximal amplitude ob-
tainable by our dynamics for the specific settings of a and g. However, for the gener-
ation of long-range correlated sequences with correlation parameters comparable to
those measured in genomic sequences, the correlation amplitude typically has to be
reduced to the particular genomic amplitude. This can be accomplished according
to the results derived in Section by a simple procedure. After the sequence has
reached its desired length, the duplication process is stopped. Subsequent mutation
of M randomly drawn sites with mutation probabilities

Prob(X — Y) = { (1-g)/2 Y =AT (3.67)

q/2 Y =CG

will uniformly decrease the correlation amplitude to C*(r) = C(r)exp (—2M/N)
without changing the exponent o and the GC-content g.

CorGen offers three different types of services: (a) measuring long-range correlations
of a given DNA sequence, (b) generating long-range correlated random sequences
with the same statistical parameters as the query sequence, and (c¢) generating se-
quences with specific user-defined long-range correlations. The first two tasks require
the user to upload a query DNA sequence in FASTA or EMBL format. For long-
range correlations to be detectable, the sequences need to be sufficiently long (we
recommend at least 1000 bp). The distance interval where a power-law is fitted to
the measured C(r) can be specified by the user.
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Chapter 3 Tandem duplications and genomic correlations

CO I'Gen measuring and generating long-range correlations for DNA sequence analysis

Your uploaded sequence was 1000000 bp long and has a GC content of 0.479. A power-law has been fitted to the correlation function in
the range 10-10000. The decay exponent is 0.377 and the amplitude(at distance 10 bp) is 0.02262,

G profile and the correlation function of the submitted sequence:
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You can get an independenthy sampled sequence here.

It is also possible to retrieve independent samples using non-interactive netwark clients, e.g. using:

"wget -q -0 - 'httpifcorgen.molgen.mpg.defcgi-binfcorgen.cgi?seqonly=1&len=1000000&ge=0.479& alpha=-0.37678 &dist= 10&c=0.02262" ",
Figure 3.11: CorGen analysis of a 1 Mbp region of human chromosome 1 (position: 25
Mbp - 26 Mbp). The two plots in the top part show the measured GC-profile (left) and
correlation function (right) of the chromosomal region. The fitting to C'(r) o =% has
been performed in the range 10 < r < 10000, and the obtained parameters are o = 0.377
and C(10) = 0.0226 (green line). A corresponding random sequence of length 1 Mbp
with the measured long-range correlation parameters and average GC-content of the query
sequence has been generated and can be downloaded by the user. Its composition profile
and correlation function are shown in the two plots at the bottom.

Upon submission of a query DNA sequence, CorGen will generate plots with the
measured GC-profile and correlation function, as defined by Eq. (L.5). Unsequenced
or ambiguous sites are thereby excluded from the analysis. The user can specify
a distance interval where a power-law should be fitted to the measured correlation
function. The obtained values for the decay exponent o and the correlation amplitude
will be reported by CorGen. If a long-range correlated random sequence with the
same statistical features in the specified fitting interval has been requested, it will
be generated and its corresponding composition and correlation plots will also be
shown. See Fig. [3.11] for an example CorGen output page. The generated random
sequences can be downloaded by the user. If large sequence ensembles are needed,
independent realizations of the sequences can directly be obtained via non-interactive
network clients, e. g. wget. CorGen can also be used to generate long-range correlated
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random sequences with specific user-defined correlation parameters. In this case, the
user needs to specify the decay exponent «, the correlation amplitude C(r*) at a
reference distance r*, the desired GC-content g, and the sequence length N. Notice
that there is a generic limit for the correlation amplitude depending on the values of a
and g. As a typical example, the measurement of C'(r) for human chr. 22 takes ~ 65
seconds. A random sequence of length 1 Mbp with the same correlation parameters
can be generated in less than 5 seconds.

3.8 Origin of genomic correlations

Long-range correlations in base composition characterized by an asymptotic power-
law decay C(r) o< r~® of the autocorrelation function are a widespread feature among
the genomes of most eukaryotic genomes [131], 94 [163] 13|, 23, 02 ©3]. In this chap-
ter, we have analytically shown that long-range correlations generically emerge in
sequences that evolve under the influence of nucleotide mutation and tandem du-
plication processes. These processes are also regarded as the major local processes
acting on genomic DNA sequences during evolutionary history. We have demon-
strated in Chapter [2] that the vast majority of recent short DNA insertions in the
human genome indeed resulted from tandem duplications of existing adjacent se-
quence segments, and supposably this predominance is universal throughout large
parts of eukaryotic evolution.

Our findings raise the question whether — and if so to what extent — there is a causal
connection between the elementary mutational processes of molecular evolution and
the observed long-range correlations in genomic base composition? The theory de-
veloped in the previous sections provides a promising approach to this question by
quantitatively linking the decay exponent «, which is the determining property of
long-range correlations, to only two effective parameters of the evolutionary dynam-
ics: effective growth rate A and effective mutation rate peg. With a comprehensive
record of these two parameters for a particular genomic region and over a sufficiently
long evolutionary period at hand, we could in principle check compatibility with the
observed correlations in this region. However, such an approach is hardly feasible con-
sidering the extremely long time-scales we would have to take into account. According
to our model, present-day correlations C(r) at distance r = 10° bp, for example, orig-
inated from correlations present at distance r = 10* bp when the investigated region
was 100 times shorter compared with today. It is also very unlikely that such extensive
expansions have occurred with constant growth rate in time and along the genome.
Rather there might have been “bursts” of rapid expansion, e. g. by acquisitions of new
classes of transposable elements, followed by long periods of approximately constant
sequence length. In a punctuated growth process, strong long-range correlations with
small exponents « are produced and transported to larger distances during the rapid
expansion phases. During the stationary phases, previously established correlations
will decay uniformly on all scales as given by Eq. without changing o.

71



Chapter 3 Tandem duplications and genomic correlations

Such punctuated growth scenarios also pose a possible solution to the key problem of
exponential sequence growth inherent to our sequence evolution model it A > 0.
As has already been pointed out in [I11], evolutionary scenarios with constant growth
rate in time and along the genome can clearly be rejected assuming values of A com-
patible with those predicted from the observed long-range correlations according to
our sequence evolution model. This becomes obvious by the following simple estima-
tion for the human lineage. The correlation function C(r) along human chromosomes
shows a rather slow algebraic decay on “mesoscopic” distance scales 10? < r < 10°
with typical effective exponents a ~ 0.5 [23, 66, 93] (see also Fig. 3.12). A lower
bound of the effective mutation rate in mammals is u ~ 2 - 107%a™! per site [10].
Assuming stationary growth, we can use these values of o and p to derive a lower
bound on the genomic growth rate A, resulting in a minimum value A ~ 10~8a~! per
site according to Eq. . This rate is much too high. The human genome contains
N = 3 -10? base pairs and — assuming the above rate of genome expansion — would
have contained only about 4 - 10° base pairs at the time of mammalian radiation
about 90 million years ago. This is obviously incommensurate with the fact that
approximately 40% of the human genome can still be aligned to the mouse genome,
representing most of the orthologous sequences that remain in both lineages from the
common ancestor [169]. However, if we assume a punctuated growth process, this
discrepancy can be resolved. In mammals the last likely period of rapid expansion
has been the mammalian radiation, and the characteristic time scale of correlation
decay is 7 =~ 100 Myr according to Eq. . Correlations present or generated at
the time of the mammalian radiation would hence still persist today. The succession
of several distinct growth phases with different values of A\ and peg could even explain
correlations C'(r) with several scaling regimes as found in human chromosomes [23].
Thus, a punctuated expansion-randomization process may be compatible with the
correlations observed in mammals.

Compared to variations in time, spatial fluctuations of A along different regions of
the genome are presumably even more pronounced [100, 116, 86 [70]. The effect of
such regional fluctuations in A on long-range correlation characteristics essentially de-
pends on the spatial scale these fluctuations occur on. As an immediate consequence
of universality, process rates on microscopic length-scales will enter the composition
correlations in the mesoscopic range only via the average growth rate and effective
mutation rate. Variations in A on small scales can hence be straightened out by meso-
scopic averages. If, on the the other hand, growth rates averaged over mesoscopic
windows differ considerably between such windows, the correlations estimated in in-
dividual windows will also vary between windows. As long as A > 0 holds throughout
a long enough evolutionary history of a given genomic segment, long-range correla-
tions will have been established in that segment with decay exponent o = 4pieg/A
according to the particular effective rates in the segment. In segments with A < 0,
long-range correlations cannot emerge and the amplitude of previously established
correlations will decay uniformly on all scales. Hence, different segments may exhibit
different «, which is exactly what we observe in genomic sequences. In Fig.
for example, we show C(r) measured separately for 10 Mbp long non-overlapping
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Figure 3.12: Regional variation in correlation characteristics along the human genome.
Correlation functions C(r) were estimated according to definition for 280 non-
overlapping windows of length 10 Mbp covering most of the human genome. They are
ordered along the y-axis according to the averaged correlation strength in the interval
103 < r < 10%*. Our regional analysis reveals clear differences in the composition corre-
lations between distinct genomic regions. While the emergence of power-law correlations
appears to be universal, the decay exponent is not. For large values of «, correlations
rapidly decay below the fluctuation and long-range tails cannot be measured any longer.

windows of the human genome. Decay exponents in the mesoscopic regime vary
strongly between strong long-range correlations with o ~ 0.1, and windows with no
measurable long-range correlations on mesoscopic scales.

Regional variations in A on large spatial scales also pose a possible solution to the
problem of exponential sequence growth because high growth rates in expanding re-
gions can be counterbalanced by appropriate negative growth rates in other regions.
We numerically demonstrate that by this mechanism long-range correlations can in-
deed be generated in sequences of constant overall length in Fig. [3.13] A particular
class of evolutionary processes likely to play a crucial role in this context are genomic
rearrangements. Rearrangements of genomic segments are effectively neutral regard-
ing the overall growth rate of the genome, but they can obviously have a substantial
effect on local growth and deletion rates. For long-range correlations to be generated
by this process, insertions of translocated segments in expanding regions addition-
ally have to occur in a GC-biased fashion according to Eq. . Otherwise their
contribution to the effective mutation rate will exceed the effect of an increased local
growth rate, as has been discussed in Section [3.5]
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Figure 3.13: Emergence of long-range correlations by expansion-randomization processes
in a simple two-regime scenario with constant average sequence length. Binary sequences
of length 200 kbp initially consisting of independent random letters were evolved under
a single-site duplication-deletion-mutation dynamics until correlations reached stationarity.
The rates of duplication and deletion were thereby chosen according to the spatial profile
defined in the left plot. In the left sequence regime for sequence positions 0 < z < 100 kbp,
A = 1 was achieved by single-site duplications with rate §; = 1.0 and no deletions. In the
right regime for x > 100 kbp, duplications were switched off and single-site deletions
occurred at rate 7; = 1.0. Mutations acted in both regimes at constant rate ;= 0.1. In
this scenario, the overall sequence length is approximately constant and fluctuates around
200 kbp. In the right plot we show the measured correlation function C(r) estimated over
the entire sequences and averaged over 100 runs. C(r) features clear long-range correlations
with theoretically predicted exponent ov = 0.4 (red line).

We conclude that the observed long-range correlations in eukaryotic genomes are in
principle compatible with local expansion-randomization processes. The problem of
overall exponential sequence growth can be resolved by assuming strong variations
of the local growth rate A\ on large genomic scales if elongation of rapidly expanding
regions is compensated for by other contracting regions. Long-range correlations are
then produced in the currently expanding regions of the genome whenever growth is
driven by tandem duplication events or, more general, insertions that are biased to-
wards the local GC-content. In order to generate correlations of genomic magnitude
a =~ 0.5 by an expansion-randomization dynamics, our theory implies that for some
genomic regions the average growth rate has at least been of the same order of magni-
tude as the single nucleotide mutation rate over sufficiently long evolutionary periods.
Clearly, further analysis of genomic data is needed to corroborate or refute possible
causes of the observed correlations. Advanced comparative genomics approaches fa-
cilitated by the rapidly growing availability of whole-genome sequence data (e. g. the
recently sequenced genomes of 12 Drosophila species [47]) will hopefully help us to
elucidate the mutational dynamics of chromosomes on long evolutionary timescales
in more detail. If genomic expansion proves to be a significant contribution, compo-
sition correlations could become the “background radiation” of genomics, allowing us
to trace the expansion history of genomes far back in evolutionary time.
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