
Chapter 4

Genomic correlations and sequence
alignment statistics

Long-range correlations in genomic base composition are a ubiquitous statistical feature
among many eukaryotic genomes. As we have shown in the Chapter 3, the emergence
of such correlations is a natural consequence of the elementary local mutation processes
in genome evolution. In this chapter, we show that long-range correlations substan-
tially influence the statistics of sequence alignment scores if they are incorporated in our
null model of DNA sequences. Using a Gaussian approximation to model the correlated
score landscape, we calculate the corrections to the scale parameter λ of the extreme
value distribution of alignment scores. Our approximate analytic results are supported
by a detailed numerical study. We find both, mean and exponential tail of the score
distribution for long-range correlated sequences to be substantially shifted compared to
random sequences with independent nucleotides. The significance of measured alignment
scores changes upon incorporation of the correlations in the null model. We discuss the
magnitude of this effect in a biological context at the end of this chapter.

4.1 Sequence alignment and significance assessment

The goal of DNA sequence alignment is to assign to a given pair of genomic sequences
~a = (a1, . . . , aN) and ~b = (b1, . . . , bM) a measure of their similarity. The simplest
version of sequence alignment is gapless alignment. A local gapless alignment A of
the two sequences consists of a substring (ai−l+1, . . . , ai) of length l of sequence ~a and

a substring (bj−l+1, . . . , bj) of sequence ~b of the same length. Each such alignment is

assigned a score SA =
∑l−1

k=0 s(ai−k, bj−k), where s(a, b) is some given scoring matrix
measuring the mutual degree of similarity of the different letters of the alphabet. For
DNA sequence comparison, one often uses the simple match-mismatch matrix [148]

s(a, b) =

{
1 : a = b
−µ : a 6= b

. (4.1)
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The computational task is to find the alignment A, which gives the highest score

S ≡ max SA. (4.2)

For the purpose of detecting weak sequence similarities, alignment algorithms can
also take into account insertions and deletions in either one of the two sequences
during biological evolution [148]. For such gapped alignments, each gap contributes a
gap cost γ to the total score of the alignment. Using affine gap costs, one additionally
distinguishes between gap initiation cost γi and gap extension cost γe.

DNA sequence alignment is generally used to identify homology between sequences,
i. e. common evolutionary origin from an ancestral state. Since an alignment score S
is assigned to any pair of sequences, also to biologically completely unrelated ones,
it is helpful to know the distribution of S in an appropriate null model in order to
be able to distinguish true evolutionary relationship from random similarities. The
knowledge of this distribution gives the possibility to assign p-values to alignment
results. They specify the probability that a high score could have arisen by chance.

As already discussed in the introduction, a frequently used null model for that pur-
pose is the iid model. For ungapped alignment of long sequences (M, N � 1), the
distribution of S for the iid model has been worked out rigorously [73, 76, 74]; it is a
Gumbel or extreme value distribution, with its probability density function given by

pdf(S) = KMNλ exp (−λS −KMNe−λS). (4.3)

The distribution is characterized by the two parameters λ and K. In the iid case,
the scale parameter λ is the unique positive solution of the equation

〈exp (λs)〉 =
∑
a,b

ρaρb exp [λs(a, b)] = 1, (4.4)

where ρx is the frequency of nucleotide x ∈ {A, C,G, T} in the model. The other
parameter K then determines the mean of the distribution.

For gapped alignment, no rigorous theory for the distribution of S exists, so far.
However, numerical evidence strongly suggests that the distribution is still of Gumbel
form [149, 168, 4, 118]. Using this empirical applicability, it has been shown in [27,
28, 62] that λ for local gapped alignment in the iid model can be derived solely from
studying the much simpler global alignment, where one is interested in the path with
the highest score h ≡ max hA, connecting the beginning (a1, b1) to the end (aN , bN)

of a given pair of sequences ~a and ~b (we set M = N , from now on). If we denote the

average over all possible pairs of random sequences ~a and~b of length N by brackets 〈·〉,
we can define a generating function

ZN(λ) ≡ 〈exp (λh)〉. (4.5)
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4.2 The Gaussian approximation

The central conjecture in [27] then states that λ is determined by the solution of

lim
N→∞

1

N
log ZN(λ) = 0. (4.6)

Following the results of [128, 34], this allows for a very efficient computation of λ for
gapped alignment in the iid model.

The iid model is the simplest feasible DNA background model at hand. It allows to
incorporate length and average nucleotide composition of a sequence, but lacks any
specific structure concerning the arrangement of nucleotides along the DNA sequence.
The use of an iid null model for DNA is conclusively justified if nucleotides evolve
independent of each other in the sequence, and insertions are comprised of randomly
drawn nucleotides. However, we have shown in Chapter 2 that the latter is not the
case for genomic evolution. In human, for example, the majority of recent short DNA
insertions were found to result from tandem duplication events. It has further been
shown in Chapter 3 that tandem duplication insertions lead to long-range correlations
in genomic base composition. These findings provide a likely explanation for the
widespread presence of such correlations among the genomes of many eukaryotic
species, but they also raise the question to what degree iid sequences are still a suitable
null model for genomic DNA. It is the aim of the following analysis to investigate
the effects on significance estimation of sequence alignment scores that result when
replacing the iid model by a more accurate DNA null model, which incorporates
long-range correlations in sequence composition.

4.2 The Gaussian approximation

In this section, we derive approximate analytical results for the parameter λ of the
score distribution one obtains for alignment of random sequences with long-range
correlations in nucleotide composition. We restrict ourselves to gapless alignment, as
we expect qualitatively similar results for the gapped case. This will also be confirmed
by the numerical data we present in Section 4.4. For simplicity, we furthermore
assume a uniform distribution of the four nucleotides; a generalization to sequences
with biased composition is straightforward.

The approach employed in the following is based on the assumption that for local
gapless alignment of correlated sequences the distribution of the maximal scores obeys
Gumbel form, and λ is still determined by Eq. (4.6). The score of the global alignment
is given by the sum over all elementary scores si = s(ai, bi) along the diagonal of the
alignment-lattice. Two exemplary realizations of an alignment score lattice are shown
in Fig. 4.1. Defining ~s = (s1, . . . , sN), we have

h =
N∑

i=1

si = ~1t~s. (4.7)
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Figure 4.1: Two realizations of an alignment score lattice: (a) The sequences ~a and ~b are
drawn from the iid model. (b) Both sequences are random sequences featuring long-range
correlations in their base composition with decay exponent α = 0.5. They are generated
by a duplication-mutation dynamics, as described in Section 4.3. Cells corresponding to
matching nucleotides in ~a and ~b are colored black, white cells denote mismatches. The
score of an ungapped global alignment is the sum over all elements of the diagonal vec-
tor ~s = (s1, . . . , sN ) of the score lattice. Comparison of both figures reveals qualitative
differences between the two null models. The alignment lattice of long-range correlated
sequences shows systematically larger black and white blocks representing exactly matching
or mismatching substrings of the two sequences, compared to the iid model.

The ensemble average of Eq. (4.5) over all realizations of the two sequences ~a and ~b
can therefore be expressed in terms of an average over all score vectors ~s. While the
probability of a score vector factorizes in the iid model, P (~s) =

∏
i P (si), this is no

longer the case for correlated sequences. However, approximate values for the proba-
bilities P (~s) in the correlated case can still be derived by a Gaussian approximation.
The idea of this approach is to replace the discrete variables si by continuous Gaus-
sian variables. More precisely, an individual discrete score si = {1,−µ} at position
i along the diagonal of the alignment lattice will now be allowed to take continuous
values, distributed according to a normal distribution

pdf(si) =
1√

2πσ2
exp

−(si − 〈s〉)2

2σ2
. (4.8)

Mean and variance are chosen in accordance with the original discrete score distri-
bution, i.e., 〈s〉 = 1/4− 3µ/4, and σ2 = 3(1 + µ)2/16.

The probability P (~s) of a score vector ~s is then determined by an N -dimensional
Gaussian distribution

P (~s) = [(2π)N det σ]−1/2 exp [−1

2
(~s− 〈~s〉)tσ−1(~s− 〈~s〉)], (4.9)

with 〈~s〉 = (〈s〉, . . . , 〈s〉) and the covariance matrix σ, defined by

σij = 〈s(i)s(j)〉 − 〈s(i)〉〈s(j)〉. (4.10)
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4.2 The Gaussian approximation

The diagonal elements of σ are given by the variance of an individual score, σii =
σ2. The non-diagonal elements σi6=j can be expressed in terms of the correlation

function C(r) of the sequences ~a and ~b, where C(r) is defined by Eq. (1.5). We have

σij =
1

3
(1 + µ)2C2(|i− j|). (4.11)

In this expression the correlation function C(r) is squared because (4.11) describes the
correlations of the similarity scores which arise from a comparison of two sequences.
The non-diagonal elements vanish for iid sequences.

Using distribution (4.9), the calculation of the generating function (4.5) amounts to
the evaluation of an N -dimensional Gaussian integral, which can be solved explicitly,

ZN(λ) =

∫
d~s P (~s) exp (λ~1t~s)

= [(2π)N det σ]−1/2

∫
d~s e−

1
2
(~s−〈~s〉)tσ−1(~s−〈~s〉)+λ~1t~s (4.12)

= exp (λ~1t〈~s〉+
1

2
λ2~1tσ~1).

The central conjecture (4.6) then implies

0 = lim
N→∞

1

N
(λ~1t〈~s〉+

1

2
λ2~1tσ~1). (4.13)

Notice that this expression coincides with the result obtained by applying the central
conjecture to the Taylor series approximation of the generating function (4.5) up to
second order. Using Eq. (4.11) yields

λ =
−2〈s〉

σ2 + 2
3
(1 + µ)2 limN→∞

∑N
i=1 C2(i)

. (4.14)

The first term σ2 in the denominator is related to the individual fluctuations of a
single score element, irrespective of correlations along the sequences. The second term
vanishes for iid sequences and determines the corrections to λ due to correlations.

In case of long-range correlations, i.e., C(r) = cr−α, and assuming α > 1/2, we obtain

λ =
−2〈s〉

σ2 + 2
3
(1 + µ)2c2ζ(2α)

, (4.15)

where ζ(x) is the Riemann zeta function. Consequently, the Gaussian approximation
predicts deviations in λ for the alignment of long-range correlated sequences compared
to iid sequences. A detailed numerical analysis of this analytic result will be performed
in Section 4.3. Notice that for α ≤ 1/2 the sum

∑∞
i=1 C2(i) diverges, resulting in
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Figure 4.2: λ for sequences with
short-range correlations generated
by a Markov process. The dashed
line is the exact result [76] for the
Markov process defined in (4.16),
using µ = 3. The solid line is the
corresponding result of the Gaus-
sian approximation, as derived in
Eq. (4.17). Solving Eq. (4.4) yields
the iid asymptotics λ ≈ 1.374.

λ = 0. This might indicate a transition from local to global alignment in the Gaussian
approximation, which will be discussed at the end of Section 4.3.

As a first evaluation of the Gaussian approximation, we investigate its predictions
for sequences ~a = (a1, . . . , aN) generated by a Markov process. We consider a first
order process with four different states Ai ∈ {A, C, T,G}. Starting with a random
nucleotide a1, the transition probabilities are defined by

P (ai+1|ai) =

{
p : ai+1 = ai

1
3
(1− p) : ai+1 6= ai

. (4.16)

This process generates short-range correlations in the sequences of the form C(r) =
c exp (−βr) with β = − log (4p/3− 1/3) and c = 3/4. For this case, the Gaussian
approximation (4.14) yields

λ =
−2〈s〉

σ2 + 2
3
(1 + µ)2c2/(exp (2β)− 1)

. (4.17)

This can be compared with the exact analytic result for λ obtained by equating
the largest eigenvalue of a modified λ-dependent transition matrix of the underly-
ing Markov process to one [76]. As is shown in Fig. 4.2, the Gaussian approxima-
tion (4.17) fits well to the exact results; deviations for large β vanish for decreasing β.
Notice that the limit β →∞ corresponds to p → 1/4, describing the asymptotics of
an uncorrelated iid sequence. The deviations of the Gaussian approximation for this
regime result from the fact that the third and all higher cumulants of the distribu-
tion (4.8) vanish, which they do not for the discrete distribution.

4.3 Numerical results

Generating long-range correlated random sequences Numerical evaluation
of the results obtained in the previous section hinges on the knowledge of the score
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Figure 4.3: Numerically measured shape of the alignment score distribution pdf(S) for
N = M = 103 using three different null models: iid sequences, long-range correlated se-
quences with α = 1.0, and such with α = 0.5. The distributions were obtained by aligning
107 pairs of sequences randomly drawn from the particular null model ensemble. As is
the case for the iid ensemble, the tail of the score distributions for long-range correlated
sequences features the Gumbel-typical exponential decay characterized by a decay expo-
nent λ. However, the mean of pdf(S) is systematically shifted towards larger scores for
increasing correlation strength, i.e. smaller values of α, compared to the iid model. More-
over, long-range correlations decrease the decay exponent λ and therefore lead to a slower
decay of the exponential tail of the alignment score distribution.

distribution pdf(S) for local gapless alignment of pairs of long-range correlated ran-
dom sequences. Based on our results derived in Chapter 3, we use a simple single-
site duplication-mutation algorithm to generate long-range correlated sequences. We
start with a sequence of one random nucleotide a1. The dynamics is defined by a
single-site duplication process occurring at rate γ+

1 = 1.0, and mutations specified
by a rate matrix (3.58) with tunable GC-content g and rate-parameter µ. No other
processes are acting on the sequence. This dynamics generates random sequences
with C(r) determined by Eq. (3.66). Asymptotically we have long-range correlations
C(r) ∝ r−α for large r. The decay exponent is determined by α = 2µ, as derived
in Eq. (3.65) using γ+

1 = 1. By varying the mutation parameter µ we can hence
tune α to any desired positive value. Due to the algorithm’s fast runtime of O(N) we
can efficiently generate the large ensembles of long-range correlated sequences needed
for our analysis. For the alignment, we use the standard Smith-Waterman dynamic
programming algorithm [148] with scoring matrix (4.1) and µ = 3.

The Gumbel distribution of alignment scores Our solution of the Gaussian
model is based on the assumption that the alignment score distribution pdf(S) is of
Gumbel form for long-range correlated sequences. Consequently, our first numerical
analysis aims at a verification of this conjecture. In Fig. 4.3 we show the measured
score distributions for two different long-range correlated sequence ensembles with
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Figure 4.4: Convergence of the distribution pdf(S) for long-range correlated sequences
with α = 2.0 to a Gumbel form. The solid line is a Gumbel distribution, as specified in
Eq. (4.3) with N = M = 104 and fitted parameters λ = 0.9614 and K = 0.119. λ was
obtained by fitting a linear function to log[pdf(S)] for 21 < S < 31, K has then been
estimated by fitting the data to Eq. (4.3) in the same interval. In order to be able to
compare the shape of pdf(S) for different N , the distributions have to be rescaled by a
transformation pdf(S) → pdf(S + 2 ln [N/N0]) with reference length N0 = 104.

correlation parameters α = 1.0 and α = 0.5, compared to the Gumbel distribution of
the iid model. Whereas the tail of the score distributions for long-range correlated
sequences still features the Gumbel-typical exponential decay, its decay parameter λ
systematically decreases with increasing correlation strength, i. e. smaller values of α.
In addition, the mean of the distribution is shifted towards larger scores. For large N ,
the shape of pdf(S) asymptotically approaches a Gumbel form for the correlated
ensembles. This can be seen in Fig. 4.4, where we exemplarily show the measured
score distribution for long-range correlated sequences with α = 2.0 and different
sequence lengths N . As is the case for the iid model, finite-size corrections come
into play for small N [4, 3, 176]. These deviations primarily show up in the small S
regime. The more relevant large S regime converges fast for increasing N .

Now, that we have verified the shape of the score distribution to be of Gumbel form,
we can test the accuracy of the analytic predictions for λ derived by the Gaussian ap-
proximation. Here we restrict ourselves to the discussion of the regime α > 1/2, where
the Gaussian approximation predicts finite values of λ. The regime α ≤ 1/2 will be
investigated below. We compare our numerical data to Eq.(4.14), using correlations
of the form (3.66). Results are shown in Fig. 4.5 (a). The Gaussian approximation
captures the qualitative behavior of the numerical data. Again, the right hand side
of the plot reveals the deviations of the Gaussian approximation concerning its iid
asymptotics given by α → ∞. With increasing correlation strength, i. e. smaller
values of α, λ decreases, confirming that long-range correlations systematically raise
the probability of measuring high alignment scores.

82



4.3 Numerical results

0.0 5.0 10.0
α

0.0

0.5

1.0

1.5
λ

iid asymptotics
Gaussian approx.
numerical results

(a)

100 1000 10000
N

0

5

10

15

20

λ 
<

S>

iid
α=1.0
α=0.5
α=0.2

(b)

Figure 4.5: (a) λ for a null model with long-range correlated sequences in dependence of
the correlation exponent α. The solid line is the analytic result of the Gaussian approxi-
mation one obtains by estimating Eq. (4.14) using the correlations (3.66) of our simulated
sequences. Numerically measured values of λ for different correlation parameters α are
denoted by symbols. For our simulation, we use sequences of length N = 103 and average
over ensembles of 108 pairs of sequences. (b) Mean of the score distribution pdf(S) for
different exponents α against increasing sequence length N . Measured values for 〈S〉 were
obtained by averaging over ensembles of 104 pairs of sequences. K can be inferred from
K = 1/N2 exp [λ〈S〉 − Γ]. The deviations from the form λ〈S〉 = Γ + log (K) + 2 log (N)
for the strong correlations α = 0.2 are due to the fact that pdf(S) deviates from a Gumbel
distribution for small N in the strong correlation regime α ≤ 0.5.

So far, our investigations of the alignment score distribution for long-range corre-
lated sequences have focused on the exponential tail of pdf(S). We now turn to
the second parameter K. For that purpose, we recall that the mean of a Gumbel
distribution (4.3) is determined by

〈S〉 =
Γ + log (KN2)

λ
, (4.18)

where Γ ≈ 0.5772 is the Euler-Mascheroni constant. Thus, knowing λ, the parameter
K can easily be calculated by measuring the mean 〈S〉 of the score distribution. As
shown in Table 4.1 and Fig. 4.5 (b), K is significantly affected by the presence of
long-range correlations in the sequences to be aligned; it decreases with increasing
correlation-strength. However, the mean of the distribution is, as expected, shifted to
larger values of S for decreasing values of α because K contributes only logarithmi-
cally in Eq. (4.18) and the change in 〈S〉 is dominated by the decrease of λ. Fig. 4.5 (b)
again reveals the finite-size deviations of the numerically measured score distribution
pdf(S) from a Gumbel form (4.3) in the strong correlation regime α ≤ 1/2.

The score distribution for α ≤ 1/2 In the regime α > 1/2, the score distribution
is of Gumbel form and the Gaussian approximation suitably fits the numerical values
of λ. For values of α ≤ 1/2, the Gaussian approximation yields λ = 0, which might
indicate a transition from local to global alignment. For simulated sequences of finite
length, on the other hand, one still measures finite values of λ, as shown in Fig. 4.5 (a).
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α λ 〈S〉 K

(iid) 1.374 9.71 3.50× 10−1

4.0 1.240 10.61 2.90× 10−1

2.0 0.967 12.65 1.15× 10−1

1.0 0.556 18.07 1.30× 10−2

0.5 0.248 51.30 1.15× 10−3

0.2 0.048 165.08 9.47× 10−6

Table 4.1: Dependence of 〈S〉 and K on
the exponent α. We use simulated se-
quences of length N = 103 and average
over ensembles of 108 pairs of sequences
for each value of α to obtain numerical val-
ues of λ and 〈S〉. The values of K have
been calculated using Eq. (4.18).

The numerical investigation of this regime is complicated by a distinct finite size effect:
according to the results derived in Section 3.4, an individual alignment of two finite
sequences will have a systematic bias of 〈s〉 towards either 〈s〉 = 1, or 〈s〉 = −µ,
depending on whether by chance the two initial random letters a1 and b1 of our
sequence generation algorithm were equal for the two sequences to be aligned, or not.
This effect causes strong deviations of pdf(S) from a Gumbel form for small S. The
tail of the distribution is still exponential for finite sequences and therefore allows
for a measurement of λ. It is dominated by those realizations of the ensemble, where
both sequences started with the same letter as they lead to systematically higher
values of 〈s〉 and therefore also higher scores S.

As can be seen in Fig. 4.5 (a), λ approaches zero for finite sequences not until the
“infinite” correlation strength limit α → 0. Further analysis is needed to decide on
whether there actually is a transition to global alignment for a particular α > 0 in
the limit N → ∞, or not. If there is, then the rate of convergence for λ → 0 is at
most logarithmically. However, for practical applications this transition is irrelevant.
Finite sequences always have a positive λ, also in the regime α ≤ 1/2. For these
particular choices of parameters, λ needs to be measured numerically.

4.4 Consequences for genomic alignments

It has been shown that long-range correlations in base composition increase the prob-
ability of measuring high scores for pairwise sequence alignment. In a biological con-
text, this raises the question whether the effect causes a significant change of the
p-values for DNA alignment? In order to address this issue, we investigate the de-
viations of the score distribution for correlation parameters of genomic magnitude
compared to iid sequences. For this purpose, we need to generate ensembles of long-
range correlated random sequences with correlation parameters of genomic scale. This
can conveniently be achieved by our web server CorGen, described in Section 3.7.

To investigate the magnitude of p-value changes, we consider as an example the mea-
sured correlation function of human chromosome 22. As shown in Fig. 4.6 (a), human
chromosome 22 shows clear long-range correlations in its base composition, and we
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Figure 4.6: (a) Long-range correlations in the base composition of human chromosome 22
(symbols) and demonstration of our capability to produce random sequences with compa-
rable correlation parameters (red line). (b) The score distribution for ungapped and gapped
alignment of simulated sequences with correlations comparable to those of human chromo-
some 22. The straight lines are the fits to the exponential tails of the score distributions,
obtained by fitting a linear function to log[pdf(S)] in the depicted intervals.

can accurately generate long-range correlated random sequences with comparable ex-
ponent α ≈ 0.232 and amplitude obtained from fitting a power-law to the measured
C(r) in the interval 102 < r < 104.

We perform ungapped, as well as gapped alignment with affine gap costs for 107

pairs of random sequences of length N = 103 from the above specified ensemble.
Alignment parameters are chosen in accordance with the NCBI default values µ = 3,
gap initiation cost γi = 5, and gap extension cost γe = 2 [120]. In Fig. 4.6 (b) we
show the measured score distributions for the simulated chr. 22 sequences compared
to iid sequences. The resulting parameters λ and 〈S〉 are presented in Table 4.2.

It turns out that the difference in the score distributions between ungapped and
gapped alignment is negligible for the parameters used. The deviations in λ be-
tween the iid ensemble and the simulated human chromosome 22 sequences are
approximately 15% in both cases, and the mean of the score distributions for the
correlated sequences is significantly larger. In combination, both effects substan-
tially change the p-values of high scores compared to the iid model, as can be seen
in Table 4.2. The p-value of a specific score S ′ is thereby defined by the integral
P (S ≥ S ′) =

∫∞
S′

pdf(S)dS. For an exemplary score S ′ = 18, this p-value will be in-
creased by almost one order of magnitude if one incorporates the genomic correlations
into the null model.

Long-range correlations are a widespread statistical feature of eukaryotic DNA. In
this chapter, it has been shown that incorporation of this feature into the null model
substantially influences the score statistics of sequence alignment. While the p-values
of the scores are systematically increased, the ranking of hits will not be signifi-
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ensemble λ 〈S〉 P (S ≥ 18)

iid (ungapped) 1.374 9.714 3.3× 10−6

sim. chr. 22 (ungapped) 1.191 10.164 2.8× 10−5

iid (gapped) 1.373 9.714 3.2× 10−6

sim. chr. 22 (gapped) 1.215 10.163 2.7× 10−5

Table 4.2: Fitted parame-
ters λ and 〈S〉 for the iid en-
semble and simulated human
chr. 22 sequences of length
N = 103. In the last col-
umn, exemplary p-values of
S′ = 18 are shown.

cantly changed. The effect is therefore relevant whenever one is actually interested
in p-values, e.g., when specifying a cutoff in order to distinguish true evolutionary
relationship from random similarities.

One has to keep in mind that genomic DNA is a highly heterogeneous environment:
it consists of genes, noncoding regions, repetitive elements etc., and all of these
substructures may imprint their signature on the amount of correlations found in
a particular genomic region [75]. Long-range correlations are by definition a feature
on larger scales. Our findings are therefore naturally applicable to the alignment
of larger genomic regions. This includes the identification of duplicated regions, or
conserved syntenic segments between chromosomes of different species, which often
extend over many kilobases up to several megabases. However, long-range correlations
will also influence the statistics of search algorithms for short DNA motifs if the query
sequences are large enough for long-range correlations to be measured.

Moreover, it will be interesting to analyze possible effects of long-range correlations
on the statistics of other widely used sequence analysis tools, e. g. the prediction
of transcription factor binding sites [157]. Further investigation is needed to assess
the relevance of long-range correlations for other statistical predictions. Finally, more
accurate null models of DNA sequences utilizing quantitative correlation features will
help to reduce the often encountered high false-positive rate of bioinformatics tools.
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