English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response

MPS-Authors
/persons/resource/persons50378

Kerick,  M.
Cancer Genomics (Michal-Ruth Schweiger), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50381

Kirpy,  A.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50461

Parkhomchuk,  D.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50106

Bluemlein,  K.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50543

Schweiger,  M. R.
Cancer Genomics (Michal-Ruth Schweiger), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50561

Soldatov,  A.
Technology Development(Alexey Soldatov), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50409

Lehrach,  H.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50483

Ralser,  M.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kruger, A., Gruning, N. M., Wamelink, M. M., Kerick, M., Kirpy, A., Parkhomchuk, D., et al. (2011). The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. Antioxidants & Redox Signaling, 15(2), 311-24. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21348809 http://online.liebertpub.com/doi/pdfplus/10.1089/ars.2010.3797.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0010-78FA-D
Abstract
AIMS: A shift in primary carbon metabolism is the fastest response to oxidative stress. Induced within seconds, it precedes transcriptional regulation, and produces reducing equivalents in form of NADPH within the pentose phosphate pathway (PPP). RESULTS: Here, we provide evidence for a regulatory signaling function of this metabolic transition in yeast. Several PPP-deficiencies caused abnormal accumulation of intermediate metabolites during the stress response. These PPP-deficient strains had strong growth deficits on media containing oxidants, but we observed that part of their oxidant-phenotypes were not attributable to the production of NADPH equivalents. This pointed to a second, yet unknown role of the PPP in the antioxidant response. Comparing transcriptome profiles obtained by RNA sequencing, we found gene expression profiles that resembled oxidative conditions when PPP activity was increased. Vice versa, deletion of PPP enzymes disturbed and delayed mRNA and protein expression during the antioxidant response. INNOVATION: Thus, the transient activation of the PPP is a metabolic signal required for balancing and timing gene expression upon an oxidative burst. CONCLUSION: Consequently, dynamic rearrangements in central carbon metabolism seem to be of major importance for eukaryotic redox sensing, and represent a novel class of dynamic gene expression regulators.